| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // See malloc.h for overview. |
| // |
| // TODO(rsc): double-check stats. |
| |
| package runtime |
| #include <stddef.h> |
| #include <errno.h> |
| #include <stdlib.h> |
| #include "runtime.h" |
| #include "arch.h" |
| #include "malloc.h" |
| #include "go-type.h" |
| |
| // Map gccgo field names to gc field names. |
| // Type aka __go_type_descriptor |
| #define kind __code |
| #define string __reflection |
| |
| // GCCGO SPECIFIC CHANGE |
| // |
| // There is a long comment in runtime_mallocinit about where to put the heap |
| // on a 64-bit system. It makes assumptions that are not valid on linux/arm64 |
| // -- it assumes user space can choose the lower 47 bits of a pointer, but on |
| // linux/arm64 we can only choose the lower 39 bits. This means the heap is |
| // roughly a quarter of the available address space and we cannot choose a bit |
| // pattern that all pointers will have -- luckily the GC is mostly precise |
| // these days so this doesn't matter all that much. The kernel (as of 3.13) |
| // will allocate address space starting either down from 0x7fffffffff or up |
| // from 0x2000000000, so we put the heap roughly in the middle of these two |
| // addresses to minimize the chance that a non-heap allocation will get in the |
| // way of the heap. |
| // |
| // This all means that there isn't much point in trying 256 different |
| // locations for the heap on such systems. |
| #ifdef __aarch64__ |
| #define HeapBase(i) ((void*)(uintptr)(0x40ULL<<32)) |
| #define HeapBaseOptions 1 |
| #elif defined(_AIX) |
| // mmap adresses range start at 0x07000000_00000000 on AIX for 64 bits processes |
| #define HeapBase(i) ((void*)(uintptr)(0x70ULL<<52)) |
| #define HeapBaseOptions 1 |
| #else |
| #define HeapBase(i) ((void*)(uintptr)(i<<40|0x00c0ULL<<32)) |
| #define HeapBaseOptions 0x80 |
| #endif |
| // END GCCGO SPECIFIC CHANGE |
| |
| // Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K. |
| MHeap runtime_mheap; |
| |
| int32 runtime_checking; |
| |
| extern volatile intgo runtime_MemProfileRate |
| __asm__ (GOSYM_PREFIX "runtime.MemProfileRate"); |
| |
| static MSpan* largealloc(uint32, uintptr*); |
| static void runtime_profilealloc(void *v, uintptr size); |
| static void settype(MSpan *s, void *v, uintptr typ); |
| |
| // Allocate an object of at least size bytes. |
| // Small objects are allocated from the per-thread cache's free lists. |
| // Large objects (> 32 kB) are allocated straight from the heap. |
| // If the block will be freed with runtime_free(), typ must be 0. |
| void* |
| runtime_mallocgc(uintptr size, uintptr typ, uint32 flag) |
| { |
| M *m; |
| G *g; |
| int32 sizeclass; |
| uintptr tinysize, size1; |
| intgo rate; |
| MCache *c; |
| MSpan *s; |
| MLink *v, *next; |
| byte *tiny; |
| bool incallback; |
| MStats *pmstats; |
| |
| if(size == 0) { |
| // All 0-length allocations use this pointer. |
| // The language does not require the allocations to |
| // have distinct values. |
| return runtime_getZerobase(); |
| } |
| |
| g = runtime_g(); |
| m = g->m; |
| |
| incallback = false; |
| if(m->mcache == nil && m->ncgo > 0) { |
| // For gccgo this case can occur when a cgo or SWIG function |
| // has an interface return type and the function |
| // returns a non-pointer, so memory allocation occurs |
| // after syscall.Cgocall but before syscall.CgocallDone. |
| // We treat it as a callback. |
| runtime_exitsyscall(0); |
| m = runtime_m(); |
| incallback = true; |
| flag |= FlagNoInvokeGC; |
| } |
| |
| if((g->preempt || runtime_gcwaiting()) && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC) && m->preemptoff.len == 0) { |
