| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements nat-to-string conversion functions. |
| |
| package big |
| |
| import ( |
| "errors" |
| "fmt" |
| "io" |
| "math" |
| "math/bits" |
| "sync" |
| ) |
| |
| const digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| |
| // Note: MaxBase = len(digits), but it must remain an untyped rune constant |
| // for API compatibility. |
| |
| // MaxBase is the largest number base accepted for string conversions. |
| const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1) |
| const maxBaseSmall = 10 + ('z' - 'a' + 1) |
| |
| // maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M. |
| // For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word. |
| // In other words, at most n digits in base b fit into a Word. |
| // TODO(gri) replace this with a table, generated at build time. |
| func maxPow(b Word) (p Word, n int) { |
| p, n = b, 1 // assuming b <= _M |
| for max := _M / b; p <= max; { |
| // p == b**n && p <= max |
| p *= b |
| n++ |
| } |
| // p == b**n && p <= _M |
| return |
| } |
| |
| // pow returns x**n for n > 0, and 1 otherwise. |
| func pow(x Word, n int) (p Word) { |
| // n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1 |
| // thus x**n == product of x**(2**i) for all i where bi == 1 |
| // (Russian Peasant Method for exponentiation) |
| p = 1 |
| for n > 0 { |
| if n&1 != 0 { |
| p *= x |
| } |
| x *= x |
| n >>= 1 |
| } |
| return |
| } |
| |
| // scan errors |
| var ( |
| errNoDigits = errors.New("number has no digits") |
| errInvalSep = errors.New("'_' must separate successive digits") |
| ) |
| |
| // scan scans the number corresponding to the longest possible prefix |
| // from r representing an unsigned number in a given conversion base. |
| // scan returns the corresponding natural number res, the actual base b, |
| // a digit count, and a read or syntax error err, if any. |
| // |
| // For base 0, an underscore character ``_'' may appear between a base |
| // prefix and an adjacent digit, and between successive digits; such |
| // underscores do not change the value of the number, or the returned |
| // digit count. Incorrect placement of underscores is reported as an |
| // error if there are no other errors. If base != 0, underscores are |
| // not recognized and thus terminate scanning like any other character |
| // that is not a valid radix point or digit. |
| // |
| // number = mantissa | prefix pmantissa . |
| // prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] . |
| // mantissa = digits "." [ digits ] | digits | "." digits . |
| // pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits . |
| // digits = digit { [ "_" ] digit } . |
| // digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . |
| // |
| // Unless fracOk is set, the base argument must be 0 or a value between |
| // 2 and MaxBase. If fracOk is set, the base argument must be one of |
| // 0, 2, 8, 10, or 16. Providing an invalid base argument leads to a run- |
| // time panic. |
| // |
| // For base 0, the number prefix determines the actual base: A prefix of |
| // ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and |
| // ``0x'' or ``0X'' selects base 16. If fracOk is false, a ``0'' prefix |
| // (immediately followed by digits) selects base 8 as well. Otherwise, |
| // the selected base is 10 and no prefix is accepted. |
| // |
| // If fracOk is set, a period followed by a fractional part is permitted. |
| // The result value is computed as if there were no period present; and |
| // the count value is used to determine the fractional part. |
| // |
| // For bases <= 36, lower and upper case letters are considered the same: |
| // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. |
| // For bases > 36, the upper case letters 'A' to 'Z' represent the digit |
