blob: 3cc8a720ee435e55f1db97c319ab2e9502e59299 [file] [log] [blame]
// import.cc -- Go frontend import declarations.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go-system.h"
#include "filenames.h"
#include "go-c.h"
#include "go-diagnostics.h"
#include "gogo.h"
#include "lex.h"
#include "types.h"
#include "export.h"
#include "import.h"
#ifndef O_BINARY
#define O_BINARY 0
#endif
// The list of paths we search for import files.
static std::vector<std::string> search_path;
// Add a directory to the search path. This is called from the option
// handling language hook.
GO_EXTERN_C
void
go_add_search_path(const char* path)
{
search_path.push_back(std::string(path));
}
// Read an importcfg file.
void
Gogo::read_importcfg(const char* filename)
{
std::string data;
if (!Gogo::read_file(filename, Linemap::unknown_location(), &data))
return;
const char* p = data.data();
const char* pend = p + data.length();
int lineno = 0;
const char *pnext = NULL;
for (; p < pend; p = pnext)
{
// Line numbers start at 1.
lineno++;
// Find end of line.
const char* pnl = static_cast<const char*>(memchr(p, '\n', pend - p));
if (pnl != NULL)
pnext = pnl + 1;
else
{
pnl = pend;
pnext = pnl;
}
// Trim leading spaces.
while (p < pnl)
{
unsigned int rune;
int rune_len = Lex::fetch_char(p, &rune);
if (rune_len == 0)
{
go_error_at(Linemap::unknown_location(),
"%s:%d: invalid character in importcfg file",
filename, lineno);
return;
}
if (!Lex::is_unicode_space(rune))
break;
p += rune_len;
}
// Trim trailing spaces.
while (pnl > p)
{
size_t start = pnl - p - 1;
unsigned int rune = (unsigned char)p[start];
int rune_len = 1;
if (rune > 0x7f)
{
for (start--; start > 0; start--)
{
unsigned char c = p[start];
if ((c & 0xc0) != 0x80)
break;
}
rune_len = Lex::fetch_char(p + start, &rune);
if (static_cast<size_t>(rune_len) != (pnl - p) - start)
{
go_error_at(Linemap::unknown_location(),
"%s:%d: invalid character in importcfg file",
filename, lineno);
return;
}
}
if (!Lex::is_unicode_space(rune))
break;
pnl -= rune_len;
}
// Skip empty lines and comment lines.
if (p == pnl || *p == '#')
continue;
size_t verb_len;
const char* psp = static_cast<const char*>(memchr(p, ' ', pnl - p));
if (psp == NULL)
verb_len = pnl - p;
else
verb_len = psp - p;
bool importmap = false;
bool packagefile = false;
if (strncmp(p, "importmap", verb_len) == 0)
importmap = true;
else if (strncmp(p, "packagefile", verb_len) == 0)
packagefile = true;
else
{
go_error_at(Linemap::unknown_location(),
"%s:%d: unknown directive in importcfg file",
filename, lineno);
return;
}
const char* peq;
if (psp == NULL)
peq = NULL;
else
{
psp++;
peq = static_cast<const char*>(memchr(psp, '=', pnl - psp));
}
if (peq == NULL || peq + 1 == pnl)
{
go_error_at(Linemap::unknown_location(),
"%s:%d: invalid syntax in importcfg file",
filename, lineno);
return;
}
std::string first(psp, peq - psp);
std::string second(peq + 1, pnl - (peq + 1));
if (importmap)
this->import_map_[first] = second;
else if (packagefile)
this->package_file_[first] = second;
else
go_unreachable();
}
}
// Find import data. This searches the file system for FILENAME and
// returns a pointer to a Stream object to read the data that it
// exports. If the file is not found, it returns NULL.
// When FILENAME is not an absolute path and does not start with ./ or
// ../, we use the search path provided by -I and -L options.
// When FILENAME does start with ./ or ../, we use
// RELATIVE_IMPORT_PATH as a prefix.
// When FILENAME does not exist, we try modifying FILENAME to find the
// file. We use the first of these which exists:
// * We append ".gox".
// * We turn the base of FILENAME into libFILENAME.so.
// * We turn the base of FILENAME into libFILENAME.a.
// * We append ".o".
// When using a search path, we apply each of these transformations at
// each entry on the search path before moving on to the next entry.
// If the file exists, but does not contain any Go export data, we
// stop; we do not keep looking for another file with the same name
// later in the search path.
Import::Stream*
Import::open_package(const std::string& filename, Location location,
const std::string& relative_import_path)
{
bool is_local;
if (IS_ABSOLUTE_PATH(filename))
is_local = true;
else if (filename[0] == '.'
&& (filename[1] == '\0' || IS_DIR_SEPARATOR(filename[1])))
is_local = true;
else if (filename[0] == '.'
&& filename[1] == '.'
&& (filename[2] == '\0' || IS_DIR_SEPARATOR(filename[2])))
is_local = true;
else
is_local = false;
std::string fn = filename;
if (is_local && !IS_ABSOLUTE_PATH(filename) && !relative_import_path.empty())
{
if (fn == ".")
{
// A special case.
fn = relative_import_path;
}
else if (fn[0] == '.' && fn[1] == '.'
&& (fn[2] == '\0' || IS_DIR_SEPARATOR(fn[2])))
{
// We are going to join relative_import_path and fn, and it
// will look like DIR/../PATH. But DIR does not necessarily
// exist in this case, and if it doesn't the use of .. will
// fail although it shouldn't. The gc compiler uses
// path.Join here, which cleans up the .., so we need to do
// the same.
size_t index;
for (index = relative_import_path.length() - 1;
index > 0 && !IS_DIR_SEPARATOR(relative_import_path[index]);
index--)
;
if (index > 0)
fn = relative_import_path.substr(0, index) + fn.substr(2);
else
fn = relative_import_path + '/' + fn;
}
else
fn = relative_import_path + '/' + fn;
is_local = false;
}
if (!is_local)
{
for (std::vector<std::string>::const_iterator p = search_path.begin();
p != search_path.end();
++p)
{
std::string indir = *p;
if (!indir.empty() && indir[indir.size() - 1] != '/')
indir += '/';
indir += fn;
Stream* s = Import::try_package_in_directory(indir, location);
if (s != NULL)
return s;
}
}
Stream* s = Import::try_package_in_directory(fn, location);
if (s != NULL)
return s;
return NULL;
}
// Try to find the export data for FILENAME.
