|  | // Copyright 2014 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | // This file contains the implementation of Go's map type. | 
|  | // | 
|  | // A map is just a hash table. The data is arranged | 
|  | // into an array of buckets. Each bucket contains up to | 
|  | // 8 key/value pairs. The low-order bits of the hash are | 
|  | // used to select a bucket. Each bucket contains a few | 
|  | // high-order bits of each hash to distinguish the entries | 
|  | // within a single bucket. | 
|  | // | 
|  | // If more than 8 keys hash to a bucket, we chain on | 
|  | // extra buckets. | 
|  | // | 
|  | // When the hashtable grows, we allocate a new array | 
|  | // of buckets twice as big. Buckets are incrementally | 
|  | // copied from the old bucket array to the new bucket array. | 
|  | // | 
|  | // Map iterators walk through the array of buckets and | 
|  | // return the keys in walk order (bucket #, then overflow | 
|  | // chain order, then bucket index).  To maintain iteration | 
|  | // semantics, we never move keys within their bucket (if | 
|  | // we did, keys might be returned 0 or 2 times).  When | 
|  | // growing the table, iterators remain iterating through the | 
|  | // old table and must check the new table if the bucket | 
|  | // they are iterating through has been moved ("evacuated") | 
|  | // to the new table. | 
|  |  | 
|  | // Picking loadFactor: too large and we have lots of overflow | 
|  | // buckets, too small and we waste a lot of space. I wrote | 
|  | // a simple program to check some stats for different loads: | 
|  | // (64-bit, 8 byte keys and values) | 
|  | //  loadFactor    %overflow  bytes/entry     hitprobe    missprobe | 
|  | //        4.00         2.13        20.77         3.00         4.00 | 
|  | //        4.50         4.05        17.30         3.25         4.50 | 
|  | //        5.00         6.85        14.77         3.50         5.00 | 
|  | //        5.50        10.55        12.94         3.75         5.50 | 
|  | //        6.00        15.27        11.67         4.00         6.00 | 
|  | //        6.50        20.90        10.79         4.25         6.50 | 
|  | //        7.00        27.14        10.15         4.50         7.00 | 
|  | //        7.50        34.03         9.73         4.75         7.50 | 
|  | //        8.00        41.10         9.40         5.00         8.00 | 
|  | // | 
|  | // %overflow   = percentage of buckets which have an overflow bucket | 
|  | // bytes/entry = overhead bytes used per key/value pair | 
|  | // hitprobe    = # of entries to check when looking up a present key | 
|  | // missprobe   = # of entries to check when looking up an absent key | 
|  | // | 
|  | // Keep in mind this data is for maximally loaded tables, i.e. just | 
|  | // before the table grows. Typical tables will be somewhat less loaded. | 
|  |  | 
|  | import ( | 
|  | "runtime/internal/atomic" | 
|  | "runtime/internal/sys" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | // For gccgo, use go:linkname to rename compiler-called functions to | 
|  | // themselves, so that the compiler will export them. | 
|  | // | 
|  | //go:linkname makemap runtime.makemap | 
|  | //go:linkname mapaccess1 runtime.mapaccess1 | 
|  | //go:linkname mapaccess2 runtime.mapaccess2 | 
|  | //go:linkname mapaccess1_fat runtime.mapaccess1_fat | 
|  | //go:linkname mapaccess2_fat runtime.mapaccess2_fat | 
|  | //go:linkname mapassign runtime.mapassign | 
|  | //go:linkname mapdelete runtime.mapdelete | 
|  | //go:linkname mapiterinit runtime.mapiterinit | 
|  | //go:linkname mapiternext runtime.mapiternext | 
|  |  | 
|  | const ( | 
|  | // Maximum number of key/value pairs a bucket can hold. | 
|  | bucketCntBits = 3 | 
|  | bucketCnt     = 1 << bucketCntBits | 
|  |  | 
|  | // Maximum average load of a bucket that triggers growth. | 
|  | loadFactor = 6.5 | 
|  |  | 
|  | // Maximum key or value size to keep inline (instead of mallocing per element). | 
|  | // Must fit in a uint8. | 
|  | // Fast versions cannot handle big values - the cutoff size for | 
|  | // fast versions in ../../cmd/internal/gc/walk.go must be at most this value. | 
|  | maxKeySize   = 128 | 
|  | maxValueSize = 128 | 
|  |  | 
|  | // data offset should be the size of the bmap struct, but needs to be | 
|  | // aligned correctly. For amd64p32 this means 64-bit alignment | 
|  | // even though pointers are 32 bit. | 
|  | dataOffset = unsafe.Offsetof(struct { | 
|  | b bmap | 
|  | v int64 | 
|  | }{}.v) | 
|  |  | 
|  | // Possible tophash values. We reserve a few possibilities for special marks. | 
|  | // Each bucket (including its overflow buckets, if any) will have either all or none of its | 
|  | // entries in the evacuated* states (except during the evacuate() method, which only happens | 
|  | // during map writes and thus no one else can observe the map during that time). | 
|  | empty          = 0 // cell is empty | 
|  | evacuatedEmpty = 1 // cell is empty, bucket is evacuated. | 
|  | evacuatedX     = 2 // key/value is valid.  Entry has been evacuated to first half of larger table. | 
|  | evacuatedY     = 3 // same as above, but evacuated to second half of larger table. | 
|  | minTopHash     = 4 // minimum tophash for a normal filled cell. | 
|  |  | 
|  | // flags | 