| // values 36 to 61. |
| // |
| // A result digit count > 0 corresponds to the number of (non-prefix) digits |
| // parsed. A digit count <= 0 indicates the presence of a period (if fracOk |
| // is set, only), and -count is the number of fractional digits found. |
| // In this case, the actual value of the scanned number is res * b**count. |
| // |
| func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) { |
| // reject invalid bases |
| baseOk := base == 0 || |
| !fracOk && 2 <= base && base <= MaxBase || |
| fracOk && (base == 2 || base == 8 || base == 10 || base == 16) |
| if !baseOk { |
| panic(fmt.Sprintf("invalid number base %d", base)) |
| } |
| |
| // prev encodes the previously seen char: it is one |
| // of '_', '0' (a digit), or '.' (anything else). A |
| // valid separator '_' may only occur after a digit |
| // and if base == 0. |
| prev := '.' |
| invalSep := false |
| |
| // one char look-ahead |
| ch, err := r.ReadByte() |
| |
| // determine actual base |
| b, prefix := base, 0 |
| if base == 0 { |
| // actual base is 10 unless there's a base prefix |
| b = 10 |
| if err == nil && ch == '0' { |
| prev = '0' |
| count = 1 |
| ch, err = r.ReadByte() |
| if err == nil { |
| // possibly one of 0b, 0B, 0o, 0O, 0x, 0X |
| switch ch { |
| case 'b', 'B': |
| b, prefix = 2, 'b' |
| case 'o', 'O': |
| b, prefix = 8, 'o' |
| case 'x', 'X': |
| b, prefix = 16, 'x' |
| default: |
| if !fracOk { |
| b, prefix = 8, '0' |
| } |
| } |
| if prefix != 0 { |
| count = 0 // prefix is not counted |
| if prefix != '0' { |
| ch, err = r.ReadByte() |
| } |
| } |
| } |
| } |
| } |
| |
| // convert string |
| // Algorithm: Collect digits in groups of at most n digits in di |
| // and then use mulAddWW for every such group to add them to the |
| // result. |
| z = z[:0] |
| b1 := Word(b) |
| bn, n := maxPow(b1) // at most n digits in base b1 fit into Word |
| di := Word(0) // 0 <= di < b1**i < bn |
| i := 0 // 0 <= i < n |
| dp := -1 // position of decimal point |
| for err == nil { |
| if ch == '.' && fracOk { |
| fracOk = false |
| if prev == '_' { |
| invalSep = true |
| } |
| prev = '.' |
| dp = count |
| } else if ch == '_' && base == 0 { |
| if prev != '0' { |
| invalSep = true |
| } |
| prev = '_' |
| } else { |
| // convert rune into digit value d1 |
| var d1 Word |
| switch { |
| case '0' <= ch && ch <= '9': |
| d1 = Word(ch - '0') |
| case 'a' <= ch && ch <= 'z': |
| d1 = Word(ch - 'a' + 10) |
| case 'A' <= ch && ch <= 'Z': |
| if b <= maxBaseSmall { |
| d1 = Word(ch - 'A' + 10) |
| } else { |
| d1 = Word(ch - 'A' + maxBaseSmall) |
| } |
| default: |
| d1 = MaxBase + 1 |
| } |
| if d1 >= b1 { |
| r.UnreadByte() // ch does not belong to number anymore |
| break |
| } |
| prev = '0' |
| count++ |
| |
| // collect d1 in di |
| di = di*b1 + d1 |
| i++ |
| |
| // if di is "full", add it to the result |
| if i == n { |
| z = z.mulAddWW(z, bn, di) |
| di = 0 |
| i = 0 |
| } |
| } |
| |
| ch, err = r.ReadByte() |
| } |
| |
| if err == io.EOF { |
| err = nil |
| } |
| |
| // other errors take precedence over invalid separators |
| if err == nil && (invalSep || prev == '_') { |
| err = errInvalSep |
| } |
| |
| if count == 0 { |
| // no digits found |
| if prefix == '0' { |
| // there was only the octal prefix 0 (possibly followed by separators and digits > 7); |
| // interpret as decimal 0 |
| return z[:0], 10, 1, err |
| } |
| err = errNoDigits // fall through; result will be 0 |
| } |
| |
| // add remaining digits to result |
| if i > 0 { |
| z = z.mulAddWW(z, pow(b1, i), di) |
| } |
| res = z.norm() |
| |
| // adjust count for fraction, if any |
| if dp >= 0 { |
| // 0 <= dp <= count |
| count = dp - count |
| } |
| |
| return |
| } |
| |
| // utoa converts x to an ASCII representation in the given base; |
| // base must be between 2 and MaxBase, inclusive. |