| g->preempt = false; |
| runtime_gosched(); |
| m = runtime_m(); |
| } |
| if(m->mallocing) |
| runtime_throw("malloc/free - deadlock"); |
| // Disable preemption during settype. |
| // We can not use m->mallocing for this, because settype calls mallocgc. |
| m->locks++; |
| m->mallocing = 1; |
| |
| if(DebugTypeAtBlockEnd) |
| size += sizeof(uintptr); |
| |
| c = m->mcache; |
| if(!runtime_debug.efence && size <= MaxSmallSize) { |
| if((flag&(FlagNoScan|FlagNoGC)) == FlagNoScan && size < TinySize) { |
| // Tiny allocator. |
| // |
| // Tiny allocator combines several tiny allocation requests |
| // into a single memory block. The resulting memory block |
| // is freed when all subobjects are unreachable. The subobjects |
| // must be FlagNoScan (don't have pointers), this ensures that |
| // the amount of potentially wasted memory is bounded. |
| // |
| // Size of the memory block used for combining (TinySize) is tunable. |
| // Current setting is 16 bytes, which relates to 2x worst case memory |
| // wastage (when all but one subobjects are unreachable). |
| // 8 bytes would result in no wastage at all, but provides less |
| // opportunities for combining. |
| // 32 bytes provides more opportunities for combining, |
| // but can lead to 4x worst case wastage. |
| // The best case winning is 8x regardless of block size. |
| // |
| // Objects obtained from tiny allocator must not be freed explicitly. |
| // So when an object will be freed explicitly, we ensure that |
| // its size >= TinySize. |
| // |
| // SetFinalizer has a special case for objects potentially coming |
| // from tiny allocator, it such case it allows to set finalizers |
| // for an inner byte of a memory block. |
| // |
| // The main targets of tiny allocator are small strings and |
| // standalone escaping variables. On a json benchmark |
| // the allocator reduces number of allocations by ~12% and |
| // reduces heap size by ~20%. |
| |
| tinysize = c->tinysize; |
| if(size <= tinysize) { |
| tiny = c->tiny; |
| // Align tiny pointer for required (conservative) alignment. |
| if((size&7) == 0) |
| tiny = (byte*)ROUND((uintptr)tiny, 8); |
| else if((size&3) == 0) |
| tiny = (byte*)ROUND((uintptr)tiny, 4); |
| else if((size&1) == 0) |
| tiny = (byte*)ROUND((uintptr)tiny, 2); |
| size1 = size + (tiny - (byte*)c->tiny); |
| if(size1 <= tinysize) { |
| // The object fits into existing tiny block. |
| v = (MLink*)tiny; |
| c->tiny = (byte*)c->tiny + size1; |
| c->tinysize -= size1; |
| m->mallocing = 0; |
| m->locks--; |
| if(incallback) |
| runtime_entersyscall(0); |
| return v; |
| } |
| } |
| // Allocate a new TinySize block. |
| s = c->alloc[TinySizeClass]; |
| if(s->freelist == nil) |
| s = runtime_MCache_Refill(c, TinySizeClass); |
| v = s->freelist; |
| next = v->next; |
| s->freelist = next; |
| s->ref++; |
| if(next != nil) // prefetching nil leads to a DTLB miss |
| PREFETCH(next); |
| ((uint64*)v)[0] = 0; |
| ((uint64*)v)[1] = 0; |
| // See if we need to replace the existing tiny block with the new one |
| // based on amount of remaining free space. |
| if(TinySize-size > tinysize) { |
| c->tiny = (byte*)v + size; |
| c->tinysize = TinySize - size; |
| } |
| size = TinySize; |
| goto done; |
| } |
| // Allocate from mcache free lists. |
| // Inlined version of SizeToClass(). |
| if(size <= 1024-8) |
| sizeclass = runtime_size_to_class8[(size+7)>>3]; |
| else |
| sizeclass = runtime_size_to_class128[(size-1024+127) >> 7]; |
| size = runtime_class_to_size[sizeclass]; |
| s = c->alloc[sizeclass]; |
| if(s->freelist == nil) |
| s = runtime_MCache_Refill(c, sizeclass); |