|  | iterator     = 1 // there may be an iterator using buckets | 
|  | oldIterator  = 2 // there may be an iterator using oldbuckets | 
|  | hashWriting  = 4 // a goroutine is writing to the map | 
|  | sameSizeGrow = 8 // the current map growth is to a new map of the same size | 
|  |  | 
|  | // sentinel bucket ID for iterator checks | 
|  | noCheck = 1<<(8*sys.PtrSize) - 1 | 
|  | ) | 
|  |  | 
|  | // A header for a Go map. | 
|  | type hmap struct { | 
|  | // Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and | 
|  | // ../reflect/type.go. Don't change this structure without also changing that code! | 
|  | count     int // # live cells == size of map.  Must be first (used by len() builtin) | 
|  | flags     uint8 | 
|  | B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items) | 
|  | noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details | 
|  | hash0     uint32 // hash seed | 
|  |  | 
|  | buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0. | 
|  | oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing | 
|  | nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated) | 
|  |  | 
|  | // If both key and value do not contain pointers and are inline, then we mark bucket | 
|  | // type as containing no pointers. This avoids scanning such maps. | 
|  | // However, bmap.overflow is a pointer. In order to keep overflow buckets | 
|  | // alive, we store pointers to all overflow buckets in hmap.overflow. | 
|  | // Overflow is used only if key and value do not contain pointers. | 
|  | // overflow[0] contains overflow buckets for hmap.buckets. | 
|  | // overflow[1] contains overflow buckets for hmap.oldbuckets. | 
|  | // The first indirection allows us to reduce static size of hmap. | 
|  | // The second indirection allows to store a pointer to the slice in hiter. | 
|  | overflow *[2]*[]*bmap | 
|  | } | 
|  |  | 
|  | // A bucket for a Go map. | 
|  | type bmap struct { | 
|  | // tophash generally contains the top byte of the hash value | 
|  | // for each key in this bucket. If tophash[0] < minTopHash, | 
|  | // tophash[0] is a bucket evacuation state instead. | 
|  | tophash [bucketCnt]uint8 | 
|  | // Followed by bucketCnt keys and then bucketCnt values. | 
|  | // NOTE: packing all the keys together and then all the values together makes the | 
|  | // code a bit more complicated than alternating key/value/key/value/... but it allows | 
|  | // us to eliminate padding which would be needed for, e.g., map[int64]int8. | 
|  | // Followed by an overflow pointer. | 
|  | } | 
|  |  | 
|  | // A hash iteration structure. | 
|  | // If you modify hiter, also change cmd/internal/gc/reflect.go to indicate | 
|  | // the layout of this structure. | 
|  | type hiter struct { | 
|  | key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/internal/gc/range.go). | 
|  | value       unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go). | 
|  | t           *maptype | 
|  | h           *hmap | 
|  | buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time | 
|  | bptr        *bmap          // current bucket | 
|  | overflow    [2]*[]*bmap    // keeps overflow buckets alive | 
|  | startBucket uintptr        // bucket iteration started at | 
|  | offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1) | 
|  | wrapped     bool           // already wrapped around from end of bucket array to beginning | 
|  | B           uint8 | 
|  | i           uint8 | 
|  | bucket      uintptr | 
|  | checkBucket uintptr | 
|  | } | 
|  |  | 
|  | func evacuated(b *bmap) bool { | 
|  | h := b.tophash[0] | 
|  | return h > empty && h < minTopHash | 
|  | } | 
|  |  | 
|  | func (b *bmap) overflow(t *maptype) *bmap { | 
|  | return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) | 
|  | } | 
|  |  | 
|  | // incrnoverflow increments h.noverflow. | 
|  | // noverflow counts the number of overflow buckets. | 
|  | // This is used to trigger same-size map growth. | 
|  | // See also tooManyOverflowBuckets. | 
|  | // To keep hmap small, noverflow is a uint16. | 
|  | // When there are few buckets, noverflow is an exact count. | 
|  | // When there are many buckets, noverflow is an approximate count. | 
|  | func (h *hmap) incrnoverflow() { | 
|  | // We trigger same-size map growth if there are | 
|  | // as many overflow buckets as buckets. | 
|  | // We need to be able to count to 1<<h.B. | 
|  | if h.B < 16 { | 
|  | h.noverflow++ | 
|  | return | 
|  | } | 
|  | // Increment with probability 1/(1<<(h.B-15)). | 
|  | // When we reach 1<<15 - 1, we will have approximately | 
|  | // as many overflow buckets as buckets. | 
|  | mask := uint32(1)<<(h.B-15) - 1 | 
|  | // Example: if h.B == 18, then mask == 7, | 
|  | // and fastrand & 7 == 0 with probability 1/8. | 
|  | if fastrand()&mask == 0 { | 
|  | h.noverflow++ | 
|  | } | 
|  | } | 
|  |  | 
|  | func (h *hmap) setoverflow(t *maptype, b, ovf *bmap) { | 
|  | h.incrnoverflow() | 
|  | if t.bucket.kind&kindNoPointers != 0 { | 
|  | h.createOverflow() | 
|  | *h.overflow[0] = append(*h.overflow[0], ovf) | 
|  | } | 
|  | *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf | 
|  | } | 
|  |  | 
|  | func (h *hmap) createOverflow() { | 
|  | if h.overflow == nil { | 
|  | h.overflow = new([2]*[]*bmap) | 
|  | } | 
|  | if h.overflow[0] == nil { | 
|  | h.overflow[0] = new([]*bmap) | 
