blob: 30a7d844c63f8037acf03bc3db99366e1726e8bb [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"flag"
"fmt"
"internal/race"
"internal/testenv"
"os"
"os/exec"
"reflect"
. "runtime"
"strings"
"testing"
"time"
"unsafe"
)
var testMemStatsCount int
func TestMemStats(t *testing.T) {
t.Skip("skipping test with gccgo")
testMemStatsCount++
// Make sure there's at least one forced GC.
GC()
// Test that MemStats has sane values.
st := new(MemStats)
ReadMemStats(st)
nz := func(x interface{}) error {
if x != reflect.Zero(reflect.TypeOf(x)).Interface() {
return nil
}
return fmt.Errorf("zero value")
}
le := func(thresh float64) func(interface{}) error {
return func(x interface{}) error {
// These sanity tests aren't necessarily valid
// with high -test.count values, so only run
// them once.
if testMemStatsCount > 1 {
return nil
}
if reflect.ValueOf(x).Convert(reflect.TypeOf(thresh)).Float() < thresh {
return nil
}
return fmt.Errorf("insanely high value (overflow?); want <= %v", thresh)
}
}
eq := func(x interface{}) func(interface{}) error {
return func(y interface{}) error {
if x == y {
return nil
}
return fmt.Errorf("want %v", x)
}
}
// Of the uint fields, HeapReleased, HeapIdle can be 0.
// PauseTotalNs can be 0 if timer resolution is poor.
fields := map[string][]func(interface{}) error{
"Alloc": {nz, le(1e10)}, "TotalAlloc": {nz, le(1e11)}, "Sys": {nz, le(1e10)},
"Lookups": {eq(uint64(0))}, "Mallocs": {nz, le(1e10)}, "Frees": {nz, le(1e10)},
"HeapAlloc": {nz, le(1e10)}, "HeapSys": {nz, le(1e10)}, "HeapIdle": {le(1e10)},
"HeapInuse": {nz, le(1e10)}, "HeapReleased": {le(1e10)}, "HeapObjects": {nz, le(1e10)},
"StackInuse": {nz, le(1e10)}, "StackSys": {nz, le(1e10)},
"MSpanInuse": {nz, le(1e10)}, "MSpanSys": {nz, le(1e10)},
"MCacheInuse": {nz, le(1e10)}, "MCacheSys": {nz, le(1e10)},
"BuckHashSys": {nz, le(1e10)}, "GCSys": {nz, le(1e10)}, "OtherSys": {nz, le(1e10)},
"NextGC": {nz, le(1e10)}, "LastGC": {nz},
"PauseTotalNs": {le(1e11)}, "PauseNs": nil, "PauseEnd": nil,
"NumGC": {nz, le(1e9)}, "NumForcedGC": {nz, le(1e9)},
"GCCPUFraction": {le(0.99)}, "EnableGC": {eq(true)}, "DebugGC": {eq(false)},
"BySize": nil,
}
rst := reflect.ValueOf(st).Elem()
for i := 0; i < rst.Type().NumField(); i++ {
name, val := rst.Type().Field(i).Name, rst.Field(i).Interface()
checks, ok := fields[name]
if !ok {
t.Errorf("unknown MemStats field %s", name)
continue
}
for _, check := range checks {
if err := check(val); err != nil {
t.Errorf("%s = %v: %s", name, val, err)
}
}
}
if st.Sys != st.HeapSys+st.StackSys+st.MSpanSys+st.MCacheSys+
st.BuckHashSys+st.GCSys+st.OtherSys {
t.Fatalf("Bad sys value: %+v", *st)
}
if st.HeapIdle+st.HeapInuse != st.HeapSys {
t.Fatalf("HeapIdle(%d) + HeapInuse(%d) should be equal to HeapSys(%d), but isn't.", st.HeapIdle, st.HeapInuse, st.HeapSys)
}
if lpe := st.PauseEnd[int(st.NumGC+255)%len(st.PauseEnd)]; st.LastGC != lpe {
t.Fatalf("LastGC(%d) != last PauseEnd(%d)", st.LastGC, lpe)
}
var pauseTotal uint64
for _, pause := range st.PauseNs {
pauseTotal += pause
}
if int(st.NumGC) < len(st.PauseNs) {
// We have all pauses, so this should be exact.
if st.PauseTotalNs != pauseTotal {
t.Fatalf("PauseTotalNs(%d) != sum PauseNs(%d)", st.PauseTotalNs, pauseTotal)
}
for i := int(st.NumGC); i < len(st.PauseNs); i++ {
if st.PauseNs[i] != 0 {
t.Fatalf("Non-zero PauseNs[%d]: %+v", i, st)
}
if st.PauseEnd[i] != 0 {
t.Fatalf("Non-zero PauseEnd[%d]: %+v", i, st)
}
}
} else {
if st.PauseTotalNs < pauseTotal {
t.Fatalf("PauseTotalNs(%d) < sum PauseNs(%d)", st.PauseTotalNs, pauseTotal)
}
}
if st.NumForcedGC > st.NumGC {
t.Fatalf("NumForcedGC(%d) > NumGC(%d)", st.NumForcedGC, st.NumGC)
}
}
func TestStringConcatenationAllocs(t *testing.T) {
t.Skip("skipping test with gccgo")
n := testing.AllocsPerRun(1e3, func() {
b := make([]byte, 10)
for i := 0; i < 10; i++ {
b[i] = byte(i) + '0'
}
s := "foo" + string(b)
if want := "foo0123456789"; s != want {
t.Fatalf("want %v, got %v", want, s)
}
})
// Only string concatenation allocates.
