|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strconv | 
|  |  | 
|  | import "math/bits" | 
|  |  | 
|  | const fastSmalls = true // enable fast path for small integers | 
|  |  | 
|  | // FormatUint returns the string representation of i in the given base, | 
|  | // for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z' | 
|  | // for digit values >= 10. | 
|  | func FormatUint(i uint64, base int) string { | 
|  | if fastSmalls && i < nSmalls && base == 10 { | 
|  | return small(int(i)) | 
|  | } | 
|  | _, s := formatBits(nil, i, base, false, false) | 
|  | return s | 
|  | } | 
|  |  | 
|  | // FormatInt returns the string representation of i in the given base, | 
|  | // for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z' | 
|  | // for digit values >= 10. | 
|  | func FormatInt(i int64, base int) string { | 
|  | if fastSmalls && 0 <= i && i < nSmalls && base == 10 { | 
|  | return small(int(i)) | 
|  | } | 
|  | _, s := formatBits(nil, uint64(i), base, i < 0, false) | 
|  | return s | 
|  | } | 
|  |  | 
|  | // Itoa is equivalent to FormatInt(int64(i), 10). | 
|  | func Itoa(i int) string { | 
|  | return FormatInt(int64(i), 10) | 
|  | } | 
|  |  | 
|  | // AppendInt appends the string form of the integer i, | 
|  | // as generated by FormatInt, to dst and returns the extended buffer. | 
|  | func AppendInt(dst []byte, i int64, base int) []byte { | 
|  | if fastSmalls && 0 <= i && i < nSmalls && base == 10 { | 
|  | return append(dst, small(int(i))...) | 
|  | } | 
|  | dst, _ = formatBits(dst, uint64(i), base, i < 0, true) | 
|  | return dst | 
|  | } | 
|  |  | 
|  | // AppendUint appends the string form of the unsigned integer i, | 
|  | // as generated by FormatUint, to dst and returns the extended buffer. | 
|  | func AppendUint(dst []byte, i uint64, base int) []byte { | 
|  | if fastSmalls && i < nSmalls && base == 10 { | 
|  | return append(dst, small(int(i))...) | 
|  | } | 
|  | dst, _ = formatBits(dst, i, base, false, true) | 
|  | return dst | 
|  | } | 
|  |  | 
|  | // small returns the string for an i with 0 <= i < nSmalls. | 
|  | func small(i int) string { | 
|  | if i < 10 { | 
|  | return digits[i : i+1] | 
|  | } | 
|  | return smallsString[i*2 : i*2+2] | 
|  | } | 
|  |  | 
|  | const nSmalls = 100 | 
|  |  | 
|  | const smallsString = "00010203040506070809" + | 
|  | "10111213141516171819" + | 
|  | "20212223242526272829" + | 
|  | "30313233343536373839" + | 
|  | "40414243444546474849" + | 
|  | "50515253545556575859" + | 
|  | "60616263646566676869" + | 
|  | "70717273747576777879" + | 
|  | "80818283848586878889" + | 
|  | "90919293949596979899" | 
|  |  | 
|  | const host32bit = ^uint(0)>>32 == 0 | 
|  |  | 
|  | const digits = "0123456789abcdefghijklmnopqrstuvwxyz" | 
|  |  | 
|  | // formatBits computes the string representation of u in the given base. | 
|  | // If neg is set, u is treated as negative int64 value. If append_ is | 
|  | // set, the string is appended to dst and the resulting byte slice is | 
|  | // returned as the first result value; otherwise the string is returned | 
|  | // as the second result value. | 
|  | // | 
|  | func formatBits(dst []byte, u uint64, base int, neg, append_ bool) (d []byte, s string) { | 
|  | if base < 2 || base > len(digits) { | 
