blob: 8c85712ac58c2d3b7dea05b448e051bd7dd87674 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"runtime/internal/math"
"runtime/internal/sys"
"unsafe"
)
// For gccgo, use go:linkname to export compiler-called functions.
//
//go:linkname panicmakeslicelen
//go:linkname panicmakeslicecap
//go:linkname makeslice
//go:linkname checkMakeSlice
//go:linkname makeslice64
//go:linkname growslice
//go:linkname unsafeslice
//go:linkname unsafeslice64
type slice struct {
array unsafe.Pointer
len int
cap int
}
// A notInHeapSlice is a slice backed by go:notinheap memory.
type notInHeapSlice struct {
array *notInHeap
len int
cap int
}
func panicmakeslicelen() {
panic(errorString("makeslice: len out of range"))
}
func panicmakeslicecap() {
panic(errorString("makeslice: cap out of range"))
}
// makeslicecopy allocates a slice of "tolen" elements of type "et",
// then copies "fromlen" elements of type "et" into that new allocation from "from".
func makeslicecopy(et *_type, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer {
var tomem, copymem uintptr
if uintptr(tolen) > uintptr(fromlen) {
var overflow bool
tomem, overflow = math.MulUintptr(et.size, uintptr(tolen))
if overflow || tomem > maxAlloc || tolen < 0 {
panicmakeslicelen()
}
copymem = et.size * uintptr(fromlen)
} else {
// fromlen is a known good length providing and equal or greater than tolen,
// thereby making tolen a good slice length too as from and to slices have the
// same element width.
tomem = et.size * uintptr(tolen)
copymem = tomem
}
var to unsafe.Pointer
if et.ptrdata == 0 {
to = mallocgc(tomem, nil, false)
if copymem < tomem {
memclrNoHeapPointers(add(to, copymem), tomem-copymem)
}
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
to = mallocgc(tomem, et, true)
if copymem > 0 && writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice to
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(to), uintptr(from), copymem)
}
}
if raceenabled {
callerpc := getcallerpc()
pc := abi.FuncPCABIInternal(makeslicecopy)
racereadrangepc(from, copymem, callerpc, pc)
}
if msanenabled {
msanread(from, copymem)
}
if asanenabled {
asanread(from, copymem)
}
memmove(to, from, copymem)
return to
}
func makeslice(et *_type, len, cap int) unsafe.Pointer {
mem := checkMakeSlice(et, len, cap)
return mallocgc(mem, et, true)
}
// checkMakeSlice is called for append(s, make([]T, len, cap)...) to check
// the values of len and cap.
func checkMakeSlice(et *_type, len, cap int) uintptr {
mem, overflow := math.MulUintptr(et.size, uintptr(cap))
if overflow || mem > maxAlloc || len < 0 || len > cap {
// NOTE: Produce a 'len out of range' error instead of a
// 'cap out of range' error when someone does make([]T, bignumber).
// 'cap out of range' is true too, but since the cap is only being
// supplied implicitly, saying len is clearer.
// See golang.org/issue/4085.
mem, overflow := math.MulUintptr(et.size, uintptr(len))
if overflow || mem > maxAlloc || len < 0 {
panicmakeslicelen()
}
panicmakeslicecap()
}
return mem
}
func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer {
len := int(len64)
if int64(len) != len64 {
panicmakeslicelen()
}
cap := int(cap64)
if int64(cap) != cap64 {
panicmakeslicecap()
}
return makeslice(et, len, cap)
}
func unsafeslice(et *_type, ptr unsafe.Pointer, len int) {
if len < 0 {
panicunsafeslicelen()
}
mem, overflow := math.MulUintptr(et.size, uintptr(len))
if overflow || mem > -uintptr(ptr) {
if ptr == nil {
panic(errorString("unsafe.Slice: ptr is nil and len is not zero"))
}
panicunsafeslicelen()
}
}
func unsafeslice64(et *_type, ptr unsafe.Pointer, len64 int64) {
len := int(len64)
if int64(len) != len64 {
panicunsafeslicelen()
}
unsafeslice(et, ptr, len)
}
func unsafeslicecheckptr(et *_type, ptr unsafe.Pointer, len64 int64) {
unsafeslice64(et, ptr, len64)
/* Commented out for gofrontend.
// Check that underlying array doesn't straddle multiple heap objects.