|  | } | 
|  | } | 
|  |  | 
|  | // makemap implements a Go map creation make(map[k]v, hint) | 
|  | // If the compiler has determined that the map or the first bucket | 
|  | // can be created on the stack, h and/or bucket may be non-nil. | 
|  | // If h != nil, the map can be created directly in h. | 
|  | // If bucket != nil, bucket can be used as the first bucket. | 
|  | func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap { | 
|  | if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != t.hmap.size { | 
|  | println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size) | 
|  | throw("bad hmap size") | 
|  | } | 
|  |  | 
|  | if hint < 0 || int64(int32(hint)) != hint { | 
|  | panic(plainError("makemap: size out of range")) | 
|  | // TODO: make hint an int, then none of this nonsense | 
|  | } | 
|  |  | 
|  | if !ismapkey(t.key) { | 
|  | throw("runtime.makemap: unsupported map key type") | 
|  | } | 
|  |  | 
|  | // check compiler's and reflect's math | 
|  | if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) || | 
|  | t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) { | 
|  | throw("key size wrong") | 
|  | } | 
|  | if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) || | 
|  | t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) { | 
|  | throw("value size wrong") | 
|  | } | 
|  |  | 
|  | // invariants we depend on. We should probably check these at compile time | 
|  | // somewhere, but for now we'll do it here. | 
|  | if t.key.align > bucketCnt { | 
|  | throw("key align too big") | 
|  | } | 
|  | if t.elem.align > bucketCnt { | 
|  | throw("value align too big") | 
|  | } | 
|  | if t.key.size%uintptr(t.key.align) != 0 { | 
|  | throw("key size not a multiple of key align") | 
|  | } | 
|  | if t.elem.size%uintptr(t.elem.align) != 0 { | 
|  | throw("value size not a multiple of value align") | 
|  | } | 
|  | if bucketCnt < 8 { | 
|  | throw("bucketsize too small for proper alignment") | 
|  | } | 
|  | if dataOffset%uintptr(t.key.align) != 0 { | 
|  | throw("need padding in bucket (key)") | 
|  | } | 
|  | if dataOffset%uintptr(t.elem.align) != 0 { | 
|  | throw("need padding in bucket (value)") | 
|  | } | 
|  |  | 
|  | // find size parameter which will hold the requested # of elements | 
|  | B := uint8(0) | 
|  | for ; overLoadFactor(hint, B); B++ { | 
|  | } | 
|  |  | 
|  | // allocate initial hash table | 
|  | // if B == 0, the buckets field is allocated lazily later (in mapassign) | 
|  | // If hint is large zeroing this memory could take a while. | 
|  | buckets := bucket | 
|  | if B != 0 { | 
|  | buckets = newarray(t.bucket, 1<<B) | 
|  | } | 
|  |  | 
|  | // initialize Hmap | 
|  | if h == nil { | 
|  | h = (*hmap)(newobject(t.hmap)) | 
|  | } | 
|  | h.count = 0 | 
|  | h.B = B | 
|  | h.flags = 0 | 
|  | h.hash0 = fastrand() | 
|  | h.buckets = buckets | 
|  | h.oldbuckets = nil | 
|  | h.nevacuate = 0 | 
|  | h.noverflow = 0 | 
|  |  | 
|  | return h | 
|  | } | 
|  |  | 
|  | // mapaccess1 returns a pointer to h[key].  Never returns nil, instead | 
|  | // it will return a reference to the zero object for the value type if | 
|  | // the key is not in the map. | 
|  | // NOTE: The returned pointer may keep the whole map live, so don't | 
|  | // hold onto it for very long. | 
|  | func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { | 
|  | if raceenabled && h != nil { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil)) | 
|  | pc := funcPC(mapaccess1) | 
|  | racereadpc(unsafe.Pointer(h), callerpc, pc) | 
|  | raceReadObjectPC(t.key, key, callerpc, pc) | 
|  | } | 
|  | if msanenabled && h != nil { | 
|  | msanread(key, t.key.size) | 
|  | } | 
|  | if h == nil || h.count == 0 { | 
|  | return unsafe.Pointer(&zeroVal[0]) | 
|  | } | 
|  | if h.flags&hashWriting != 0 { | 
|  | throw("concurrent map read and map write") | 
|  | } | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | hash := hashfn(key, uintptr(h.hash0)) | 
|  | m := uintptr(1)<<h.B - 1 | 
|  | b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) | 
|  | if c := h.oldbuckets; c != nil { | 
|  | if !h.sameSizeGrow() { | 
|  | // There used to be half as many buckets; mask down one more power of two. | 
|  | m >>= 1 | 
|  | } | 
|  | oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) | 
|  | if !evacuated(oldb) { | 
|  | b = oldb | 
|  | } | 
|  | } | 
|  | top := uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  | for { | 
|  | for i := uintptr(0); i < bucketCnt; i++ { | 
|  | if b.tophash[i] != top { | 
|  | continue | 
|  | } | 
|  | k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | if t.indirectkey { | 
|  | k = *((*unsafe.Pointer)(k)) | 
|  | } | 
|  | if equalfn(key, k) { | 
|  | v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) | 
|  | if t.indirectvalue { | 
|  | v = *((*unsafe.Pointer)(v)) | 
|  | } | 
|  | return v | 
|  | } | 
|  | } | 
|  | b = b.overflow(t) | 
|  | if b == nil { | 
|  | return unsafe.Pointer(&zeroVal[0]) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) { | 
|  | if raceenabled && h != nil { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil)) | 
|  | pc := funcPC(mapaccess2) | 
|  | racereadpc(unsafe.Pointer(h), callerpc, pc) | 
|  | raceReadObjectPC(t.key, key, callerpc, pc) | 
|  | } | 
|  | if msanenabled && h != nil { | 