| v = s->freelist; |
| next = v->next; |
| s->freelist = next; |
| s->ref++; |
| if(next != nil) // prefetching nil leads to a DTLB miss |
| PREFETCH(next); |
| if(!(flag & FlagNoZero)) { |
| v->next = nil; |
| // block is zeroed iff second word is zero ... |
| if(size > 2*sizeof(uintptr) && ((uintptr*)v)[1] != 0) |
| runtime_memclr((byte*)v, size); |
| } |
| done: |
| c->local_cachealloc += size; |
| } else { |
| // Allocate directly from heap. |
| s = largealloc(flag, &size); |
| v = (void*)(s->start << PageShift); |
| } |
| |
| if(flag & FlagNoGC) |
| runtime_marknogc(v); |
| else if(!(flag & FlagNoScan)) |
| runtime_markscan(v); |
| |
| if(DebugTypeAtBlockEnd) |
| *(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ; |
| |
| m->mallocing = 0; |
| // TODO: save type even if FlagNoScan? Potentially expensive but might help |
| // heap profiling/tracing. |
| if(UseSpanType && !(flag & FlagNoScan) && typ != 0) |
| settype(s, v, typ); |
| |
| if(runtime_debug.allocfreetrace) |
| runtime_tracealloc(v, size, typ); |
| |
| if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) { |
| if(size < (uintptr)rate && size < (uintptr)(uint32)c->next_sample) |
| c->next_sample -= size; |
| else |
| runtime_profilealloc(v, size); |
| } |
| |
| m->locks--; |
| |
| pmstats = mstats(); |
| if(!(flag & FlagNoInvokeGC) && pmstats->heap_alloc >= pmstats->next_gc) |
| runtime_gc(0); |
| |
| if(incallback) |
| runtime_entersyscall(0); |
| |
| return v; |
| } |
| |
| static MSpan* |
| largealloc(uint32 flag, uintptr *sizep) |
| { |
| uintptr npages, size; |
| MSpan *s; |
| void *v; |
| |
| // Allocate directly from heap. |
| size = *sizep; |
| if(size + PageSize < size) |
| runtime_throw("out of memory"); |
| npages = size >> PageShift; |
| if((size & PageMask) != 0) |
| npages++; |
| s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1, !(flag & FlagNoZero)); |
| if(s == nil) |
| runtime_throw("out of memory"); |
| s->limit = (uintptr)((byte*)(s->start<<PageShift) + size); |
| *sizep = npages<<PageShift; |
| v = (void*)(s->start << PageShift); |
| // setup for mark sweep |
| runtime_markspan(v, 0, 0, true); |
| return s; |
| } |
| |
| static void |
| runtime_profilealloc(void *v, uintptr size) |
| { |
| uintptr rate; |
| int32 next; |
| MCache *c; |
| |
| c = runtime_m()->mcache; |
| rate = runtime_MemProfileRate; |
| if(size < rate) { |
| // pick next profile time |
| // If you change this, also change allocmcache. |
| if(rate > 0x3fffffff) // make 2*rate not overflow |
| rate = 0x3fffffff; |
| next = runtime_fastrand() % (2*rate); |
| // Subtract the "remainder" of the current allocation. |
| // Otherwise objects that are close in size to sampling rate |
| // will be under-sampled, because we consistently discard this remainder. |
| next -= (size - c->next_sample); |
| if(next < 0) |
| next = 0; |
| c->next_sample = next; |
| } |
| runtime_MProf_Malloc(v, size); |
| } |
| |
| int32 |
| runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp) |
| { |
| M *m; |
| uintptr n, i; |
| byte *p; |
| MSpan *s; |
| |
| m = runtime_m(); |
| |
| m->mcache->local_nlookup++; |
| if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) { |
| // purge cache stats to prevent overflow |
| runtime_lock(&runtime_mheap); |
| runtime_purgecachedstats(m->mcache); |
| runtime_unlock(&runtime_mheap); |
| } |
| |
| s = runtime_MHeap_LookupMaybe(&runtime_mheap, v); |
| if(sp) |
| *sp = s; |
| if(s == nil) { |
| runtime_checkfreed(v, 1); |
| if(base) |
| *base = nil; |
| if(size) |
| *size = 0; |
| return 0; |
| } |
| |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| // Large object. |
| if(base) |
| *base = p; |