|  | panic("strconv: illegal AppendInt/FormatInt base") | 
|  | } | 
|  | // 2 <= base && base <= len(digits) | 
|  |  | 
|  | var a [64 + 1]byte // +1 for sign of 64bit value in base 2 | 
|  | i := len(a) | 
|  |  | 
|  | if neg { | 
|  | u = -u | 
|  | } | 
|  |  | 
|  | // convert bits | 
|  | // We use uint values where we can because those will | 
|  | // fit into a single register even on a 32bit machine. | 
|  | if base == 10 { | 
|  | // common case: use constants for / because | 
|  | // the compiler can optimize it into a multiply+shift | 
|  |  | 
|  | if host32bit { | 
|  | // convert the lower digits using 32bit operations | 
|  | for u >= 1e9 { | 
|  | // Avoid using r = a%b in addition to q = a/b | 
|  | // since 64bit division and modulo operations | 
|  | // are calculated by runtime functions on 32bit machines. | 
|  | q := u / 1e9 | 
|  | us := uint(u - q*1e9) // u % 1e9 fits into a uint | 
|  | for j := 4; j > 0; j-- { | 
|  | is := us % 100 * 2 | 
|  | us /= 100 | 
|  | i -= 2 | 
|  | a[i+1] = smallsString[is+1] | 
|  | a[i+0] = smallsString[is+0] | 
|  | } | 
|  |  | 
|  | // us < 10, since it contains the last digit | 
|  | // from the initial 9-digit us. | 
|  | i-- | 
|  | a[i] = smallsString[us*2+1] | 
|  |  | 
|  | u = q | 
|  | } | 
|  | // u < 1e9 | 
|  | } | 
|  |  | 
|  | // u guaranteed to fit into a uint | 
|  | us := uint(u) | 
|  | for us >= 100 { | 
|  | is := us % 100 * 2 | 
|  | us /= 100 | 
|  | i -= 2 | 
|  | a[i+1] = smallsString[is+1] | 
|  | a[i+0] = smallsString[is+0] | 
|  | } | 
|  |  | 
|  | // us < 100 | 
|  | is := us * 2 | 
|  | i-- | 
|  | a[i] = smallsString[is+1] | 
|  | if us >= 10 { | 
|  | i-- | 
|  | a[i] = smallsString[is] | 
|  | } | 
|  |  | 
|  | } else if isPowerOfTwo(base) { | 
|  | // Use shifts and masks instead of / and %. | 
|  | // Base is a power of 2 and 2 <= base <= len(digits) where len(digits) is 36. | 
|  | // The largest power of 2 below or equal to 36 is 32, which is 1 << 5; | 
|  | // i.e., the largest possible shift count is 5. By &-ind that value with | 
|  | // the constant 7 we tell the compiler that the shift count is always | 
|  | // less than 8 which is smaller than any register width. This allows | 
|  | // the compiler to generate better code for the shift operation. | 
|  | shift := uint(bits.TrailingZeros(uint(base))) & 7 | 
|  | b := uint64(base) | 
|  | m := uint(base) - 1 // == 1<<shift - 1 | 
|  | for u >= b { | 
|  | i-- | 
|  | a[i] = digits[uint(u)&m] | 
|  | u >>= shift | 
|  | } | 
|  | // u < base | 
|  | i-- | 
|  | a[i] = digits[uint(u)] | 
|  | } else { | 
|  | // general case | 
|  | b := uint64(base) | 
|  | for u >= b { | 
|  | i-- | 
|  | // Avoid using r = a%b in addition to q = a/b | 
|  | // since 64bit division and modulo operations | 
|  | // are calculated by runtime functions on 32bit machines. | 
|  | q := u / b | 
|  | a[i] = digits[uint(u-q*b)] | 
|  | u = q | 
|  | } | 
|  | // u < base | 
|  | i-- | 
|  | a[i] = digits[uint(u)] | 
|  | } | 
|  |  | 
|  | // add sign, if any | 
|  | if neg { | 
|  | i-- | 
|  | a[i] = '-' | 
|  | } | 
|  |  | 
|  | if append_ { | 
|  | d = append(dst, a[i:]...) | 
|  | return | 
|  | } | 
|  | s = string(a[i:]) | 
|  | return | 
|  | } | 
|  |  | 
|  | func isPowerOfTwo(x int) bool { | 
|  | return x&(x-1) == 0 | 
|  | } |