Import::Stream*
Import::try_package_in_directory(const std::string& filename,
Location location)
{
std::string found_filename = filename;
int fd = open(found_filename.c_str(), O_RDONLY | O_BINARY);
if (fd >= 0)
{
struct stat s;
if (fstat(fd, &s) >= 0 && S_ISDIR(s.st_mode))
{
close(fd);
fd = -1;
errno = EISDIR;
}
}
if (fd < 0)
{
if (errno != ENOENT && errno != EISDIR)
go_warning_at(location, 0, "%s: %m", filename.c_str());
fd = Import::try_suffixes(&found_filename);
if (fd < 0)
return NULL;
}
// The export data may not be in this file.
Stream* s = Import::find_export_data(found_filename, fd, location);
if (s != NULL)
return s;
close(fd);
go_error_at(location, "%s exists but does not contain any Go export data",
found_filename.c_str());
return NULL;
}
// Given import "*PFILENAME", where *PFILENAME does not exist, try
// various suffixes. If we find one, set *PFILENAME to the one we
// found. Return the open file descriptor.
int
Import::try_suffixes(std::string* pfilename)
{
std::string filename = *pfilename + ".gox";
int fd = open(filename.c_str(), O_RDONLY | O_BINARY);
if (fd >= 0)
{
*pfilename = filename;
return fd;
}
const char* basename = lbasename(pfilename->c_str());
size_t basename_pos = basename - pfilename->c_str();
filename = pfilename->substr(0, basename_pos) + "lib" + basename + ".so";
fd = open(filename.c_str(), O_RDONLY | O_BINARY);
if (fd >= 0)
{
*pfilename = filename;
return fd;
}
filename = pfilename->substr(0, basename_pos) + "lib" + basename + ".a";
fd = open(filename.c_str(), O_RDONLY | O_BINARY);
if (fd >= 0)
{
*pfilename = filename;
return fd;
}
filename = *pfilename + ".o";
fd = open(filename.c_str(), O_RDONLY | O_BINARY);
if (fd >= 0)
{
*pfilename = filename;
return fd;
}
return -1;
}
// Look for export data in the file descriptor FD.
Import::Stream*
Import::find_export_data(const std::string& filename, int fd, Location location)
{
// See if we can read this as an object file.
Import::Stream* stream = Import::find_object_export_data(filename, fd, 0,
location);
if (stream != NULL)
return stream;
const int len = MAX(Export::magic_len, Import::archive_magic_len);
if (lseek(fd, 0, SEEK_SET) < 0)
{
go_error_at(location, "lseek %s failed: %m", filename.c_str());
return NULL;
}
char buf[len];
ssize_t c = ::read(fd, buf, len);
if (c < len)
return NULL;
// Check for a file containing nothing but Go export data.
if (memcmp(buf, Export::cur_magic, Export::magic_len) == 0
|| memcmp(buf, Export::v1_magic, Export::magic_len) == 0
|| memcmp(buf, Export::v2_magic, Export::magic_len) == 0)
return new Stream_from_file(fd);
// See if we can read this as an archive.
if (Import::is_archive_magic(buf))
return Import::find_archive_export_data(filename, fd, location);
return NULL;
}
// Look for export data in an object file.
Import::Stream*
Import::find_object_export_data(const std::string& filename,
int fd,
off_t offset,
Location location)
{
char *buf;
size_t len;
int err;
const char *errmsg = go_read_export_data(fd, offset, &buf, &len, &err);
if (errmsg != NULL)
{
if (err == 0)
go_error_at(location, "%s: %s", filename.c_str(), errmsg);
else
go_error_at(location, "%s: %s: %s", filename.c_str(), errmsg,
xstrerror(err));
return NULL;
}
if (buf == NULL)
return NULL;
return new Stream_from_buffer(buf, len);
}
// Class Import.
// Construct an Import object. We make the builtin_types_ vector
// large enough to hold all the builtin types.
Import::Import(Stream* stream, Location location)
: gogo_(NULL), stream_(stream), location_(location), package_(NULL),
add_to_globals_(false), packages_(), type_data_(), type_pos_(0),
type_offsets_(), builtin_types_((- SMALLEST_BUILTIN_CODE) + 1),
types_(), version_(EXPORT_FORMAT_UNKNOWN)
{
}
// Import the data in the associated stream.
Package*
Import::import(Gogo* gogo, const std::string& local_name,
bool is_local_name_exported)
{
// Hold on to the Gogo structure. Otherwise we need to pass it
// through all the import functions, because we need it when reading
// a type.
this->gogo_ = gogo;
// A stream of export data can include data from more than one input
// file. Here we loop over each input file.
Stream* stream = this->stream_;
while (!stream->at_eof() && !stream->saw_error())
{
// The vector of types is package specific.
this->types_.clear();
// Check magic string / version number.
if (stream->match_bytes(Export::cur_magic, Export::magic_len))
{
stream->require_bytes(this->location_, Export::cur_magic,
Export::magic_len);
this->version_ = EXPORT_FORMAT_CURRENT;
}
else if (stream->match_bytes(Export::v1_magic, Export::magic_len))
{
stream->require_bytes(this->location_, Export::v1_magic,
Export::magic_len);
this->version_ = EXPORT_FORMAT_V1;
}
else if (stream->match_bytes(Export::v2_magic, Export::magic_len))
{
stream->require_bytes(this->location_, Export::v2_magic,
Export::magic_len);
this->version_ = EXPORT_FORMAT_V2;
}
else
{
go_error_at(this->location_,
("error in import data at %d: invalid magic string"),
stream->pos());
return NULL;
}
this->require_c_string("package ");
std::string package_name = this->read_identifier();
this->require_semicolon_if_old_version();
this->require_c_string("\n");
std::string pkgpath;
std::string pkgpath_symbol;
if (this->match_c_string("prefix "))
{
this->advance(7);
std::string unique_prefix = this->read_identifier();
this->require_semicolon_if_old_version();
this->require_c_string("\n");
pkgpath = unique_prefix + '.' + package_name;
pkgpath_symbol = (Gogo::pkgpath_for_symbol(unique_prefix) + '.'