if n != 1 {
t.Fatalf("want 1 allocation, got %v", n)
}
}
func TestTinyAlloc(t *testing.T) {
const N = 16
var v [N]unsafe.Pointer
for i := range v {
v[i] = unsafe.Pointer(new(byte))
}
chunks := make(map[uintptr]bool, N)
for _, p := range v {
chunks[uintptr(p)&^7] = true
}
if len(chunks) == N {
t.Fatal("no bytes allocated within the same 8-byte chunk")
}
}
type acLink struct {
x [1 << 20]byte
}
var arenaCollisionSink []*acLink
func TestArenaCollision(t *testing.T) {
testenv.MustHaveExec(t)
// Test that mheap.sysAlloc handles collisions with other
// memory mappings.
if os.Getenv("TEST_ARENA_COLLISION") != "1" {
cmd := testenv.CleanCmdEnv(exec.Command(os.Args[0], "-test.run=TestArenaCollision", "-test.v"))
cmd.Env = append(cmd.Env, "TEST_ARENA_COLLISION=1")
out, err := cmd.CombinedOutput()
if race.Enabled {
// This test runs the runtime out of hint
// addresses, so it will start mapping the
// heap wherever it can. The race detector
// doesn't support this, so look for the
// expected failure.
if want := "too many address space collisions"; !strings.Contains(string(out), want) {
t.Fatalf("want %q, got:\n%s", want, string(out))
}
} else if !strings.Contains(string(out), "PASS\n") || err != nil {
t.Fatalf("%s\n(exit status %v)", string(out), err)
}
return
}
disallowed := [][2]uintptr{}
// Drop all but the next 3 hints. 64-bit has a lot of hints,
// so it would take a lot of memory to go through all of them.
KeepNArenaHints(3)
// Consume these 3 hints and force the runtime to find some
// fallback hints.
for i := 0; i < 5; i++ {
// Reserve memory at the next hint so it can't be used
// for the heap.
start, end := MapNextArenaHint()
disallowed = append(disallowed, [2]uintptr{start, end})
// Allocate until the runtime tries to use the hint we
// just mapped over.
hint := GetNextArenaHint()
for GetNextArenaHint() == hint {
ac := new(acLink)
arenaCollisionSink = append(arenaCollisionSink, ac)
// The allocation must not have fallen into
// one of the reserved regions.
p := uintptr(unsafe.Pointer(ac))
for _, d := range disallowed {
if d[0] <= p && p < d[1] {
t.Fatalf("allocation %#x in reserved region [%#x, %#x)", p, d[0], d[1])
}
}
}
}
}
var mallocSink uintptr
func BenchmarkMalloc8(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(int64)
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMalloc16(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new([2]int64)
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMallocTypeInfo8(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(struct {
p [8 / unsafe.Sizeof(uintptr(0))]*int
})
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMallocTypeInfo16(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(struct {
p [16 / unsafe.Sizeof(uintptr(0))]*int
})
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
var n = flag.Int("n", 1000, "number of goroutines")
func BenchmarkGoroutineSelect(b *testing.B) {
quit := make(chan struct{})
read := func(ch chan struct{}) {
for {
select {
case _, ok := <-ch:
if !ok {
return
}
case <-quit:
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineBlocking(b *testing.B) {
read := func(ch chan struct{}) {
for {
if _, ok := <-ch; !ok {
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineForRange(b *testing.B) {
read := func(ch chan struct{}) {
for _ = range ch {
}
}
benchHelper(b, *n, read)
}
func benchHelper(b *testing.B, n int, read func(chan struct{})) {
m := make([]chan struct{}, n)
for i := range m {
m[i] = make(chan struct{}, 1)
go read(m[i])
}
b.StopTimer()
b.ResetTimer()
GC()
for i := 0; i < b.N; i++ {
for _, ch := range m {
if ch != nil {
ch <- struct{}{}
}
}
time.Sleep(10 * time.Millisecond)
b.StartTimer()
GC()
b.StopTimer()
}
for _, ch := range m {
close(ch)
}
time.Sleep(10 * time.Millisecond)
}
func BenchmarkGoroutineIdle(b *testing.B) {
quit := make(chan struct{})
fn := func() {
<-quit
}
for i := 0; i < *n; i++ {
go fn()
}
GC()
b.ResetTimer()
for i := 0; i < b.N; i++ {
GC()
}
b.StopTimer()
close(quit)
time.Sleep(10 * time.Millisecond)
}