|  | msanread(key, t.key.size) | 
|  | } | 
|  | if h == nil || h.count == 0 { | 
|  | return unsafe.Pointer(&zeroVal[0]), false | 
|  | } | 
|  | if h.flags&hashWriting != 0 { | 
|  | throw("concurrent map read and map write") | 
|  | } | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | hash := hashfn(key, uintptr(h.hash0)) | 
|  | m := uintptr(1)<<h.B - 1 | 
|  | b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) | 
|  | if c := h.oldbuckets; c != nil { | 
|  | if !h.sameSizeGrow() { | 
|  | // There used to be half as many buckets; mask down one more power of two. | 
|  | m >>= 1 | 
|  | } | 
|  | oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize))) | 
|  | if !evacuated(oldb) { | 
|  | b = oldb | 
|  | } | 
|  | } | 
|  | top := uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  | for { | 
|  | for i := uintptr(0); i < bucketCnt; i++ { | 
|  | if b.tophash[i] != top { | 
|  | continue | 
|  | } | 
|  | k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | if t.indirectkey { | 
|  | k = *((*unsafe.Pointer)(k)) | 
|  | } | 
|  | if equalfn(key, k) { | 
|  | v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) | 
|  | if t.indirectvalue { | 
|  | v = *((*unsafe.Pointer)(v)) | 
|  | } | 
|  | return v, true | 
|  | } | 
|  | } | 
|  | b = b.overflow(t) | 
|  | if b == nil { | 
|  | return unsafe.Pointer(&zeroVal[0]), false | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // returns both key and value. Used by map iterator | 
|  | func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) { | 
|  | if h == nil || h.count == 0 { | 
|  | return nil, nil | 
|  | } | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | hash := hashfn(key, uintptr(h.hash0)) | 
|  | m := uintptr(1)<<h.B - 1 | 
|  | b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) | 
|  | if c := h.oldbuckets; c != nil { | 
|  | if !h.sameSizeGrow() { | 
|  | // There used to be half as many buckets; mask down one more power of two. | 
|  | m >>= 1 | 
|  | } | 
|  | oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize))) | 
|  | if !evacuated(oldb) { | 
|  | b = oldb | 
|  | } | 
|  | } | 
|  | top := uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  | for { | 
|  | for i := uintptr(0); i < bucketCnt; i++ { | 
|  | if b.tophash[i] != top { | 
|  | continue | 
|  | } | 
|  | k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | if t.indirectkey { | 
|  | k = *((*unsafe.Pointer)(k)) | 
|  | } | 
|  | if equalfn(key, k) { | 
|  | v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) | 
|  | if t.indirectvalue { | 
|  | v = *((*unsafe.Pointer)(v)) | 
|  | } | 
|  | return k, v | 
|  | } | 
|  | } | 
|  | b = b.overflow(t) | 
|  | if b == nil { | 
|  | return nil, nil | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer { | 
|  | v := mapaccess1(t, h, key) | 
|  | if v == unsafe.Pointer(&zeroVal[0]) { | 
|  | return zero | 
|  | } | 
|  | return v | 
|  | } | 
|  |  | 
|  | func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) { | 
|  | v := mapaccess1(t, h, key) | 
|  | if v == unsafe.Pointer(&zeroVal[0]) { | 
|  | return zero, false | 
|  | } | 
|  | return v, true | 
|  | } | 
|  |  | 
|  | // Like mapaccess, but allocates a slot for the key if it is not present in the map. | 
|  | func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { | 
|  | if h == nil { | 
|  | panic(plainError("assignment to entry in nil map")) | 
|  | } | 
|  | if raceenabled { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil)) | 
|  | pc := funcPC(mapassign) | 
|  | racewritepc(unsafe.Pointer(h), callerpc, pc) | 
|  | raceReadObjectPC(t.key, key, callerpc, pc) | 
|  | } | 
|  | if msanenabled { | 
|  | msanread(key, t.key.size) | 
|  | } | 
|  | if h.flags&hashWriting != 0 { | 
|  | throw("concurrent map writes") | 
|  | } | 
|  | h.flags |= hashWriting | 
|  |  | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | hash := hashfn(key, uintptr(h.hash0)) | 
|  |  | 
|  | if h.buckets == nil { | 
|  | h.buckets = newarray(t.bucket, 1) | 
|  | } | 
|  |  | 
|  | again: | 
|  | bucket := hash & (uintptr(1)<<h.B - 1) | 
|  | if h.growing() { | 
|  | growWork(t, h, bucket) | 
|  | } | 
|  | b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) | 
|  | top := uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  |  | 
|  | var inserti *uint8 | 
|  | var insertk unsafe.Pointer | 
|  | var val unsafe.Pointer | 
|  | for { | 
|  | for i := uintptr(0); i < bucketCnt; i++ { | 
|  | if b.tophash[i] != top { | 
|  | if b.tophash[i] == empty && inserti == nil { | 
|  | inserti = &b.tophash[i] | 
|  | insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) | 
|  | } | 
|  | continue | 
|  | } | 
|  | k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | if t.indirectkey { | 
|  | k = *((*unsafe.Pointer)(k)) | 
|  | } | 
|  | if !equalfn(key, k) { | 
|  | continue | 
|  | } | 
|  | // already have a mapping for key. Update it. | 
|  | if t.needkeyupdate { | 
|  | typedmemmove(t.key, k, key) | 
|  | } | 
|  | val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) | 
|  | goto done | 
|  | } | 
|  | ovf := b.overflow(t) | 
|  | if ovf == nil { | 
|  | break | 
|  | } | 
|  | b = ovf | 
|  | } | 
|  |  | 
|  | // Did not find mapping for key. Allocate new cell & add entry. | 
|  |  | 
|  | // If we hit the max load factor or we have too many overflow buckets, | 