+ Gogo::pkgpath_for_symbol(package_name));
}
else
{
this->require_c_string("pkgpath ");
pkgpath = this->read_identifier();
this->require_semicolon_if_old_version();
this->require_c_string("\n");
pkgpath_symbol = Gogo::pkgpath_for_symbol(pkgpath);
}
if (stream->saw_error())
return NULL;
this->package_ = gogo->add_imported_package(package_name, local_name,
is_local_name_exported,
pkgpath, pkgpath_symbol,
this->location_,
&this->add_to_globals_);
if (this->package_ == NULL)
{
stream->set_saw_error();
return NULL;
}
// Read and discard priority if older V1 export data format.
if (version() == EXPORT_FORMAT_V1)
{
this->require_c_string("priority ");
std::string priority_string = this->read_identifier();
int prio;
if (!this->string_to_int(priority_string, false, &prio))
return NULL;
this->require_c_string(";\n");
}
while (stream->match_c_string("package"))
this->read_one_package();
while (stream->match_c_string("import"))
this->read_one_import();
while (stream->match_c_string("indirectimport"))
this->read_one_indirect_import();
if (stream->match_c_string("init"))
this->read_import_init_fns(gogo);
if (stream->match_c_string("types "))
{
if (!this->read_types())
return NULL;
}
// Loop over all the input data for this package.
while (!stream->saw_error())
{
if (stream->match_c_string("const "))
this->import_const();
else if (stream->match_c_string("type "))
this->import_type();
else if (stream->match_c_string("var "))
this->import_var();
else if (stream->match_c_string("func "))
this->import_func(this->package_);
else if (stream->match_c_string("checksum "))
break;
else
{
go_error_at(this->location_,
("error in import data at %d: "
"expected %<const%>, %<type%>, %<var%>, "
"%<func%>, or %<checksum%>"),
stream->pos());
stream->set_saw_error();
return NULL;
}
}
// We currently ignore the checksum. In the future we could
// store the checksum somewhere in the generated object and then
// verify that the checksum matches at link time or at dynamic
// load time.
this->require_c_string("checksum ");
stream->advance(Export::checksum_len * 2);
this->require_semicolon_if_old_version();
this->require_c_string("\n");
}
// Finalize methods for any imported types. This call is made late in the
// import process so as to A) avoid finalization of a type whose methods
// refer to types that are only partially read in, and B) capture both the
// types imported by read_types() directly, and those imported indirectly
// because they are referenced by an imported function or variable.
// See issues #33013 and #33219 for more on why this is needed.
this->finalize_methods();
return this->package_;
}
// Read a package line. This let us reliably determine the pkgpath
// symbol, even if the package was compiled with a -fgo-prefix option.
void
Import::read_one_package()
{
this->require_c_string("package ");
std::string package_name = this->read_identifier();
this->require_c_string(" ");
std::string pkgpath = this->read_identifier();
this->require_c_string(" ");
std::string pkgpath_symbol = this->read_identifier();
this->require_semicolon_if_old_version();
this->require_c_string("\n");
Package* p = this->gogo_->register_package(pkgpath, pkgpath_symbol,
Linemap::unknown_location());
p->set_package_name(package_name, this->location());
}
// Read an import line.
void
Import::read_one_import()
{
this->require_c_string("import ");
std::string package_name = this->read_identifier();
this->require_c_string(" ");
std::string pkgpath = this->read_identifier();
this->require_c_string(" \"");
Stream* stream = this->stream_;
while (stream->peek_char() != '"')
stream->advance(1);
this->require_c_string("\"");
this->require_semicolon_if_old_version();
this->require_c_string("\n");
Package* p = this->gogo_->register_package(pkgpath, "",
Linemap::unknown_location());
p->set_package_name(package_name, this->location());
this->packages_.push_back(p);
if (pkgpath == "unsafe")
this->gogo_->add_unsafe_bindings(p);
}
// Read an indirectimport line.
void
Import::read_one_indirect_import()
{
this->require_c_string("indirectimport ");
std::string package_name = this->read_identifier();
this->require_c_string(" ");
std::string pkgpath = this->read_identifier();
this->require_c_string("\n");
Package* p = this->gogo_->register_package(pkgpath, "",
Linemap::unknown_location());
p->set_package_name(package_name, this->location());
this->packages_.push_back(p);
if (pkgpath == "unsafe")
this->gogo_->add_unsafe_bindings(p);
}
// Read the list of import control functions and/or init graph.
void
Import::read_import_init_fns(Gogo* gogo)
{
this->require_c_string("init");
// Maps init function to index in the "init" clause; needed
// to read the init_graph section.
std::map<std::string, unsigned> init_idx;
while (!this->match_c_string("\n") && !this->match_c_string(";"))
{
int priority = -1;
this->require_c_string(" ");
std::string package_name = this->read_identifier();
this->require_c_string(" ");
std::string init_name = this->read_identifier();
if (this->version_ == EXPORT_FORMAT_V1)
{
// Older version 1 init fcn export data format is:
//
// <packname> <fcn> <priority>
this->require_c_string(" ");
std::string prio_string = this->read_identifier();
if (!this->string_to_int(prio_string, false, &priority))
return;
}
gogo->add_import_init_fn(package_name, init_name, priority);
// Record the index of this init fcn so that we can look it
// up by index in the subsequent init_graph section.
