| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector (GC). |
| // |
| // GC is: |
| // - mark&sweep |
| // - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc) |
| // - parallel (up to _MaxGcproc threads) |
| // - partially concurrent (mark is stop-the-world, while sweep is concurrent) |
| // - non-moving/non-compacting |
| // - full (non-partial) |
| // |
| // GC rate. |
| // Next GC is after we've allocated an extra amount of memory proportional to |
| // the amount already in use. The proportion is controlled by GOGC environment variable |
| // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M |
| // (this mark is tracked in next_gc variable). This keeps the GC cost in linear |
| // proportion to the allocation cost. Adjusting GOGC just changes the linear constant |
| // (and also the amount of extra memory used). |
| // |
| // Concurrent sweep. |
| // The sweep phase proceeds concurrently with normal program execution. |
| // The heap is swept span-by-span both lazily (when a goroutine needs another span) |
| // and concurrently in a background goroutine (this helps programs that are not CPU bound). |
| // However, at the end of the stop-the-world GC phase we don't know the size of the live heap, |
| // and so next_gc calculation is tricky and happens as follows. |
| // At the end of the stop-the-world phase next_gc is conservatively set based on total |
| // heap size; all spans are marked as "needs sweeping". |
| // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory. |
| // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc |
| // closer to the target value. However, this is not enough to avoid over-allocating memory. |
| // Consider that a goroutine wants to allocate a new span for a large object and |
| // there are no free swept spans, but there are small-object unswept spans. |
| // If the goroutine naively allocates a new span, it can surpass the yet-unknown |
| // target next_gc value. In order to prevent such cases (1) when a goroutine needs |
| // to allocate a new small-object span, it sweeps small-object spans for the same |
| // object size until it frees at least one object; (2) when a goroutine needs to |
| // allocate large-object span from heap, it sweeps spans until it frees at least |
| // that many pages into heap. Together these two measures ensure that we don't surpass |
| // target next_gc value by a large margin. There is an exception: if a goroutine sweeps |
| // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span, |
| // but there can still be other one-page unswept spans which could be combined into a two-page span. |
| // It's critical to ensure that no operations proceed on unswept spans (that would corrupt |
| // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, |
| // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. |
| // When a goroutine explicitly frees an object or sets a finalizer, it ensures that |
| // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). |
| // The finalizer goroutine is kicked off only when all spans are swept. |
| // When the next GC starts, it sweeps all not-yet-swept spans (if any). |
| |
| #include <unistd.h> |
| |
| #include "runtime.h" |
| #include "arch.h" |
| #include "malloc.h" |
| #include "mgc0.h" |
| #include "go-type.h" |
| |
| // Map gccgo field names to gc field names. |
| // Slice aka __go_open_array. |
| #define array __values |
| #define cap __capacity |
| // Hmap aka __go_map |
| typedef struct __go_map Hmap; |
| // Type aka __go_type_descriptor |
| #define string __reflection |
| // PtrType aka __go_ptr_type |
| #define elem __element_type |
| |
| #ifdef USING_SPLIT_STACK |
| |
| extern void * __splitstack_find (void *, void *, size_t *, void **, void **, |
| void **); |
| |
| extern void * __splitstack_find_context (void *context[10], size_t *, void **, |
| void **, void **); |
| |
| #endif |
| |
| enum { |
| Debug = 0, |
| CollectStats = 0, |
| ConcurrentSweep = 1, |
| |
| WorkbufSize = 16*1024, |
| |
| handoffThreshold = 4, |
| IntermediateBufferCapacity = 64, |
| |
| // Bits in type information |
| PRECISE = 1, |
| LOOP = 2, |
| PC_BITS = PRECISE | LOOP, |
| |
| RootData = 0, |
| RootBss = 1, |
| RootFinalizers = 2, |
| RootSpanTypes = 3, |
| RootFlushCaches = 4, |
| RootCount = 5, |
| }; |
| |
| #define GcpercentUnknown (-2) |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| static int32 gcpercent = GcpercentUnknown; |
| |
| static FuncVal* poolcleanup; |
| |
| void sync_runtime_registerPoolCleanup(FuncVal*) |
| __asm__ (GOSYM_PREFIX "sync.runtime_registerPoolCleanup"); |
| |
| void |
| sync_runtime_registerPoolCleanup(FuncVal *f) |
| { |
| poolcleanup = f; |
| } |
| |
| static void |
| clearpools(void) |
| { |
| P *p, **pp; |
| MCache *c; |
| Defer *d, *dlink; |
| |
| // clear sync.Pool's |
| if(poolcleanup != nil) { |
| __builtin_call_with_static_chain(poolcleanup->fn(), |
| poolcleanup); |
| } |
| |
| for(pp=runtime_getAllP(); (p=*pp) != nil; pp++) { |
| // clear tinyalloc pool |
| c = p->mcache; |
| if(c != nil) { |