| func (x nat) utoa(base int) []byte { |
| return x.itoa(false, base) |
| } |
| |
| // itoa is like utoa but it prepends a '-' if neg && x != 0. |
| func (x nat) itoa(neg bool, base int) []byte { |
| if base < 2 || base > MaxBase { |
| panic("invalid base") |
| } |
| |
| // x == 0 |
| if len(x) == 0 { |
| return []byte("0") |
| } |
| // len(x) > 0 |
| |
| // allocate buffer for conversion |
| i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most |
| if neg { |
| i++ |
| } |
| s := make([]byte, i) |
| |
| // convert power of two and non power of two bases separately |
| if b := Word(base); b == b&-b { |
| // shift is base b digit size in bits |
| shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2 |
| mask := Word(1<<shift - 1) |
| w := x[0] // current word |
| nbits := uint(_W) // number of unprocessed bits in w |
| |
| // convert less-significant words (include leading zeros) |
| for k := 1; k < len(x); k++ { |
| // convert full digits |
| for nbits >= shift { |
| i-- |
| s[i] = digits[w&mask] |
| w >>= shift |
| nbits -= shift |
| } |
| |
| // convert any partial leading digit and advance to next word |
| if nbits == 0 { |
| // no partial digit remaining, just advance |
| w = x[k] |
| nbits = _W |
| } else { |
| // partial digit in current word w (== x[k-1]) and next word x[k] |
| w |= x[k] << nbits |
| i-- |
| s[i] = digits[w&mask] |
| |
| // advance |
| w = x[k] >> (shift - nbits) |
| nbits = _W - (shift - nbits) |
| } |
| } |
| |
| // convert digits of most-significant word w (omit leading zeros) |
| for w != 0 { |
| i-- |
| s[i] = digits[w&mask] |
| w >>= shift |
| } |
| |
| } else { |
| bb, ndigits := maxPow(b) |
| |
| // construct table of successive squares of bb*leafSize to use in subdivisions |
| // result (table != nil) <=> (len(x) > leafSize > 0) |
| table := divisors(len(x), b, ndigits, bb) |
| |
| // preserve x, create local copy for use by convertWords |
| q := nat(nil).set(x) |
| |
| // convert q to string s in base b |
| q.convertWords(s, b, ndigits, bb, table) |
| |
| // strip leading zeros |
| // (x != 0; thus s must contain at least one non-zero digit |
| // and the loop will terminate) |
| i = 0 |
| for s[i] == '0' { |
| i++ |
| } |
| } |
| |
| if neg { |
| i-- |
| s[i] = '-' |
| } |
| |
| return s[i:] |
| } |
| |
| // Convert words of q to base b digits in s. If q is large, it is recursively "split in half" |
| // by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using |
| // repeated nat/Word division. |
| // |
| // The iterative method processes n Words by n divW() calls, each of which visits every Word in the |
| // incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s. |
| // Recursive conversion divides q by its approximate square root, yielding two parts, each half |
| // the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s |
| // plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and |
| // is made better by splitting the subblocks recursively. Best is to split blocks until one more |
| // split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the |
| // iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the |
| // range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and |
| // ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for |
| // specific hardware. |
| // |
| func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) { |
| // split larger blocks recursively |
| if table != nil { |
| // len(q) > leafSize > 0 |
| var r nat |
| index := len(table) - 1 |
| for len(q) > leafSize { |
| // find divisor close to sqrt(q) if possible, but in any case < q |
| maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length |
| minLength := maxLength >> 1 // ~= log2 sqrt(q) |
| for index > 0 && table[index-1].nbits > minLength { |
| index-- // desired |
| } |