unsigned idx = init_idx.size();
init_idx[init_name] = idx;
}
this->require_semicolon_if_old_version();
this->require_c_string("\n");
if (this->match_c_string("init_graph"))
{
this->require_c_string("init_graph");
// Build a vector mapping init fcn slot to Import_init pointer.
go_assert(init_idx.size() > 0);
std::vector<Import_init*> import_initvec;
import_initvec.resize(init_idx.size());
for (std::map<std::string, unsigned>::const_iterator it =
init_idx.begin();
it != init_idx.end(); ++it)
{
const std::string& init_name = it->first;
Import_init* ii = gogo->lookup_init(init_name);
import_initvec[it->second] = ii;
}
// Init graph format is:
//
// init_graph <src1> <sink1> <src2> <sink2> ... ;
//
// where src + sink are init functions indices.
while (!this->match_c_string("\n") && !this->match_c_string(";"))
{
this->require_c_string(" ");
std::string src_string = this->read_identifier();
unsigned src;
if (!this->string_to_unsigned(src_string, &src)) return;
this->require_c_string(" ");
std::string sink_string = this->read_identifier();
unsigned sink;
if (!this->string_to_unsigned(sink_string, &sink)) return;
go_assert(src < import_initvec.size());
Import_init* ii_src = import_initvec[src];
go_assert(sink < import_initvec.size());
Import_init* ii_sink = import_initvec[sink];
ii_src->record_precursor_fcn(ii_sink->init_name());
}
this->require_semicolon_if_old_version();
this->require_c_string("\n");
}
}
// Import the types. Starting in export format version 3 all the
// types are listed first.
bool
Import::read_types()
{
this->require_c_string("types ");
std::string str = this->read_identifier();
int maxp1;
if (!this->string_to_int(str, false, &maxp1))
return false;
this->require_c_string(" ");
str = this->read_identifier();
int exportedp1;
if (!this->string_to_int(str, false, &exportedp1))
return false;
this->type_offsets_.resize(maxp1, std::make_pair<size_t, size_t>(0, 0));
size_t total_type_size = 0;
// Start at 1 because type index 0 not used.
for (int i = 1; i < maxp1; i++)
{
this->require_c_string(" ");
str = this->read_identifier();
int v;
if (!this->string_to_int(str, false, &v))
return false;
size_t vs = static_cast<size_t>(v);
this->type_offsets_[i] = std::make_pair(total_type_size, vs);
total_type_size += vs;
}
this->require_c_string("\n");
// Types can refer to each other in an unpredictable order. Read
// all the type data into type_data_. The type_offsets_ vector we
// just initialized provides indexes into type_data_.
this->type_pos_ = this->stream_->pos();
const char* type_data;
if (!this->stream_->peek(total_type_size, &type_data))
return false;
this->type_data_ = std::string(type_data, total_type_size);
this->advance(total_type_size);
this->types_.resize(maxp1, NULL);
// Parse all the exported types now, so that the names are properly
// bound and visible to the parser. Parse unexported types lazily.
// Start at 1 because there is no type 0.
for (int i = 1; i < exportedp1; i++)
{
// We may have already parsed this type when we parsed an
// earlier type.
Type* type = this->types_[i];
if (type == NULL)
{
if (!this->parse_type(i))
return false;
type = this->types_[i];
go_assert(type != NULL);
}
Named_type* nt = type->named_type();
if (nt == NULL)
{
go_error_at(this->location_,
"error in import data: exported unnamed type %d",
i);
return false;
}
nt->set_is_visible();
if (this->add_to_globals_)
this->gogo_->add_named_type(nt);
}
return true;
}
void
Import::finalize_methods()
{
Finalize_methods finalizer(this->gogo_);
Unordered_set(Type*) real_for_named;
for (size_t i = 1; i < this->types_.size(); i++)
{
Type* type = this->types_[i];
if (type != NULL && type->named_type() != NULL)
{
finalizer.type(type);
// If the real type is a struct type, we don't want to
// finalize its methods. For a named type defined as a
// struct type, we only want to finalize the methods of the
// named type. This is like Finalize_methods::type.
Type* real_type = type->named_type()->real_type();
if (real_type->struct_type() != NULL)
real_for_named.insert(real_type);
}
}
for (size_t i = 1; i < this->types_.size(); i++)
{
Type* type = this->types_[i];
if (type != NULL
&& type->named_type() == NULL
&& real_for_named.find(type) == real_for_named.end())
finalizer.type(type);
}
}
// Import a constant.
void
Import::import_const()
{
std::string name;
Type* type;
Expression* expr;
Named_constant::import_const(this, &name, &type, &expr);
Typed_identifier tid(name, type, this->location_);
Named_object* no = this->package_->add_constant(tid, expr);
if (this->add_to_globals_)
this->gogo_->add_dot_import_object(no);
}
// Import a type.
void
Import::import_type()
{
if (this->version_ >= EXPORT_FORMAT_V3)
{
if (!this->stream_->saw_error())
{
go_error_at(this->location_,
"error in import data at %d: old type syntax",
this->stream_->pos());
this->stream_->set_saw_error();
}
return;
}
Named_type* type;
Named_type::import_named_type(this, &type);
// The named type has been added to the package by the type import
// process. Here we need to make it visible to the parser, and it
// to the global bindings if necessary.
type->set_is_visible();
if (this->add_to_globals_)
this->gogo_->add_named_type(type);
}
// Import a variable.
void
Import::import_var()
{
std::string name;
Package* vpkg;
bool is_exported;
Type* type;
if (!Variable::import_var(this, &name, &vpkg, &is_exported, &type))
return;
if (vpkg == NULL)
vpkg = this->package_;
if (!is_exported)
name = '.' + vpkg->pkgpath() + '.' + name;
Variable* var = new Variable(type, NULL, true, false, false,
this->location_);
Named_object* no;
no = vpkg->add_variable(name, var);
if (this->add_to_globals_ && vpkg == this->package_)
this->gogo_->add_dot_import_object(no);
}
// Import a function into PACKAGE. PACKAGE is normally
// THIS->PACKAGE_, but it will be different for a method associated
// with a type defined in a different package.
