blob: 8ed67c11a5a02b960a133b88f001e86d1298431a [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"unsafe"
)
// For gccgo, use go:linkname to rename compiler-called functions to
// themselves, so that the compiler will export them.
//
//go:linkname requireitab runtime.requireitab
//go:linkname assertitab runtime.assertitab
//go:linkname assertI2T runtime.assertI2T
//go:linkname ifacetypeeq runtime.ifacetypeeq
//go:linkname efacetype runtime.efacetype
//go:linkname ifacetype runtime.ifacetype
//go:linkname ifaceE2E2 runtime.ifaceE2E2
//go:linkname ifaceI2E2 runtime.ifaceI2E2
//go:linkname ifaceE2I2 runtime.ifaceE2I2
//go:linkname ifaceI2I2 runtime.ifaceI2I2
//go:linkname ifaceE2T2P runtime.ifaceE2T2P
//go:linkname ifaceI2T2P runtime.ifaceI2T2P
//go:linkname ifaceE2T2 runtime.ifaceE2T2
//go:linkname ifaceI2T2 runtime.ifaceI2T2
//go:linkname ifaceT2Ip runtime.ifaceT2Ip
// Temporary for C code to call:
//go:linkname getitab runtime.getitab
// The gccgo itab structure is different than the gc one.
//
// Both gccgo and gc represent empty interfaces the same way:
// a two field struct, where the first field points to a type descriptor
// (a *_type) and the second field is the data pointer.
//
// Non-empty interfaces are also two-field structs, and the second
// field is the data pointer. However, for gccgo, the first field, the
// itab field, is different. The itab field points to the interface
// method table, which is the implemention of a specific interface
// type for a specific dynamic non-interface type. An interface
// method table is a list of pointer values. The first pointer is the
// type descriptor (a *_type) for the dynamic type. The subsequent
// pointers are pointers to function code, which implement the methods
// required by the interface. The pointers are sorted by name.
//
// The method pointers in the itab are C function pointers, not Go
// function pointers; they may be called directly, and they have no
// closures. The receiver is always passed as a pointer, and it is
// always the same pointer stored in the interface value. A value
// method starts by copying the receiver value out of the pointer into
// a local variable.
//
// A method call on an interface value is by definition calling a
// method at a known index m in the list of methods. Given a non-empty
// interface value i, the call i.m(args) looks like
// i.itab[m+1](i.iface, args)
// Both an empty interface and a non-empty interface have a data
// pointer field. The meaning of this field is determined by the
// kindDirectIface bit in the `kind` field of the type descriptor of
// the value stored in the interface. If kindDirectIface is set, then
// the data pointer field in the interface value is exactly the value
// stored in the interface. Otherwise, the data pointer field is a
// pointer to memory that holds the value. It follows from this that
// kindDirectIface can only be set for a type whose representation is
// simply a pointer. In the current gccgo implementation, this is set
// only for pointer types (including unsafe.Pointer). In the future it
// could also be set for other types: channels, maps, functions,
// single-field structs and single-element arrays whose single field
// is simply a pointer.
// For a nil interface value both fields in the interface struct are nil.
// Return the interface method table for a value of type rhs converted
// to an interface of type lhs.
func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer {
if rhs == nil {
return nil
}
if lhs.kind&kindMask != kindInterface {
throw("getitab called for non-interface type")
}
lhsi := (*interfacetype)(unsafe.Pointer(lhs))
if len(lhsi.methods) == 0 {
throw("getitab called for empty interface type")
}
if rhs.uncommontype == nil || len(rhs.methods) == 0 {
if canfail {
return nil
}
panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name})
}
methods := make([]unsafe.Pointer, len(lhsi.methods)+1)
methods[0] = unsafe.Pointer(rhs)
ri := 0
for li := range lhsi.methods {
lhsMethod := &lhsi.methods[li]
var rhsMethod *method
for {
if ri >= len(rhs.methods) {
if canfail {
return nil
}
panic(&TypeAssertionError{nil, rhs, lhs, *lhsMethod.name})
}
rhsMethod = &rhs.methods[ri]
if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) &&
(lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) {
break
}
ri++
}
if !eqtype(lhsMethod.typ, rhsMethod.mtyp) {
if canfail {
return nil
}
panic(&TypeAssertionError{nil, rhs, lhs, *lhsMethod.name})
}
methods[li+1] = unsafe.Pointer(rhsMethod.tfn)
ri++
}
return unsafe.Pointer(&methods[0])
}
// Return the interface method table for a value of type rhs converted
// to an interface of type lhs. Panics if the conversion is impossible.