| if(size) |
| *size = s->npages<<PageShift; |
| return 1; |
| } |
| |
| n = s->elemsize; |
| if(base) { |
| i = ((byte*)v - p)/n; |
| *base = p + i*n; |
| } |
| if(size) |
| *size = n; |
| |
| return 1; |
| } |
| |
| void |
| runtime_purgecachedstats(MCache *c) |
| { |
| MHeap *h; |
| int32 i; |
| |
| // Protected by either heap or GC lock. |
| h = &runtime_mheap; |
| mstats()->heap_alloc += (intptr)c->local_cachealloc; |
| c->local_cachealloc = 0; |
| mstats()->nlookup += c->local_nlookup; |
| c->local_nlookup = 0; |
| h->largefree += c->local_largefree; |
| c->local_largefree = 0; |
| h->nlargefree += c->local_nlargefree; |
| c->local_nlargefree = 0; |
| for(i=0; i<(int32)nelem(c->local_nsmallfree); i++) { |
| h->nsmallfree[i] += c->local_nsmallfree[i]; |
| c->local_nsmallfree[i] = 0; |
| } |
| } |
| |
| // Initialized in mallocinit because it's defined in go/runtime/mem.go. |
| |
| #define MaxArena32 (2U<<30) |
| |
| void |
| runtime_mallocinit(void) |
| { |
| byte *p, *p1; |
| uintptr arena_size, bitmap_size, spans_size, p_size; |
| uintptr *pend; |
| uintptr end; |
| uintptr limit; |
| uint64 i; |
| bool reserved; |
| |
| p = nil; |
| p_size = 0; |
| arena_size = 0; |
| bitmap_size = 0; |
| spans_size = 0; |
| reserved = false; |
| |
| // for 64-bit build |
| USED(p); |
| USED(p_size); |
| USED(arena_size); |
| USED(bitmap_size); |
| USED(spans_size); |
| |
| runtime_InitSizes(); |
| |
| if(runtime_class_to_size[TinySizeClass] != TinySize) |
| runtime_throw("bad TinySizeClass"); |
| |
| // limit = runtime_memlimit(); |
| // See https://code.google.com/p/go/issues/detail?id=5049 |
| // TODO(rsc): Fix after 1.1. |
| limit = 0; |
| |
| // Set up the allocation arena, a contiguous area of memory where |
| // allocated data will be found. The arena begins with a bitmap large |
| // enough to hold 4 bits per allocated word. |
| if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) { |
| // On a 64-bit machine, allocate from a single contiguous reservation. |
| // 128 GB (MaxMem) should be big enough for now. |
| // |
| // The code will work with the reservation at any address, but ask |
| // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). |
| // Allocating a 128 GB region takes away 37 bits, and the amd64 |
| // doesn't let us choose the top 17 bits, so that leaves the 11 bits |
| // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means |
| // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. |
| // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid |
| // UTF-8 sequences, and they are otherwise as far away from |
| // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 |
| // addresses. An earlier attempt to use 0x11f8 caused out of memory errors |
| // on OS X during thread allocations. 0x00c0 causes conflicts with |
| // AddressSanitizer which reserves all memory up to 0x0100. |
| // These choices are both for debuggability and to reduce the |
| // odds of the conservative garbage collector not collecting memory |
| // because some non-pointer block of memory had a bit pattern |
| // that matched a memory address. |
| // |
| // Actually we reserve 136 GB (because the bitmap ends up being 8 GB) |
| // but it hardly matters: e0 00 is not valid UTF-8 either. |
| // |
| // If this fails we fall back to the 32 bit memory mechanism |
| arena_size = MaxMem; |
| bitmap_size = arena_size / (sizeof(void*)*8/4); |
| spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]); |
| spans_size = ROUND(spans_size, PageSize); |
| for(i = 0; i < HeapBaseOptions; i++) { |
| p = HeapBase(i); |
| p_size = bitmap_size + spans_size + arena_size + PageSize; |