// unsafeslice64 has already checked for overflow.
if checkptrStraddles(ptr, uintptr(len64)*et.size) {
throw("checkptr: unsafe.Slice result straddles multiple allocations")
}
*/
}
func panicunsafeslicelen() {
panic(errorString("unsafe.Slice: len out of range"))
}
// growslice handles slice growth during append.
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
// and it returns a new slice with at least that capacity, with the old data
// copied into it.
// The new slice's length is set to the requested capacity.
func growslice(et *_type, oldarray unsafe.Pointer, oldlen, oldcap, cap int) slice {
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(oldarray, uintptr(oldlen*int(et.size)), callerpc, abi.FuncPCABIInternal(growslice))
}
if msanenabled {
msanread(oldarray, uintptr(oldlen*int(et.size)))
}
if asanenabled {
asanread(oldarray, uintptr(oldlen*int(et.size)))
}
if cap < oldcap {
panic(errorString("growslice: cap out of range"))
}
if et.size == 0 {
// append should not create a slice with nil pointer but non-zero len.
// We assume that append doesn't need to preserve oldarray in this case.
return slice{unsafe.Pointer(&zerobase), cap, cap}
}
newcap := oldcap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
const threshold = 256
if oldcap < threshold {
newcap = doublecap
} else {
// Check 0 < newcap to detect overflow
// and prevent an infinite loop.
for 0 < newcap && newcap < cap {
// Transition from growing 2x for small slices
// to growing 1.25x for large slices. This formula
// gives a smooth-ish transition between the two.
newcap += (newcap + 3*threshold) / 4
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
newcap = cap
}
}
}
var overflow bool
var lenmem, newlenmem, capmem uintptr
// Specialize for common values of et.size.
// For 1 we don't need any division/multiplication.
// For goarch.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
// For powers of 2, use a variable shift.
switch {
case et.size == 1:
lenmem = uintptr(oldlen)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.size == goarch.PtrSize:
lenmem = uintptr(oldlen) * goarch.PtrSize
newlenmem = uintptr(cap) * goarch.PtrSize
capmem = roundupsize(uintptr(newcap) * goarch.PtrSize)
overflow = uintptr(newcap) > maxAlloc/goarch.PtrSize
newcap = int(capmem / goarch.PtrSize)
case isPowerOfTwo(et.size):
var shift uintptr
if goarch.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
} else {
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
}
lenmem = uintptr(oldlen) << shift
newlenmem = uintptr(cap) << shift
capmem = roundupsize(uintptr(newcap) << shift)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
default:
lenmem = uintptr(oldlen) * et.size
newlenmem = uintptr(cap) * et.size
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)
}
// The check of overflow in addition to capmem > maxAlloc is needed
// to prevent an overflow which can be used to trigger a segfault
// on 32bit architectures with this example program:
//
// type T [1<<27 + 1]int64
//
// var d T
// var s []T
//
// func main() {
// s = append(s, d, d, d, d)
// print(len(s), "\n")
// }
if overflow || capmem > maxAlloc {
panic(errorString("growslice: cap out of range"))
}
var p unsafe.Pointer
if et.ptrdata == 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from oldlen to cap (which will be the new length).
// Only clear the part that will not be overwritten.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if lenmem > 0 && writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldarray), lenmem-et.size+et.ptrdata)
}
}
memmove(p, oldarray, lenmem)
return slice{p, cap, newcap}
}
func isPowerOfTwo(x uintptr) bool {
return x&(x-1) == 0
}
// slicecopy is used to copy from a string or slice of pointerless elements into a slice.
func slicecopy(toPtr unsafe.Pointer, toLen int, fromPtr unsafe.Pointer, fromLen int, width uintptr) int {
if fromLen == 0 || toLen == 0 {
return 0
}
n := fromLen
if toLen < n {
n = toLen
}
if width == 0 {
return n
}
size := uintptr(n) * width
if raceenabled {
callerpc := getcallerpc()
pc := abi.FuncPCABIInternal(slicecopy)
racereadrangepc(fromPtr, size, callerpc, pc)
racewriterangepc(toPtr, size, callerpc, pc)
}
if msanenabled {
msanread(fromPtr, size)
msanwrite(toPtr, size)
}
if asanenabled {
asanread(fromPtr, size)
asanwrite(toPtr, size)
}
if size == 1 { // common case worth about 2x to do here
// TODO: is this still worth it with new memmove impl?
*(*byte)(toPtr) = *(*byte)(fromPtr) // known to be a byte pointer
} else {
memmove(toPtr, fromPtr, size)
}
return n
}