blob: 336b2611324f50cd0a46f2ede930ee22e7fc3452 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif
#include "config.h"
#include "runtime.h"
#include "arch.h"
#include "array.h"
int32
runtime_atoi(const byte *p, intgo len)
{
int32 n;
n = 0;
while(len > 0 && '0' <= *p && *p <= '9') {
n = n*10 + *p++ - '0';
len--;
}
return n;
}
uint32
runtime_fastrand(void)
{
M *m;
uint32 x;
m = runtime_m();
x = m->fastrand;
x += x;
if(x & 0x80000000L)
x ^= 0x88888eefUL;
m->fastrand = x;
return x;
}
int64
runtime_cputicks(void)
{
#if defined(__386__) || defined(__x86_64__)
uint32 low, high;
asm("rdtsc" : "=a" (low), "=d" (high));
return (int64)(((uint64)high << 32) | (uint64)low);
#elif defined (__s390__) || defined (__s390x__)
uint64 clock = 0;
/* stckf may not write the return variable in case of a clock error, so make
it read-write to prevent that the initialisation is optimised out.
Note: Targets below z9-109 will crash when executing store clock fast, i.e.
we don't support Go for machines older than that. */
asm volatile(".insn s,0xb27c0000,%0" /* stckf */ : "+Q" (clock) : : "cc" );
return (int64)clock;
#else
// Currently cputicks() is used in blocking profiler and to seed runtime·fastrand().
// runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
// TODO: need more entropy to better seed fastrand.
return runtime_nanotime();
#endif
}
void
runtime_signalstack(byte *p, uintptr n)
{
stack_t st;
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
if(sigaltstack(&st, nil) < 0)
*(int *)0xf1 = 0xf1;
}
struct debugVars runtime_debug;
void
runtime_setdebug(struct debugVars* d) {
runtime_debug = *d;
}
int32 go_open(char *, int32, int32)
__asm__ (GOSYM_PREFIX "runtime.open");
int32
go_open(char *name, int32 mode, int32 perm)
{
return runtime_open(name, mode, perm);
}
int32 go_read(int32, void *, int32)
__asm__ (GOSYM_PREFIX "runtime.read");
int32
go_read(int32 fd, void *p, int32 n)
{
return runtime_read(fd, p, n);
}
int32 go_write(uintptr, void *, int32)
__asm__ (GOSYM_PREFIX "runtime.write");
int32
go_write(uintptr fd, void *p, int32 n)
{
return runtime_write(fd, p, n);
}
int32 go_closefd(int32)
__asm__ (GOSYM_PREFIX "runtime.closefd");
int32
go_closefd(int32 fd)
{
return runtime_close(fd);
}
intgo go_errno(void)
__asm__ (GOSYM_PREFIX "runtime.errno");
intgo
go_errno()
{
return (intgo)errno;
}
uintptr getEnd(void)
__asm__ (GOSYM_PREFIX "runtime.getEnd");
uintptr
getEnd()
{
uintptr end = 0;
uintptr *pend;
pend = &__go_end;
if (pend != nil) {
end = *pend;
}
return end;
}
// CPU-specific initialization.
// Fetch CPUID info on x86.
void
runtime_cpuinit()
{
#if defined(__i386__) || defined(__x86_64__)
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
setCpuidECX(ecx);
}
#if defined(HAVE_AS_X86_AES)
setSupportAES(true);
#endif
#endif
}
// A publication barrier: a store/store barrier.
void publicationBarrier(void)
__asm__ (GOSYM_PREFIX "runtime.publicationBarrier");
void
publicationBarrier()
{
__atomic_thread_fence(__ATOMIC_RELEASE);
}