|  | // and we're not already in the middle of growing, start growing. | 
|  | if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { | 
|  | hashGrow(t, h) | 
|  | goto again // Growing the table invalidates everything, so try again | 
|  | } | 
|  |  | 
|  | if inserti == nil { | 
|  | // all current buckets are full, allocate a new one. | 
|  | newb := (*bmap)(newobject(t.bucket)) | 
|  | h.setoverflow(t, b, newb) | 
|  | inserti = &newb.tophash[0] | 
|  | insertk = add(unsafe.Pointer(newb), dataOffset) | 
|  | val = add(insertk, bucketCnt*uintptr(t.keysize)) | 
|  | } | 
|  |  | 
|  | // store new key/value at insert position | 
|  | if t.indirectkey { | 
|  | kmem := newobject(t.key) | 
|  | *(*unsafe.Pointer)(insertk) = kmem | 
|  | insertk = kmem | 
|  | } | 
|  | if t.indirectvalue { | 
|  | vmem := newobject(t.elem) | 
|  | *(*unsafe.Pointer)(val) = vmem | 
|  | } | 
|  | typedmemmove(t.key, insertk, key) | 
|  | *inserti = top | 
|  | h.count++ | 
|  |  | 
|  | done: | 
|  | if h.flags&hashWriting == 0 { | 
|  | throw("concurrent map writes") | 
|  | } | 
|  | h.flags &^= hashWriting | 
|  | if t.indirectvalue { | 
|  | val = *((*unsafe.Pointer)(val)) | 
|  | } | 
|  | return val | 
|  | } | 
|  |  | 
|  | func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { | 
|  | if raceenabled && h != nil { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil)) | 
|  | pc := funcPC(mapdelete) | 
|  | racewritepc(unsafe.Pointer(h), callerpc, pc) | 
|  | raceReadObjectPC(t.key, key, callerpc, pc) | 
|  | } | 
|  | if msanenabled && h != nil { | 
|  | msanread(key, t.key.size) | 
|  | } | 
|  | if h == nil || h.count == 0 { | 
|  | return | 
|  | } | 
|  | if h.flags&hashWriting != 0 { | 
|  | throw("concurrent map writes") | 
|  | } | 
|  | h.flags |= hashWriting | 
|  |  | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | hash := hashfn(key, uintptr(h.hash0)) | 
|  | bucket := hash & (uintptr(1)<<h.B - 1) | 
|  | if h.growing() { | 
|  | growWork(t, h, bucket) | 
|  | } | 
|  | b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) | 
|  | top := uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  | for { | 
|  | for i := uintptr(0); i < bucketCnt; i++ { | 
|  | if b.tophash[i] != top { | 
|  | continue | 
|  | } | 
|  | k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) | 
|  | k2 := k | 
|  | if t.indirectkey { | 
|  | k2 = *((*unsafe.Pointer)(k2)) | 
|  | } | 
|  | if !equalfn(key, k2) { | 
|  | continue | 
|  | } | 
|  | if t.indirectkey { | 
|  | *(*unsafe.Pointer)(k) = nil | 
|  | } else { | 
|  | typedmemclr(t.key, k) | 
|  | } | 
|  | v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize)) | 
|  | if t.indirectvalue { | 
|  | *(*unsafe.Pointer)(v) = nil | 
|  | } else { | 
|  | typedmemclr(t.elem, v) | 
|  | } | 
|  | b.tophash[i] = empty | 
|  | h.count-- | 
|  | goto done | 
|  | } | 
|  | b = b.overflow(t) | 
|  | if b == nil { | 
|  | goto done | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | if h.flags&hashWriting == 0 { | 
|  | throw("concurrent map writes") | 
|  | } | 
|  | h.flags &^= hashWriting | 
|  | } | 
|  |  | 
|  | func mapiterinit(t *maptype, h *hmap, it *hiter) { | 
|  | // Clear pointer fields so garbage collector does not complain. | 
|  | it.key = nil | 
|  | it.value = nil | 
|  | it.t = nil | 
|  | it.h = nil | 
|  | it.buckets = nil | 
|  | it.bptr = nil | 
|  | it.overflow[0] = nil | 
|  | it.overflow[1] = nil | 
|  |  | 
|  | if raceenabled && h != nil { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil)) | 
|  | racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit)) | 
|  | } | 
|  |  | 
|  | if h == nil || h.count == 0 { | 
|  | it.key = nil | 
|  | it.value = nil | 
|  | return | 
|  | } | 
|  |  | 
|  | if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 { | 
|  | throw("hash_iter size incorrect") // see ../../cmd/internal/gc/reflect.go | 
|  | } | 
|  | it.t = t | 
|  | it.h = h | 
|  |  | 
|  | // grab snapshot of bucket state | 
|  | it.B = h.B | 
|  | it.buckets = h.buckets | 
|  | if t.bucket.kind&kindNoPointers != 0 { | 
|  | // Allocate the current slice and remember pointers to both current and old. | 
|  | // This preserves all relevant overflow buckets alive even if | 
|  | // the table grows and/or overflow buckets are added to the table | 
|  | // while we are iterating. | 
|  | h.createOverflow() | 
|  | it.overflow = *h.overflow | 
|  | } | 
|  |  | 
|  | // decide where to start | 
|  | r := uintptr(fastrand()) | 
|  | if h.B > 31-bucketCntBits { | 
|  | r += uintptr(fastrand()) << 31 | 
|  | } | 
|  | it.startBucket = r & (uintptr(1)<<h.B - 1) | 
|  | it.offset = uint8(r >> h.B & (bucketCnt - 1)) | 
|  |  | 
|  | // iterator state | 
|  | it.bucket = it.startBucket | 
|  | it.wrapped = false | 
|  | it.bptr = nil | 
|  |  | 
|  | // Remember we have an iterator. | 
|  | // Can run concurrently with another hash_iter_init(). | 
|  | if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator { | 
|  | atomic.Or8(&h.flags, iterator|oldIterator) | 
|  | } | 
|  |  | 
|  | mapiternext(it) | 
|  | } | 
|  |  | 
|  | func mapiternext(it *hiter) { | 
|  | h := it.h | 
|  | if raceenabled { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &it */ nil)) | 
|  | racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext)) | 