void
Import::import_func(Package* package)
{
std::string name;
Package* fpkg;
bool is_exported;
Typed_identifier* receiver;
Typed_identifier_list* parameters;
Typed_identifier_list* results;
bool is_varargs;
bool nointerface;
std::string asm_name;
std::string body;
if (!Function::import_func(this, &name, &fpkg, &is_exported, &receiver,
&parameters, &results, &is_varargs, &nointerface,
&asm_name, &body))
return;
if (fpkg == NULL)
fpkg = package;
if (!is_exported)
name = '.' + fpkg->pkgpath() + '.' + name;
Function_type *fntype = Type::make_function_type(receiver, parameters,
results, this->location_);
if (is_varargs)
fntype->set_is_varargs();
Location loc = this->location_;
Named_object* no;
if (fntype->is_method())
{
Type* rtype = receiver->type();
// We may still be reading the definition of RTYPE, so we have
// to be careful to avoid calling base or convert. If RTYPE is
// a named type or a forward declaration, then we know that it
// is not a pointer, because we are reading a method on RTYPE
// and named pointers can't have methods.
if (rtype->classification() == Type::TYPE_POINTER)
rtype = rtype->points_to();
if (rtype->is_error_type())
return;
else if (rtype->named_type() != NULL)
no = rtype->named_type()->add_method_declaration(name, fpkg, fntype,
loc);
else if (rtype->forward_declaration_type() != NULL)
no = rtype->forward_declaration_type()->add_method_declaration(name,
fpkg,
fntype,
loc);
else
go_unreachable();
}
else
{
no = fpkg->add_function_declaration(name, fntype, loc);
if (this->add_to_globals_ && fpkg == package)
this->gogo_->add_dot_import_object(no);
}
if (nointerface)
no->func_declaration_value()->set_nointerface();
if (!asm_name.empty())
no->func_declaration_value()->set_asm_name(asm_name);
if (!body.empty() && !no->func_declaration_value()->has_imported_body())
no->func_declaration_value()->set_imported_body(this, body);
}
// Read a type definition and initialize the entry in this->types_.
// This parses the type definition saved by read_types earlier. This
// returns true on success, false on failure.
bool
Import::parse_type(int i)
{
go_assert(i >= 0 && static_cast<size_t>(i) < this->types_.size());
go_assert(this->types_[i] == NULL);
size_t offset = this->type_offsets_[i].first;
size_t len = this->type_offsets_[i].second;
Stream* orig_stream = this->stream_;
Stream_from_string_ref stream(this->type_data_, offset, len);
stream.set_pos(this->type_pos_ + offset);
this->stream_ = &stream;
this->require_c_string("type ");
std::string str = this->read_identifier();
int id;
if (!this->string_to_int(str, false, &id))
{
this->stream_ = orig_stream;
return false;
}
if (i != id)
{
go_error_at(this->location_,
("error in import data at %d: "
"type ID mismatch: got %d, want %d"),
stream.pos(), id, i);
this->stream_ = orig_stream;
return false;
}
this->require_c_string(" ");
if (stream.peek_char() == '"')
{
stream.advance(1);
Type* type = this->read_named_type(i);
if (type->is_error_type())
{
this->stream_ = orig_stream;
return false;
}
}
else
{
Type* type = Type::import_type(this);
if (type->is_error_type())
{
this->stream_ = orig_stream;
return false;
}
this->types_[i] = type;
this->require_c_string("\n");
}
this->stream_ = orig_stream;
return true;
}
// Read a type in the import stream. This records the type by the
// type index. If the type is named (which can only happen with older
// export formats), it registers the name, but marks it as invisible.
Type*
Import::read_type()
{
Stream* stream = this->stream_;
this->require_c_string("<type ");
std::string number;
int c;
while (true)
{
c = stream->get_char();
if (c != '-' && (c < '0' || c > '9'))
break;
number += c;
}
int index;
if (!this->string_to_int(number, true, &index))
return Type::make_error_type();
if (c == '>')
{
// A reference to a type defined earlier.
bool parsed;
return this->type_for_index(index, "import data", stream->pos(),
&parsed);
}
if (this->version_ >= EXPORT_FORMAT_V3)
{
if (!stream->saw_error())
go_error_at(this->location_,
"error in import data at %d: expected %<>%>",
stream->pos());
stream->set_saw_error();
return Type::make_error_type();
}
if (c != ' ')
{
if (!stream->saw_error())
go_error_at(this->location_,
"error in import data at %d: expected %< %> or %<>%>",
stream->pos());
stream->set_saw_error();
stream->advance(1);
return Type::make_error_type();
}
if (index <= 0
|| (static_cast<size_t>(index) < this->types_.size()
&& this->types_[index] != NULL))
{
go_error_at(this->location_,
"error in import data at %d: type index already defined",
stream->pos());
stream->set_saw_error();
return Type::make_error_type();
}
if (static_cast<size_t>(index) >= this->types_.size())
{
int newsize = std::max(static_cast<size_t>(index) + 1,
this->types_.size() * 2);
this->types_.resize(newsize, NULL);
}
if (stream->peek_char() != '"')
{
Type* type = Type::import_type(this);
this->require_c_string(">");
this->types_[index] = type;
return type;
}
stream->advance(1);
Type* type = this->read_named_type(index);
this->require_c_string(">");
return type;
}
// Read a named type from the import stream and store it in
// this->types_[index]. The stream should be positioned immediately
// after the '"' that starts the name.
Type*
Import::read_named_type(int index)
{
Stream* stream = this->stream_;
std::string type_name;
int c;
while ((c = stream->get_char()) != '"')
type_name += c;
// If this type is in the package we are currently importing, the
// name will be .PKGPATH.NAME or simply NAME with no dots.
