|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | /* | 
|  | Floating-point hyperbolic sine and cosine. | 
|  |  | 
|  | The exponential func is called for arguments | 
|  | greater in magnitude than 0.5. | 
|  |  | 
|  | A series is used for arguments smaller in magnitude than 0.5. | 
|  |  | 
|  | Cosh(x) is computed from the exponential func for | 
|  | all arguments. | 
|  | */ | 
|  |  | 
|  | // Sinh returns the hyperbolic sine of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Sinh(±0) = ±0 | 
|  | //	Sinh(±Inf) = ±Inf | 
|  | //	Sinh(NaN) = NaN | 
|  | func Sinh(x float64) float64 { | 
|  | // The coefficients are #2029 from Hart & Cheney. (20.36D) | 
|  | const ( | 
|  | P0 = -0.6307673640497716991184787251e+6 | 
|  | P1 = -0.8991272022039509355398013511e+5 | 
|  | P2 = -0.2894211355989563807284660366e+4 | 
|  | P3 = -0.2630563213397497062819489e+2 | 
|  | Q0 = -0.6307673640497716991212077277e+6 | 
|  | Q1 = 0.1521517378790019070696485176e+5 | 
|  | Q2 = -0.173678953558233699533450911e+3 | 
|  | ) | 
|  |  | 
|  | sign := false | 
|  | if x < 0 { | 
|  | x = -x | 
|  | sign = true | 
|  | } | 
|  |  | 
|  | var temp float64 | 
|  | switch true { | 
|  | case x > 21: | 
|  | temp = Exp(x) / 2 | 
|  |  | 
|  | case x > 0.5: | 
|  | temp = (Exp(x) - Exp(-x)) / 2 | 
|  |  | 
|  | default: | 
|  | sq := x * x | 
|  | temp = (((P3*sq+P2)*sq+P1)*sq + P0) * x | 
|  | temp = temp / (((sq+Q2)*sq+Q1)*sq + Q0) | 
|  | } | 
|  |  | 
|  | if sign { | 
|  | temp = -temp | 
|  | } | 
|  | return temp | 
|  | } | 
|  |  | 
|  | // Cosh returns the hyperbolic cosine of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Cosh(±0) = 1 | 
|  | //	Cosh(±Inf) = +Inf | 
|  | //	Cosh(NaN) = NaN | 
|  | func Cosh(x float64) float64 { | 
|  | if x < 0 { | 
|  | x = -x | 
|  | } | 
|  | if x > 21 { | 
|  | return Exp(x) / 2 | 
|  | } | 
|  | return (Exp(x) + Exp(-x)) / 2 | 
|  | } |