|  | } | 
|  | if h.flags&hashWriting != 0 { | 
|  | throw("concurrent map iteration and map write") | 
|  | } | 
|  | t := it.t | 
|  | bucket := it.bucket | 
|  | b := it.bptr | 
|  | i := it.i | 
|  | checkBucket := it.checkBucket | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  |  | 
|  | next: | 
|  | if b == nil { | 
|  | if bucket == it.startBucket && it.wrapped { | 
|  | // end of iteration | 
|  | it.key = nil | 
|  | it.value = nil | 
|  | return | 
|  | } | 
|  | if h.growing() && it.B == h.B { | 
|  | // Iterator was started in the middle of a grow, and the grow isn't done yet. | 
|  | // If the bucket we're looking at hasn't been filled in yet (i.e. the old | 
|  | // bucket hasn't been evacuated) then we need to iterate through the old | 
|  | // bucket and only return the ones that will be migrated to this bucket. | 
|  | oldbucket := bucket & it.h.oldbucketmask() | 
|  | b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) | 
|  | if !evacuated(b) { | 
|  | checkBucket = bucket | 
|  | } else { | 
|  | b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) | 
|  | checkBucket = noCheck | 
|  | } | 
|  | } else { | 
|  | b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) | 
|  | checkBucket = noCheck | 
|  | } | 
|  | bucket++ | 
|  | if bucket == uintptr(1)<<it.B { | 
|  | bucket = 0 | 
|  | it.wrapped = true | 
|  | } | 
|  | i = 0 | 
|  | } | 
|  | for ; i < bucketCnt; i++ { | 
|  | offi := (i + it.offset) & (bucketCnt - 1) | 
|  | k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize)) | 
|  | v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize)) | 
|  | if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty { | 
|  | if checkBucket != noCheck && !h.sameSizeGrow() { | 
|  | // Special case: iterator was started during a grow to a larger size | 
|  | // and the grow is not done yet. We're working on a bucket whose | 
|  | // oldbucket has not been evacuated yet. Or at least, it wasn't | 
|  | // evacuated when we started the bucket. So we're iterating | 
|  | // through the oldbucket, skipping any keys that will go | 
|  | // to the other new bucket (each oldbucket expands to two | 
|  | // buckets during a grow). | 
|  | k2 := k | 
|  | if t.indirectkey { | 
|  | k2 = *((*unsafe.Pointer)(k2)) | 
|  | } | 
|  | if t.reflexivekey || equalfn(k2, k2) { | 
|  | // If the item in the oldbucket is not destined for | 
|  | // the current new bucket in the iteration, skip it. | 
|  | hash := hashfn(k2, uintptr(h.hash0)) | 
|  | if hash&(uintptr(1)<<it.B-1) != checkBucket { | 
|  | continue | 
|  | } | 
|  | } else { | 
|  | // Hash isn't repeatable if k != k (NaNs).  We need a | 
|  | // repeatable and randomish choice of which direction | 
|  | // to send NaNs during evacuation. We'll use the low | 
|  | // bit of tophash to decide which way NaNs go. | 
|  | // NOTE: this case is why we need two evacuate tophash | 
|  | // values, evacuatedX and evacuatedY, that differ in | 
|  | // their low bit. | 
|  | if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) { | 
|  | continue | 
|  | } | 
|  | } | 
|  | } | 
|  | if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY { | 
|  | // this is the golden data, we can return it. | 
|  | if t.indirectkey { | 
|  | k = *((*unsafe.Pointer)(k)) | 
|  | } | 
|  | it.key = k | 
|  | if t.indirectvalue { | 
|  | v = *((*unsafe.Pointer)(v)) | 
|  | } | 
|  | it.value = v | 
|  | } else { | 
|  | // The hash table has grown since the iterator was started. | 
|  | // The golden data for this key is now somewhere else. | 
|  | k2 := k | 
|  | if t.indirectkey { | 
|  | k2 = *((*unsafe.Pointer)(k2)) | 
|  | } | 
|  | if t.reflexivekey || equalfn(k2, k2) { | 
|  | // Check the current hash table for the data. | 
|  | // This code handles the case where the key | 
|  | // has been deleted, updated, or deleted and reinserted. | 
|  | // NOTE: we need to regrab the key as it has potentially been | 
|  | // updated to an equal() but not identical key (e.g. +0.0 vs -0.0). | 
|  | rk, rv := mapaccessK(t, h, k2) | 
|  | if rk == nil { | 
|  | continue // key has been deleted | 
|  | } | 
|  | it.key = rk | 
|  | it.value = rv | 
|  | } else { | 
|  | // if key!=key then the entry can't be deleted or | 
|  | // updated, so we can just return it. That's lucky for | 
|  | // us because when key!=key we can't look it up | 
|  | // successfully in the current table. | 
|  | it.key = k2 | 
|  | if t.indirectvalue { | 
|  | v = *((*unsafe.Pointer)(v)) | 
|  | } | 
|  | it.value = v | 
|  | } | 
|  | } | 
|  | it.bucket = bucket | 
|  | if it.bptr != b { // avoid unnecessary write barrier; see issue 14921 | 
|  | it.bptr = b | 
|  | } | 
|  | it.i = i + 1 | 
|  | it.checkBucket = checkBucket | 
|  | return | 
|  | } | 
|  | } | 
|  | b = b.overflow(t) | 
|  | i = 0 | 
|  | goto next | 
|  | } | 
|  |  | 
|  | func hashGrow(t *maptype, h *hmap) { | 
|  | // If we've hit the load factor, get bigger. | 
|  | // Otherwise, there are too many overflow buckets, | 
|  | // so keep the same number of buckets and "grow" laterally. | 
|  | bigger := uint8(1) | 
|  | if !overLoadFactor(int64(h.count), h.B) { | 
|  | bigger = 0 | 
|  | h.flags |= sameSizeGrow | 
|  | } | 
|  | oldbuckets := h.buckets | 
|  | newbuckets := newarray(t.bucket, 1<<(h.B+bigger)) | 