// Otherwise, a non-hidden symbol will be PKGPATH.NAME and a hidden
// symbol will be .PKGPATH.NAME.
std::string pkgpath;
if (type_name.find('.') != std::string::npos)
{
size_t start = 0;
if (type_name[0] == '.')
start = 1;
size_t dot = type_name.rfind('.');
pkgpath = type_name.substr(start, dot - start);
if (type_name[0] != '.')
type_name.erase(0, dot + 1);
}
this->require_c_string(" ");
// The package name may follow. This is the name of the package in
// the package clause of that package. The type name will include
// the pkgpath, which may be different.
std::string package_name;
if (stream->peek_char() == '"')
{
stream->advance(1);
while ((c = stream->get_char()) != '"')
package_name += c;
this->require_c_string(" ");
}
bool in_heap = true;
if (this->match_c_string("notinheap"))
{
this->require_c_string("notinheap ");
in_heap = false;
}
bool is_alias = false;
if (this->match_c_string("= "))
{
stream->advance(2);
is_alias = true;
}
// Declare the type in the appropriate package. If we haven't seen
// it before, mark it as invisible. We declare it before we read
// the actual definition of the type, since the definition may refer
// to the type itself.
Package* package;
if (pkgpath.empty() || pkgpath == this->gogo_->pkgpath())
package = this->package_;
else
{
package = this->gogo_->register_package(pkgpath, "",
Linemap::unknown_location());
if (!package_name.empty())
package->set_package_name(package_name, this->location());
}
Named_object* no = package->bindings()->lookup(type_name);
if (no == NULL)
no = package->add_type_declaration(type_name, this->location_);
else if (!no->is_type_declaration() && !no->is_type())
{
go_error_at(this->location_, "imported %<%s.%s%> both type and non-type",
pkgpath.c_str(), Gogo::message_name(type_name).c_str());
stream->set_saw_error();
return Type::make_error_type();
}
else
go_assert(no->package() == package);
if (this->types_[index] == NULL)
{
if (no->is_type_declaration())
{
// FIXME: It's silly to make a forward declaration every time.
this->types_[index] = Type::make_forward_declaration(no);
}
else
{
go_assert(no->is_type());
this->types_[index] = no->type_value();
}
}
// If there is no type definition, then this is just a forward
// declaration of a type defined in some other file.
Type* type;
if (this->match_c_string(">") || this->match_c_string("\n"))
{
type = this->types_[index];
if (!in_heap)
go_error_at(this->location_,
("import error at %d for type index %d: "
"forward declaration marked notinheap"),
this->pos(), index);
}
else
{
if (no->is_type_declaration())
{
// We can define the type now.
type = this->read_type();
no = package->add_type(type_name, type, this->location_);
Named_type* ntype = no->type_value();
// This type has not yet been imported.
ntype->clear_is_visible();
if (!in_heap)
ntype->set_not_in_heap();
if (is_alias)
ntype->set_is_alias();
if (!type->is_undefined() && type->interface_type() != NULL)
this->gogo_->record_interface_type(type->interface_type());
type = ntype;
}
else if (no->is_type())
{
// We have seen this type before.
type = no->type_value();
// Don't change the visibility of the existing type.
// For older export versions, we need to skip the type
// definition in the stream.
if (this->version_ < EXPORT_FORMAT_V3)
this->read_type();
}
else
go_unreachable();
this->types_[index] = type;
// Read the type methods.
if (this->match_c_string("\n"))
{
this->advance(1);
while (this->match_c_string(" func"))
{
this->advance(1);
this->import_func(package);
}
}
}
return type;
}
// Return the type given an index. Set *PARSED if we parsed it here.
Type*
Import::type_for_index(int index, const std::string& input_name,
size_t input_offset, bool* parsed)
{
*parsed = false;
if (index >= 0 && !this->type_data_.empty())
{
if (static_cast<size_t>(index) >= this->type_offsets_.size())
{
go_error_at(this->location_,
"error in %s at %lu: bad type index %d, max %d",
input_name.c_str(),
static_cast<unsigned long>(input_offset),
index, static_cast<int>(this->type_offsets_.size()));
return Type::make_error_type();
}
if (this->types_[index] == NULL)
{
if (!this->parse_type(index))
return Type::make_error_type();
*parsed = true;
}
}
if (index < 0
? (static_cast<size_t>(- index) >= this->builtin_types_.size()
|| this->builtin_types_[- index] == NULL)
: (static_cast<size_t>(index) >= this->types_.size()
|| this->types_[index] == NULL))
{
go_error_at(this->location_,
"error in %s at %lu: bad type index %d",
input_name.c_str(),
static_cast<unsigned long>(input_offset), index);
return Type::make_error_type();
}
return index < 0 ? this->builtin_types_[- index] : this->types_[index];
}
// Read an escape note.
std::string
Import::read_escape()
{
if (this->match_c_string(" <esc:"))
{
Stream* stream = this->stream_;
this->require_c_string(" <esc:");
std::string escape = "esc:";
int c;
while (true)
{
c = stream->get_char();
if (c != 'x' && !ISXDIGIT(c))
break;
escape += c;
}
if (c != '>')
{
go_error_at(this->location(),
("error in import data at %d: "
"expect %< %> or %<>%>, got %c"),
stream->pos(), c);
stream->set_saw_error();
stream->advance(1);
escape = Escape_note::make_tag(Node::ESCAPE_UNKNOWN);
}
return escape;
}
else
return Escape_note::make_tag(Node::ESCAPE_UNKNOWN);
}
// Register the builtin types.