| if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 { |
| index-- |
| if index < 0 { |
| panic("internal inconsistency") |
| } |
| } |
| |
| // split q into the two digit number (q'*bbb + r) to form independent subblocks |
| q, r = q.div(r, q, table[index].bbb) |
| |
| // convert subblocks and collect results in s[:h] and s[h:] |
| h := len(s) - table[index].ndigits |
| r.convertWords(s[h:], b, ndigits, bb, table[0:index]) |
| s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1]) |
| } |
| } |
| |
| // having split any large blocks now process the remaining (small) block iteratively |
| i := len(s) |
| var r Word |
| if b == 10 { |
| // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants) |
| for len(q) > 0 { |
| // extract least significant, base bb "digit" |
| q, r = q.divW(q, bb) |
| for j := 0; j < ndigits && i > 0; j++ { |
| i-- |
| // avoid % computation since r%10 == r - int(r/10)*10; |
| // this appears to be faster for BenchmarkString10000Base10 |
| // and smaller strings (but a bit slower for larger ones) |
| t := r / 10 |
| s[i] = '0' + byte(r-t*10) |
| r = t |
| } |
| } |
| } else { |
| for len(q) > 0 { |
| // extract least significant, base bb "digit" |
| q, r = q.divW(q, bb) |
| for j := 0; j < ndigits && i > 0; j++ { |
| i-- |
| s[i] = digits[r%b] |
| r /= b |
| } |
| } |
| } |
| |
| // prepend high-order zeros |
| for i > 0 { // while need more leading zeros |
| i-- |
| s[i] = '0' |
| } |
| } |
| |
| // Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion) |
| // Benchmark and configure leafSize using: go test -bench="Leaf" |
| // 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines) |
| // 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU |
| var leafSize int = 8 // number of Word-size binary values treat as a monolithic block |
| |
| type divisor struct { |
| bbb nat // divisor |
| nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb) |
| ndigits int // digit length of divisor in terms of output base digits |
| } |
| |
| var cacheBase10 struct { |
| sync.Mutex |
| table [64]divisor // cached divisors for base 10 |
| } |
| |
| // expWW computes x**y |
| func (z nat) expWW(x, y Word) nat { |
| return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil) |
| } |
| |
| // construct table of powers of bb*leafSize to use in subdivisions |
| func divisors(m int, b Word, ndigits int, bb Word) []divisor { |
| // only compute table when recursive conversion is enabled and x is large |
| if leafSize == 0 || m <= leafSize { |
| return nil |
| } |
| |
| // determine k where (bb**leafSize)**(2**k) >= sqrt(x) |
| k := 1 |
| for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 { |
| k++ |
| } |
| |
| // reuse and extend existing table of divisors or create new table as appropriate |
| var table []divisor // for b == 10, table overlaps with cacheBase10.table |
| if b == 10 { |
| cacheBase10.Lock() |
| table = cacheBase10.table[0:k] // reuse old table for this conversion |
| } else { |
| table = make([]divisor, k) // create new table for this conversion |
| } |
| |
| // extend table |
| if table[k-1].ndigits == 0 { |
| // add new entries as needed |
| var larger nat |
| for i := 0; i < k; i++ { |
| if table[i].ndigits == 0 { |
| if i == 0 { |
| table[0].bbb = nat(nil).expWW(bb, Word(leafSize)) |
| table[0].ndigits = ndigits * leafSize |
| } else { |
| table[i].bbb = nat(nil).sqr(table[i-1].bbb) |
| table[i].ndigits = 2 * table[i-1].ndigits |
| } |
| |
| // optimization: exploit aggregated extra bits in macro blocks |
| larger = nat(nil).set(table[i].bbb) |
| for mulAddVWW(larger, larger, b, 0) == 0 { |
| table[i].bbb = table[i].bbb.set(larger) |
| table[i].ndigits++ |
| } |
| |
| table[i].nbits = table[i].bbb.bitLen() |
| } |
| } |
| } |
| |
| if b == 10 { |
| cacheBase10.Unlock() |
| } |
| |
| return table |
| } |