| p = runtime_SysReserve(p, p_size, &reserved); |
| if(p != nil) |
| break; |
| } |
| } |
| if (p == nil) { |
| // On a 32-bit machine, we can't typically get away |
| // with a giant virtual address space reservation. |
| // Instead we map the memory information bitmap |
| // immediately after the data segment, large enough |
| // to handle another 2GB of mappings (256 MB), |
| // along with a reservation for another 512 MB of memory. |
| // When that gets used up, we'll start asking the kernel |
| // for any memory anywhere and hope it's in the 2GB |
| // following the bitmap (presumably the executable begins |
| // near the bottom of memory, so we'll have to use up |
| // most of memory before the kernel resorts to giving out |
| // memory before the beginning of the text segment). |
| // |
| // Alternatively we could reserve 512 MB bitmap, enough |
| // for 4GB of mappings, and then accept any memory the |
| // kernel threw at us, but normally that's a waste of 512 MB |
| // of address space, which is probably too much in a 32-bit world. |
| bitmap_size = MaxArena32 / (sizeof(void*)*8/4); |
| arena_size = 512<<20; |
| spans_size = MaxArena32 / PageSize * sizeof(runtime_mheap.spans[0]); |
| if(limit > 0 && arena_size+bitmap_size+spans_size > limit) { |
| bitmap_size = (limit / 9) & ~((1<<PageShift) - 1); |
| arena_size = bitmap_size * 8; |
| spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]); |
| } |
| spans_size = ROUND(spans_size, PageSize); |
| |
| // SysReserve treats the address we ask for, end, as a hint, |
| // not as an absolute requirement. If we ask for the end |
| // of the data segment but the operating system requires |
| // a little more space before we can start allocating, it will |
| // give out a slightly higher pointer. Except QEMU, which |
| // is buggy, as usual: it won't adjust the pointer upward. |
| // So adjust it upward a little bit ourselves: 1/4 MB to get |
| // away from the running binary image and then round up |
| // to a MB boundary. |
| |
| #ifdef _AIX |
| // mmap adresses range start at 0x30000000 on AIX for 32 bits processes |
| end = 0x30000000U; |
| #else |
| end = 0; |
| pend = &__go_end; |
| if(pend != nil) |
| end = *pend; |
| #endif |
| p = (byte*)ROUND(end + (1<<18), 1<<20); |
| p_size = bitmap_size + spans_size + arena_size + PageSize; |
| p = runtime_SysReserve(p, p_size, &reserved); |
| if(p == nil) |
| runtime_throw("runtime: cannot reserve arena virtual address space"); |
| } |
| |
| // PageSize can be larger than OS definition of page size, |
| // so SysReserve can give us a PageSize-unaligned pointer. |
| // To overcome this we ask for PageSize more and round up the pointer. |
| p1 = (byte*)ROUND((uintptr)p, PageSize); |
| |
| runtime_mheap.spans = (MSpan**)p1; |
| runtime_mheap.bitmap = p1 + spans_size; |
| runtime_mheap.arena_start = p1 + spans_size + bitmap_size; |
| runtime_mheap.arena_used = runtime_mheap.arena_start; |
| runtime_mheap.arena_end = p + p_size; |
| runtime_mheap.arena_reserved = reserved; |
| |
| if(((uintptr)runtime_mheap.arena_start & (PageSize-1)) != 0) |
| runtime_throw("misrounded allocation in mallocinit"); |
| |
| // Initialize the rest of the allocator. |
| runtime_MHeap_Init(&runtime_mheap); |
| runtime_m()->mcache = runtime_allocmcache(); |
| } |
| |
| void* |
| runtime_MHeap_SysAlloc(MHeap *h, uintptr n) |
| { |
| byte *p, *p_end; |
| uintptr p_size; |
| bool reserved; |
| |
| |
| if(n > (uintptr)(h->arena_end - h->arena_used)) { |
| // We are in 32-bit mode, maybe we didn't use all possible address space yet. |
| // Reserve some more space. |
| byte *new_end; |
| |
| p_size = ROUND(n + PageSize, 256<<20); |