void
Import::register_builtin_types(Gogo* gogo)
{
this->register_builtin_type(gogo, "int8", BUILTIN_INT8);
this->register_builtin_type(gogo, "int16", BUILTIN_INT16);
this->register_builtin_type(gogo, "int32", BUILTIN_INT32);
this->register_builtin_type(gogo, "int64", BUILTIN_INT64);
this->register_builtin_type(gogo, "uint8", BUILTIN_UINT8);
this->register_builtin_type(gogo, "uint16", BUILTIN_UINT16);
this->register_builtin_type(gogo, "uint32", BUILTIN_UINT32);
this->register_builtin_type(gogo, "uint64", BUILTIN_UINT64);
this->register_builtin_type(gogo, "float32", BUILTIN_FLOAT32);
this->register_builtin_type(gogo, "float64", BUILTIN_FLOAT64);
this->register_builtin_type(gogo, "complex64", BUILTIN_COMPLEX64);
this->register_builtin_type(gogo, "complex128", BUILTIN_COMPLEX128);
this->register_builtin_type(gogo, "int", BUILTIN_INT);
this->register_builtin_type(gogo, "uint", BUILTIN_UINT);
this->register_builtin_type(gogo, "uintptr", BUILTIN_UINTPTR);
this->register_builtin_type(gogo, "bool", BUILTIN_BOOL);
this->register_builtin_type(gogo, "string", BUILTIN_STRING);
this->register_builtin_type(gogo, "error", BUILTIN_ERROR);
this->register_builtin_type(gogo, "byte", BUILTIN_BYTE);
this->register_builtin_type(gogo, "rune", BUILTIN_RUNE);
this->register_builtin_type(gogo, "any", BUILTIN_ANY);
}
// Register a single builtin type.
void
Import::register_builtin_type(Gogo* gogo, const char* name, Builtin_code code)
{
Named_object* named_object = gogo->lookup_global(name);
go_assert(named_object != NULL && named_object->is_type());
int index = - static_cast<int>(code);
go_assert(index > 0
&& static_cast<size_t>(index) < this->builtin_types_.size());
this->builtin_types_[index] = named_object->type_value();
}
// Characters that stop read_identifier. We base this on the
// characters that stop an identifier, without worrying about
// characters that are permitted in an identifier. That lets us skip
// UTF-8 parsing.
static const char * const identifier_stop = " \n;:,()[]";
// Read an identifier from the stream.
std::string
Import::read_identifier()
{
std::string ret;
Stream* stream = this->stream_;
int c;
while (true)
{
c = stream->peek_char();
if (c == -1 || strchr(identifier_stop, c) != NULL)
break;
// FIXME: Probably we shouldn't accept '.', but that might break
// some existing imports.
if (c == '.' && stream->match_c_string("..."))
break;
ret += c;
stream->advance(1);
}
return ret;
}
// Read a possibly qualified identifier from IMP. The qualification
// is <pID>, where ID is a package number. If the name has a leading
// '.', it is not exported; otherwise, it is. Set *NAME, *PKG and
// *IS_EXPORTED. Reports whether the read succeeded.
bool
Import::read_qualified_identifier(Import_expression* imp, std::string* name,
Package** pkg, bool* is_exported)
{
*pkg = NULL;
if (imp->match_c_string("<p"))
{
imp->advance(2);
char buf[50];
char *pbuf = &buf[0];
while (true)
{
int next = imp->peek_char();
if (next == -1 || static_cast<size_t>(pbuf - buf) >= sizeof buf - 1)
return false;
if (next == '>')
{
imp->advance(1);
break;
}
*pbuf = static_cast<char>(next);
++pbuf;
imp->advance(1);
}
*pbuf = '\0';
char *end;
long index = strtol(buf, &end, 10);
if (*end != '\0'
|| index <= 0
|| static_cast<size_t>(index) > imp->max_package_index())
return false;
*pkg = imp->package_at_index(index);
go_assert(*pkg != NULL);
}
*is_exported = true;
if (imp->match_c_string("."))
{
imp->advance(1);
*is_exported = false;
}
*name = imp->read_identifier();
return !name->empty();
}
// Read a name from the stream.
std::string
Import::read_name()
{
std::string ret = this->read_identifier();
if (ret == "?")
ret.clear();
return ret;
}
// Read LENGTH bytes from the stream.
void
Import::read(size_t length, std::string* out)
{
const char* data;
if (!this->stream_->peek(length, &data))
{
if (!this->stream_->saw_error())
go_error_at(this->location_, "import error at %d: expected %d bytes",
this->stream_->pos(), static_cast<int>(length));
this->stream_->set_saw_error();
*out = std::string("");
return;
}
*out = std::string(data, length);
this->advance(length);
}
// Turn a string into a integer with appropriate error handling.
bool
Import::string_to_int(const std::string &s, bool is_neg_ok, int* ret)
{
char* end;
long prio = strtol(s.c_str(), &end, 10);
if (*end != '\0' || prio > 0x7fffffff || (prio < 0 && !is_neg_ok))
{
go_error_at(this->location_, "invalid integer in import data at %d",
this->stream_->pos());
this->stream_->set_saw_error();
return false;
}
*ret = prio;
return true;
}
// Class Import::Stream.
Import::Stream::Stream()
: pos_(0), saw_error_(false)
{
}
Import::Stream::~Stream()
{
}
// Return the next character to come from the stream.
int
Import::Stream::peek_char()
{
const char* read;
if (!this->do_peek(1, &read))
return -1;
// Make sure we return an unsigned char, so that we don't get
// confused by \xff.
unsigned char ret = *read;
return ret;
}
// Return true if the next LENGTH characters from the stream match
// BYTES
bool
Import::Stream::match_bytes(const char* bytes, size_t length)
{
const char* read;
if (!this->do_peek(length, &read))
return false;
return memcmp(bytes, read, length) == 0;
}
// Require that the next LENGTH bytes from the stream match BYTES.
void
Import::Stream::require_bytes(Location location, const char* bytes,
size_t length)
{
const char* read;
if (!this->do_peek(length, &read)
|| memcmp(bytes, read, length) != 0)
{
if (!this->saw_error_)
go_error_at(location, "import error at %d: expected %<%.*s%>",
this->pos(), static_cast<int>(length), bytes);
this->saw_error_ = true;
return;
}
this->advance(length);
}
// Class Stream_from_file.