func requireitab(lhs, rhs *_type) unsafe.Pointer {
return getitab(lhs, rhs, false)
}
// Return the interface method table for a value of type rhs converted
// to an interface of type lhs. Panics if the conversion is
// impossible or if the rhs type is nil.
func assertitab(lhs, rhs *_type) unsafe.Pointer {
if rhs == nil {
panic(&TypeAssertionError{nil, nil, lhs, ""})
}
if lhs.kind&kindMask != kindInterface {
throw("assertitab called for non-interface type")
}
lhsi := (*interfacetype)(unsafe.Pointer(lhs))
if len(lhsi.methods) == 0 {
return unsafe.Pointer(rhs)
}
return getitab(lhs, rhs, false)
}
// Check whether an interface type may be converted to a non-interface
// type, panicing if not.
func assertI2T(lhs, rhs, inter *_type) {
if rhs == nil {
panic(&TypeAssertionError{nil, nil, lhs, ""})
}
if !eqtype(lhs, rhs) {
panic(&TypeAssertionError{inter, rhs, lhs, ""})
}
}
// Compare two type descriptors for equality.
func ifacetypeeq(a, b *_type) bool {
return eqtype(a, b)
}
// Return the type descriptor of an empty interface.
// FIXME: This should be inlined by the compiler.
func efacetype(e eface) *_type {
return e._type
}
// Return the type descriptor of a non-empty interface.
// FIXME: This should be inlined by the compiler.
func ifacetype(i iface) *_type {
if i.tab == nil {
return nil
}
return *(**_type)(i.tab)
}
// Convert an empty interface to an empty interface, for a comma-ok
// type assertion.
func ifaceE2E2(e eface) (eface, bool) {
return e, e._type != nil
}
// Convert a non-empty interface to an empty interface, for a comma-ok
// type assertion.
func ifaceI2E2(i iface) (eface, bool) {
if i.tab == nil {
return eface{nil, nil}, false
} else {
return eface{*(**_type)(i.tab), i.data}, true
}
}
// Convert an empty interface to a non-empty interface, for a comma-ok
// type assertion.
func ifaceE2I2(inter *_type, e eface) (iface, bool) {
if e._type == nil {
return iface{nil, nil}, false
} else {
itab := getitab(inter, e._type, true)
if itab == nil {
return iface{nil, nil}, false
} else {
return iface{itab, e.data}, true
}
}
}
// Convert a non-empty interface to a non-empty interface, for a
// comma-ok type assertion.
func ifaceI2I2(inter *_type, i iface) (iface, bool) {
if i.tab == nil {
return iface{nil, nil}, false
} else {
itab := getitab(inter, *(**_type)(i.tab), true)
if itab == nil {
return iface{nil, nil}, false
} else {
return iface{itab, i.data}, true
}
}
}
// Convert an empty interface to a pointer non-interface type.
func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) {
if !eqtype(t, e._type) {
return nil, false
} else {
return e.data, true
}
}
// Convert a non-empty interface to a pointer non-interface type.
func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) {
if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
return nil, false
} else {
return i.data, true
}
}
// Convert an empty interface to a non-pointer non-interface type.
func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool {
if !eqtype(t, e._type) {
typedmemclr(t, ret)
return false
} else {
typedmemmove(t, ret, e.data)
return true
}
}
// Convert a non-empty interface to a non-pointer non-interface type.
func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool {
if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
typedmemclr(t, ret)
return false
} else {
typedmemmove(t, ret, i.data)
return true
}
}
// Return whether we can convert a type to an interface type.
func ifaceT2Ip(to, from *_type) bool {
if from == nil {
return false
}
if to.kind&kindMask != kindInterface {
throw("ifaceT2Ip called with non-interface type")
}
toi := (*interfacetype)(unsafe.Pointer(to))
if from.uncommontype == nil || len(from.methods) == 0 {
return len(toi.methods) == 0
}
ri := 0
for li := range toi.methods {
toMethod := &toi.methods[li]
var fromMethod *method
for {
if ri >= len(from.methods) {
return false
}
fromMethod = &from.methods[ri]
if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) &&
(toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) {
break
}
ri++
}
if !eqtype(fromMethod.mtyp, toMethod.typ) {
return false
}
ri++
}
return true
}
//go:linkname reflect_ifaceE2I reflect.ifaceE2I
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
t := e._type
if t == nil {
panic(TypeAssertionError{nil, nil, &inter.typ, ""})
}
dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t)
dst.data = e.data
}
// staticbytes is used to avoid convT2E for byte-sized values.
var staticbytes = [...]byte{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
}