| new_end = h->arena_end + p_size; |
| if(new_end <= h->arena_start + MaxArena32) { |
| // TODO: It would be bad if part of the arena |
| // is reserved and part is not. |
| p = runtime_SysReserve(h->arena_end, p_size, &reserved); |
| if(p == h->arena_end) { |
| h->arena_end = new_end; |
| h->arena_reserved = reserved; |
| } |
| else if(p+p_size <= h->arena_start + MaxArena32) { |
| // Keep everything page-aligned. |
| // Our pages are bigger than hardware pages. |
| h->arena_end = p+p_size; |
| h->arena_used = p + (-(uintptr)p&(PageSize-1)); |
| h->arena_reserved = reserved; |
| } else { |
| uint64 stat; |
| stat = 0; |
| runtime_SysFree(p, p_size, &stat); |
| } |
| } |
| } |
| if(n <= (uintptr)(h->arena_end - h->arena_used)) { |
| // Keep taking from our reservation. |
| p = h->arena_used; |
| runtime_SysMap(p, n, h->arena_reserved, &mstats()->heap_sys); |
| h->arena_used += n; |
| runtime_MHeap_MapBits(h); |
| runtime_MHeap_MapSpans(h); |
| |
| if(((uintptr)p & (PageSize-1)) != 0) |
| runtime_throw("misrounded allocation in MHeap_SysAlloc"); |
| return p; |
| } |
| |
| // If using 64-bit, our reservation is all we have. |
| if((uintptr)(h->arena_end - h->arena_start) >= MaxArena32) |
| return nil; |
| |
| // On 32-bit, once the reservation is gone we can |
| // try to get memory at a location chosen by the OS |
| // and hope that it is in the range we allocated bitmap for. |
| p_size = ROUND(n, PageSize) + PageSize; |
| p = runtime_SysAlloc(p_size, &mstats()->heap_sys); |
| if(p == nil) |
| return nil; |
| |
| if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) { |
| runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n", |
| p, h->arena_start, h->arena_start+MaxArena32); |
| runtime_SysFree(p, p_size, &mstats()->heap_sys); |
| return nil; |
| } |
| |
| p_end = p + p_size; |
| p += -(uintptr)p & (PageSize-1); |
| if(p+n > h->arena_used) { |
| h->arena_used = p+n; |
| if(p_end > h->arena_end) |
| h->arena_end = p_end; |
| runtime_MHeap_MapBits(h); |
| runtime_MHeap_MapSpans(h); |
| } |
| |
| if(((uintptr)p & (PageSize-1)) != 0) |
| runtime_throw("misrounded allocation in MHeap_SysAlloc"); |
| return p; |
| } |
| |
| static struct |
| { |
| Lock; |
| byte* pos; |
| byte* end; |
| } persistent; |
| |
| enum |
| { |
| PersistentAllocChunk = 256<<10, |
| PersistentAllocMaxBlock = 64<<10, // VM reservation granularity is 64K on windows |
| }; |
| |
| // Wrapper around SysAlloc that can allocate small chunks. |
| // There is no associated free operation. |
| // Intended for things like function/type/debug-related persistent data. |
| // If align is 0, uses default align (currently 8). |
| void* |
| runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat) |
| { |
| byte *p; |
| |
| if(align != 0) { |
| if(align&(align-1)) |
| runtime_throw("persistentalloc: align is not a power of 2"); |
| if(align > PageSize) |
| runtime_throw("persistentalloc: align is too large"); |
| } else |
| align = 8; |
| if(size >= PersistentAllocMaxBlock) |
| return runtime_SysAlloc(size, stat); |
| runtime_lock(&persistent); |
| persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align); |
| if(persistent.pos + size > persistent.end) { |
| persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats()->other_sys); |
| if(persistent.pos == nil) { |
| runtime_unlock(&persistent); |
| runtime_throw("runtime: cannot allocate memory"); |
| } |
| persistent.end = persistent.pos + PersistentAllocChunk; |
| } |
| p = persistent.pos; |
| persistent.pos += size; |
| runtime_unlock(&persistent); |
| if(stat != &mstats()->other_sys) { |
| // reaccount the allocation against provided stat |
| runtime_xadd64(stat, size); |