Stream_from_file::Stream_from_file(int fd)
: fd_(fd), data_()
{
if (lseek(fd, 0, SEEK_SET) != 0)
{
go_fatal_error(Linemap::unknown_location(), "lseek failed: %m");
this->set_saw_error();
}
}
Stream_from_file::~Stream_from_file()
{
close(this->fd_);
}
// Read next bytes.
bool
Stream_from_file::do_peek(size_t length, const char** bytes)
{
if (this->data_.length() >= length)
{
*bytes = this->data_.data();
return true;
}
this->data_.resize(length);
ssize_t got = ::read(this->fd_, &this->data_[0], length);
if (got < 0)
{
if (!this->saw_error())
go_fatal_error(Linemap::unknown_location(), "read failed: %m");
this->set_saw_error();
return false;
}
if (lseek(this->fd_, - got, SEEK_CUR) < 0)
{
if (!this->saw_error())
go_fatal_error(Linemap::unknown_location(), "lseek failed: %m");
this->set_saw_error();
return false;
}
if (static_cast<size_t>(got) < length)
return false;
*bytes = this->data_.data();
return true;
}
// Advance.
void
Stream_from_file::do_advance(size_t skip)
{
if (lseek(this->fd_, skip, SEEK_CUR) < 0)
{
if (!this->saw_error())
go_fatal_error(Linemap::unknown_location(), "lseek failed: %m");
this->set_saw_error();
}
if (!this->data_.empty())
{
if (this->data_.length() > skip)
this->data_.erase(0, skip);
else
this->data_.clear();
}
}
// Class Import_function_body.
Import_function_body::Import_function_body(Gogo* gogo,
Import* imp,
Named_object* named_object,
const std::string& body,
size_t off,
Block* block,
int indent)
: gogo_(gogo), imp_(imp), named_object_(named_object), body_(body),
off_(off), indent_(indent), temporaries_(), labels_(),
saw_error_(false)
{
this->blocks_.push_back(block);
}
Import_function_body::~Import_function_body()
{
// At this point we should be left with the original outer block only.
go_assert(saw_errors() || this->blocks_.size() == 1);
}
// The name of the function we are parsing.
const std::string&
Import_function_body::name() const
{
return this->named_object_->name();
}
// Class Import_function_body.
// Require that the next bytes match STR, issuing an error if not.
// Advance past the string.
void
Import_function_body::require_c_string(const char* str)
{
if (!this->match_c_string(str))
{
if (!this->saw_error_)
go_error_at(this->location(),
"invalid export data for %qs: expected %qs at %lu",
this->name().c_str(), str,
static_cast<unsigned long>(this->off_));
this->saw_error_ = true;
return;
}
this->advance(strlen(str));
}
// Read an identifier.
std::string
Import_function_body::read_identifier()
{
size_t start = this->off_;
for (size_t i = start; i < this->body_.length(); i++)
{
int c = static_cast<unsigned char>(this->body_[i]);
if (strchr(identifier_stop, c) != NULL)
{
this->off_ = i;
return this->body_.substr(start, i - start);
}
// FIXME: Probably we shouldn't accept '.', but that might break
// some existing imports.
if (c == '.'
&& i + 2 < this->body_.length()
&& this->body_[i + 1] == '.'
&& this->body_[i + 2] == '.')
{
this->off_ = i;
return this->body_.substr(start, i - start);
}
}
this->off_ = this->body_.length();
return this->body_.substr(start);
}
// Read a type.
Type*
Import_function_body::read_type()
{
this->require_c_string("<type ");
size_t start = this->off_;
size_t i;
int c = '\0';
for (i = start; i < this->body_.length(); ++i)
{
c = static_cast<unsigned char>(this->body_[i]);
if (c != '-' && (c < '0' || c > '9'))
break;
}
this->off_ = i + 1;
char *end;
std::string num = this->body_.substr(start, i - start);
long val = strtol(num.c_str(), &end, 10);
if (*end != '\0' || val > 0x7fffffff)
{
if (!this->saw_error_)
go_error_at(this->location(),
"invalid export data for %qs: expected integer at %lu",
this->name().c_str(),
static_cast<unsigned long>(start));
this->saw_error_ = true;
return Type::make_error_type();
}
if (c != '>')
{
if (!this->saw_error_)
go_error_at(this->location(),
"invalid export data for %qs: expected %<>%> at %lu",
this->name().c_str(),
static_cast<unsigned long>(i));
this->saw_error_ = true;
return Type::make_error_type();
}
bool parsed;
Type* type = this->imp_->type_for_index(static_cast<int>(val), this->name(),
static_cast<unsigned long>(start),
&parsed);
// If we just read this type's information, its methods will not
// have been finalized. Do that now.
if (parsed)
this->gogo_->finalize_methods_for_type(type);
return type;
}
// Return the next size to use for a vector mapping indexes to values.
size_t
Import_function_body::next_size(size_t have)
{
if (have == 0)
return 8;
else if (have < 256)
return have * 2;
else
return have + 64;
}
// Record the index of a temporary statement.
void
Import_function_body::record_temporary(Temporary_statement* temp,
unsigned int idx)
{
size_t have = this->temporaries_.size();
while (static_cast<size_t>(idx) >= have)
{
size_t want = Import_function_body::next_size(have);
this->temporaries_.resize(want, NULL);
have = want;
}
this->temporaries_[idx] = temp;
}
// Return a temporary statement given an index.
Temporary_statement*
Import_function_body::temporary_statement(unsigned int idx)
{
if (static_cast<size_t>(idx) >= this->temporaries_.size())
return NULL;
return this->temporaries_[idx];
}
// Return an unnamed label given an index, defining the label if we
// haven't seen it already.
Unnamed_label*
Import_function_body::unnamed_label(unsigned int idx, Location loc)
{
size_t have = this->labels_.size();
while (static_cast<size_t>(idx) >= have)
{
size_t want = Import_function_body::next_size(have);
this->labels_.resize(want, NULL);
have = want;
}
Unnamed_label* label = this->labels_[idx];
if (label == NULL)
{
label = new Unnamed_label(loc);
this->labels_[idx] = label;
}
return label;
}