|  | flags := h.flags &^ (iterator | oldIterator) | 
|  | if h.flags&iterator != 0 { | 
|  | flags |= oldIterator | 
|  | } | 
|  | // commit the grow (atomic wrt gc) | 
|  | h.B += bigger | 
|  | h.flags = flags | 
|  | h.oldbuckets = oldbuckets | 
|  | h.buckets = newbuckets | 
|  | h.nevacuate = 0 | 
|  | h.noverflow = 0 | 
|  |  | 
|  | if h.overflow != nil { | 
|  | // Promote current overflow buckets to the old generation. | 
|  | if h.overflow[1] != nil { | 
|  | throw("overflow is not nil") | 
|  | } | 
|  | h.overflow[1] = h.overflow[0] | 
|  | h.overflow[0] = nil | 
|  | } | 
|  |  | 
|  | // the actual copying of the hash table data is done incrementally | 
|  | // by growWork() and evacuate(). | 
|  | } | 
|  |  | 
|  | // overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor. | 
|  | func overLoadFactor(count int64, B uint8) bool { | 
|  | // TODO: rewrite to use integer math and comparison? | 
|  | return count >= bucketCnt && float32(count) >= loadFactor*float32((uintptr(1)<<B)) | 
|  | } | 
|  |  | 
|  | // tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets. | 
|  | // Note that most of these overflow buckets must be in sparse use; | 
|  | // if use was dense, then we'd have already triggered regular map growth. | 
|  | func tooManyOverflowBuckets(noverflow uint16, B uint8) bool { | 
|  | // If the threshold is too low, we do extraneous work. | 
|  | // If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory. | 
|  | // "too many" means (approximately) as many overflow buckets as regular buckets. | 
|  | // See incrnoverflow for more details. | 
|  | if B < 16 { | 
|  | return noverflow >= uint16(1)<<B | 
|  | } | 
|  | return noverflow >= 1<<15 | 
|  | } | 
|  |  | 
|  | // growing reports whether h is growing. The growth may be to the same size or bigger. | 
|  | func (h *hmap) growing() bool { | 
|  | return h.oldbuckets != nil | 
|  | } | 
|  |  | 
|  | // sameSizeGrow reports whether the current growth is to a map of the same size. | 
|  | func (h *hmap) sameSizeGrow() bool { | 
|  | return h.flags&sameSizeGrow != 0 | 
|  | } | 
|  |  | 
|  | // noldbuckets calculates the number of buckets prior to the current map growth. | 
|  | func (h *hmap) noldbuckets() uintptr { | 
|  | oldB := h.B | 
|  | if !h.sameSizeGrow() { | 
|  | oldB-- | 
|  | } | 
|  | return uintptr(1) << oldB | 
|  | } | 
|  |  | 
|  | // oldbucketmask provides a mask that can be applied to calculate n % noldbuckets(). | 
|  | func (h *hmap) oldbucketmask() uintptr { | 
|  | return h.noldbuckets() - 1 | 
|  | } | 
|  |  | 
|  | func growWork(t *maptype, h *hmap, bucket uintptr) { | 
|  | // make sure we evacuate the oldbucket corresponding | 
|  | // to the bucket we're about to use | 
|  | evacuate(t, h, bucket&h.oldbucketmask()) | 
|  |  | 
|  | // evacuate one more oldbucket to make progress on growing | 
|  | if h.growing() { | 
|  | evacuate(t, h, h.nevacuate) | 
|  | } | 
|  | } | 
|  |  | 
|  | func evacuate(t *maptype, h *hmap, oldbucket uintptr) { | 
|  | b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) | 
|  | newbit := h.noldbuckets() | 
|  | hashfn := t.key.hashfn | 
|  | equalfn := t.key.equalfn | 
|  | if !evacuated(b) { | 
|  | // TODO: reuse overflow buckets instead of using new ones, if there | 
|  | // is no iterator using the old buckets.  (If !oldIterator.) | 
|  |  | 
|  | var ( | 
|  | x, y   *bmap          // current low/high buckets in new map | 
|  | xi, yi int            // key/val indices into x and y | 
|  | xk, yk unsafe.Pointer // pointers to current x and y key storage | 
|  | xv, yv unsafe.Pointer // pointers to current x and y value storage | 
|  | ) | 
|  | x = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) | 
|  | xi = 0 | 
|  | xk = add(unsafe.Pointer(x), dataOffset) | 
|  | xv = add(xk, bucketCnt*uintptr(t.keysize)) | 
|  | if !h.sameSizeGrow() { | 
|  | // Only calculate y pointers if we're growing bigger. | 
|  | // Otherwise GC can see bad pointers. | 
|  | y = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) | 
|  | yi = 0 | 
|  | yk = add(unsafe.Pointer(y), dataOffset) | 
|  | yv = add(yk, bucketCnt*uintptr(t.keysize)) | 
|  | } | 
|  | for ; b != nil; b = b.overflow(t) { | 
|  | k := add(unsafe.Pointer(b), dataOffset) | 
|  | v := add(k, bucketCnt*uintptr(t.keysize)) | 
|  | for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) { | 
|  | top := b.tophash[i] | 
|  | if top == empty { | 
|  | b.tophash[i] = evacuatedEmpty | 
|  | continue | 
|  | } | 
|  | if top < minTopHash { | 
|  | throw("bad map state") | 
|  | } | 
|  | k2 := k | 
|  | if t.indirectkey { | 
|  | k2 = *((*unsafe.Pointer)(k2)) | 
|  | } | 
|  | useX := true | 
|  | if !h.sameSizeGrow() { | 
|  | // Compute hash to make our evacuation decision (whether we need | 
|  | // to send this key/value to bucket x or bucket y). | 
|  | hash := hashfn(k2, uintptr(h.hash0)) | 
|  | if h.flags&iterator != 0 { | 
|  | if !t.reflexivekey && !equalfn(k2, k2) { | 
|  | // If key != key (NaNs), then the hash could be (and probably | 
|  | // will be) entirely different from the old hash. Moreover, | 
|  | // it isn't reproducible. Reproducibility is required in the | 
|  | // presence of iterators, as our evacuation decision must | 
|  | // match whatever decision the iterator made. | 