| runtime_xadd64(&mstats()->other_sys, -(uint64)size); |
| } |
| return p; |
| } |
| |
| static void |
| settype(MSpan *s, void *v, uintptr typ) |
| { |
| uintptr size, ofs, j, t; |
| uintptr ntypes, nbytes2, nbytes3; |
| uintptr *data2; |
| byte *data3; |
| |
| if(s->sizeclass == 0) { |
| s->types.compression = MTypes_Single; |
| s->types.data = typ; |
| return; |
| } |
| size = s->elemsize; |
| ofs = ((uintptr)v - (s->start<<PageShift)) / size; |
| |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| ntypes = (s->npages << PageShift) / size; |
| nbytes3 = 8*sizeof(uintptr) + 1*ntypes; |
| data3 = runtime_mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); |
| s->types.compression = MTypes_Bytes; |
| s->types.data = (uintptr)data3; |
| ((uintptr*)data3)[1] = typ; |
| data3[8*sizeof(uintptr) + ofs] = 1; |
| break; |
| |
| case MTypes_Words: |
| ((uintptr*)s->types.data)[ofs] = typ; |
| break; |
| |
| case MTypes_Bytes: |
| data3 = (byte*)s->types.data; |
| for(j=1; j<8; j++) { |
| if(((uintptr*)data3)[j] == typ) { |
| break; |
| } |
| if(((uintptr*)data3)[j] == 0) { |
| ((uintptr*)data3)[j] = typ; |
| break; |
| } |
| } |
| if(j < 8) { |
| data3[8*sizeof(uintptr) + ofs] = j; |
| } else { |
| ntypes = (s->npages << PageShift) / size; |
| nbytes2 = ntypes * sizeof(uintptr); |
| data2 = runtime_mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); |
| s->types.compression = MTypes_Words; |
| s->types.data = (uintptr)data2; |
| |
| // Move the contents of data3 to data2. Then deallocate data3. |
| for(j=0; j<ntypes; j++) { |
| t = data3[8*sizeof(uintptr) + j]; |
| t = ((uintptr*)data3)[t]; |
| data2[j] = t; |
| } |
| data2[ofs] = typ; |
| } |
| break; |
| } |
| } |
| |
| uintptr |
| runtime_gettype(void *v) |
| { |
| MSpan *s; |
| uintptr t, ofs; |
| byte *data; |
| |
| s = runtime_MHeap_LookupMaybe(&runtime_mheap, v); |
| if(s != nil) { |
| t = 0; |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| break; |
| case MTypes_Single: |
| t = s->types.data; |
| break; |
| case MTypes_Words: |
| ofs = (uintptr)v - (s->start<<PageShift); |
| t = ((uintptr*)s->types.data)[ofs/s->elemsize]; |
| break; |
| case MTypes_Bytes: |
| ofs = (uintptr)v - (s->start<<PageShift); |
| data = (byte*)s->types.data; |
| t = data[8*sizeof(uintptr) + ofs/s->elemsize]; |
| t = ((uintptr*)data)[t]; |
| break; |
| default: |
| runtime_throw("runtime_gettype: invalid compression kind"); |
| } |
| if(0) { |
| runtime_printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t); |
| } |
| return t; |
| } |
| return 0; |
| } |
| |
| // Runtime stubs. |
| |
| void* |
| runtime_mal(uintptr n) |
| { |
| return runtime_mallocgc(n, 0, 0); |
| } |
| |
| func new(typ *Type) (ret *uint8) { |
| ret = runtime_mallocgc(typ->__size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&kindNoPointers ? FlagNoScan : 0); |
| } |
| |
| static void* |
| runtime_docnew(const Type *typ, intgo n, int32 objtyp) |
| { |
| if((objtyp&(PtrSize-1)) != objtyp) |
| runtime_throw("runtime: invalid objtyp"); |
| if(n < 0 || (typ->__size > 0 && (uintptr)n > (MaxMem/typ->__size))) |
| runtime_panicstring("runtime: allocation size out of range"); |
| return runtime_mallocgc(typ->__size*n, (uintptr)typ | objtyp, typ->kind&kindNoPointers ? FlagNoScan : 0); |
| } |
| |
| // same as runtime_new, but callable from C |
| void* |
| runtime_cnew(const Type *typ) |
| { |
| return runtime_docnew(typ, 1, TypeInfo_SingleObject); |
| } |
| |
| void* |
| runtime_cnewarray(const Type *typ, intgo n) |
| { |
| return runtime_docnew(typ, n, TypeInfo_Array); |
| } |
| |
| func GC() { |
| runtime_gc(2); // force GC and do eager sweep |
| } |