|  | // Fortunately, we have the freedom to send these keys either | 
|  | // way. Also, tophash is meaningless for these kinds of keys. | 
|  | // We let the low bit of tophash drive the evacuation decision. | 
|  | // We recompute a new random tophash for the next level so | 
|  | // these keys will get evenly distributed across all buckets | 
|  | // after multiple grows. | 
|  | if top&1 != 0 { | 
|  | hash |= newbit | 
|  | } else { | 
|  | hash &^= newbit | 
|  | } | 
|  | top = uint8(hash >> (sys.PtrSize*8 - 8)) | 
|  | if top < minTopHash { | 
|  | top += minTopHash | 
|  | } | 
|  | } | 
|  | } | 
|  | useX = hash&newbit == 0 | 
|  | } | 
|  | if useX { | 
|  | b.tophash[i] = evacuatedX | 
|  | if xi == bucketCnt { | 
|  | newx := (*bmap)(newobject(t.bucket)) | 
|  | h.setoverflow(t, x, newx) | 
|  | x = newx | 
|  | xi = 0 | 
|  | xk = add(unsafe.Pointer(x), dataOffset) | 
|  | xv = add(xk, bucketCnt*uintptr(t.keysize)) | 
|  | } | 
|  | x.tophash[xi] = top | 
|  | if t.indirectkey { | 
|  | *(*unsafe.Pointer)(xk) = k2 // copy pointer | 
|  | } else { | 
|  | typedmemmove(t.key, xk, k) // copy value | 
|  | } | 
|  | if t.indirectvalue { | 
|  | *(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v) | 
|  | } else { | 
|  | typedmemmove(t.elem, xv, v) | 
|  | } | 
|  | xi++ | 
|  | xk = add(xk, uintptr(t.keysize)) | 
|  | xv = add(xv, uintptr(t.valuesize)) | 
|  | } else { | 
|  | b.tophash[i] = evacuatedY | 
|  | if yi == bucketCnt { | 
|  | newy := (*bmap)(newobject(t.bucket)) | 
|  | h.setoverflow(t, y, newy) | 
|  | y = newy | 
|  | yi = 0 | 
|  | yk = add(unsafe.Pointer(y), dataOffset) | 
|  | yv = add(yk, bucketCnt*uintptr(t.keysize)) | 
|  | } | 
|  | y.tophash[yi] = top | 
|  | if t.indirectkey { | 
|  | *(*unsafe.Pointer)(yk) = k2 | 
|  | } else { | 
|  | typedmemmove(t.key, yk, k) | 
|  | } | 
|  | if t.indirectvalue { | 
|  | *(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v) | 
|  | } else { | 
|  | typedmemmove(t.elem, yv, v) | 
|  | } | 
|  | yi++ | 
|  | yk = add(yk, uintptr(t.keysize)) | 
|  | yv = add(yv, uintptr(t.valuesize)) | 
|  | } | 
|  | } | 
|  | } | 
|  | // Unlink the overflow buckets & clear key/value to help GC. | 
|  | if h.flags&oldIterator == 0 { | 
|  | b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) | 
|  | // Preserve b.tophash because the evacuation | 
|  | // state is maintained there. | 
|  | if t.bucket.kind&kindNoPointers == 0 { | 
|  | memclrHasPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset) | 
|  | } else { | 
|  | memclrNoHeapPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Advance evacuation mark | 
|  | if oldbucket == h.nevacuate { | 
|  | h.nevacuate = oldbucket + 1 | 
|  | if oldbucket+1 == newbit { // newbit == # of oldbuckets | 
|  | // Growing is all done. Free old main bucket array. | 
|  | h.oldbuckets = nil | 
|  | // Can discard old overflow buckets as well. | 
|  | // If they are still referenced by an iterator, | 
|  | // then the iterator holds a pointers to the slice. | 
|  | if h.overflow != nil { | 
|  | h.overflow[1] = nil | 
|  | } | 
|  | h.flags &^= sameSizeGrow | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func ismapkey(t *_type) bool { | 
|  | return t.hashfn != nil | 
|  | } | 
|  |  | 
|  | // Reflect stubs. Called from ../reflect/asm_*.s | 
|  |  | 
|  | //go:linkname reflect_makemap reflect.makemap | 
|  | func reflect_makemap(t *maptype) *hmap { | 
|  | return makemap(t, 0, nil, nil) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapaccess reflect.mapaccess | 
|  | func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { | 
|  | val, ok := mapaccess2(t, h, key) | 
|  | if !ok { | 
|  | // reflect wants nil for a missing element | 
|  | val = nil | 
|  | } | 
|  | return val | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapassign reflect.mapassign | 
|  | func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) { | 
|  | p := mapassign(t, h, key) | 
|  | typedmemmove(t.elem, p, val) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapdelete reflect.mapdelete | 
|  | func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { | 
|  | mapdelete(t, h, key) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapiterinit reflect.mapiterinit | 
|  | func reflect_mapiterinit(t *maptype, h *hmap) *hiter { | 
|  | it := new(hiter) | 
|  | mapiterinit(t, h, it) | 
|  | return it | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapiternext reflect.mapiternext | 
|  | func reflect_mapiternext(it *hiter) { | 
|  | mapiternext(it) | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_mapiterkey reflect.mapiterkey | 
|  | func reflect_mapiterkey(it *hiter) unsafe.Pointer { | 
|  | return it.key | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_maplen reflect.maplen | 
|  | func reflect_maplen(h *hmap) int { | 
|  | if h == nil { | 
|  | return 0 | 
|  | } | 
|  | if raceenabled { | 
|  | callerpc := getcallerpc(unsafe.Pointer( /* &h */ nil)) | 
|  | racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen)) | 
|  | } | 
|  | return h.count | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_ismapkey reflect.ismapkey | 
|  | func reflect_ismapkey(t *_type) bool { | 
|  | return ismapkey(t) | 
|  | } | 
|  |  | 
|  | const maxZero = 1024 // must match value in ../cmd/compile/internal/gc/walk.go | 
|  | var zeroVal [maxZero]byte |