| c->tiny = nil; |
| c->tinysize = 0; |
| } |
| } |
| |
| // Clear central defer pools. |
| // Leave per-P pools alone, they have strictly bounded size. |
| runtime_lock(&runtime_sched->deferlock); |
| for(d = runtime_sched->deferpool; d != nil; d = dlink) { |
| dlink = d->link; |
| d->link = nil; |
| } |
| runtime_sched->deferpool = nil; |
| runtime_unlock(&runtime_sched->deferlock); |
| } |
| |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| #define SIZE (WorkbufSize-sizeof(LFNode)-sizeof(uintptr)) |
| LFNode node; // must be first |
| uintptr nobj; |
| Obj obj[SIZE/sizeof(Obj) - 1]; |
| uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; |
| #undef SIZE |
| }; |
| |
| typedef struct Finalizer Finalizer; |
| struct Finalizer |
| { |
| FuncVal *fn; |
| void *arg; |
| const struct __go_func_type *ft; |
| const PtrType *ot; |
| }; |
| |
| typedef struct finblock FinBlock; |
| |
| extern FinBlock *runtime_getallfin() |
| __asm__(GOSYM_PREFIX "runtime.getallfin"); |
| |
| static Lock gclock; |
| |
| static void bgsweep(void*); |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| static void putempty(Workbuf*); |
| static Workbuf* handoff(Workbuf*); |
| static void gchelperstart(void); |
| static void flushallmcaches(void); |
| static void addstackroots(G *gp, Workbuf **wbufp); |
| |
| static struct { |
| uint64 full; // lock-free list of full blocks |
| uint64 wempty; // lock-free list of empty blocks |
| byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait |
| uint32 nproc; |
| int64 tstart; |
| volatile uint32 nwait; |
| volatile uint32 ndone; |
| Note alldone; |
| ParFor *markfor; |
| |
| Lock; |
| byte *chunk; |
| uintptr nchunk; |
| } work __attribute__((aligned(8))); |
| |
| enum { |
| GC_DEFAULT_PTR = GC_NUM_INSTR, |
| GC_CHAN, |
| |
| GC_NUM_INSTR2 |
| }; |
| |
| static struct { |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| } ptr; |
| uint64 nbytes; |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| uint64 notype; |
| uint64 typelookup; |
| } obj; |
| uint64 rescan; |
| uint64 rescanbytes; |
| uint64 instr[GC_NUM_INSTR2]; |
| uint64 putempty; |
| uint64 getfull; |
| struct { |
| uint64 foundbit; |
| uint64 foundword; |
| uint64 foundspan; |
| } flushptrbuf; |
| struct { |
| uint64 foundbit; |
| uint64 foundword; |
| uint64 foundspan; |
| } markonly; |
| uint32 nbgsweep; |
| uint32 npausesweep; |
| } gcstats; |
| |
| // markonly marks an object. It returns true if the object |
| // has been marked by this function, false otherwise. |
| // This function doesn't append the object to any buffer. |
| static bool |
| markonly(const void *obj) |
| { |
| byte *p; |
| uintptr *bitp, bits, shift, x, xbits, off, j; |
| MSpan *s; |
| PageID k; |
| |
| // Words outside the arena cannot be pointers. |
| if((const byte*)obj < runtime_mheap.arena_start || (const byte*)obj >= runtime_mheap.arena_used) |
| return false; |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| obj = (const void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Find bits for this word. |
| off = (const uintptr*)obj - (uintptr*)runtime_mheap.arena_start; |
| bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.markonly.foundbit, 1); |
| goto found; |
| } |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| shift = j; |
| bits = xbits>>shift; |
| if(CollectStats) |
| runtime_xadd64(&gcstats.markonly.foundword, 1); |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| x -= (uintptr)runtime_mheap.arena_start>>PageShift; |
| s = runtime_mheap.spans[x]; |
| if(s == nil || k < s->start || (uintptr)obj >= s->limit || s->state != MSpanInUse) |
| return false; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| uintptr size = s->elemsize; |
| int32 i = ((const byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (const uintptr*)obj - (uintptr*)runtime_mheap.arena_start; |
| bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| if(CollectStats) |
| runtime_xadd64(&gcstats.markonly.foundspan, 1); |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| return false; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| return false; |
| if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // The object is now marked |
| return true; |
| } |
| |
| // PtrTarget is a structure used by intermediate buffers. |
| // The intermediate buffers hold GC data before it |
| // is moved/flushed to the work buffer (Workbuf). |
| // The size of an intermediate buffer is very small, |
| // such as 32 or 64 elements. |
| typedef struct PtrTarget PtrTarget; |
| struct PtrTarget |
| { |
| void *p; |
| uintptr ti; |
| }; |
| |
| typedef struct Scanbuf Scanbuf; |
| struct Scanbuf |
| { |
| struct { |
| PtrTarget *begin; |
| PtrTarget *end; |
| PtrTarget *pos; |
| } ptr; |
| struct { |
| Obj *begin; |
| Obj *end; |
| Obj *pos; |
| } obj; |
| Workbuf *wbuf; |
| Obj *wp; |
| uintptr nobj; |
| }; |
| |
| typedef struct BufferList BufferList; |
| struct BufferList |
| { |
| PtrTarget ptrtarget[IntermediateBufferCapacity]; |
| Obj obj[IntermediateBufferCapacity]; |
| uint32 busy; |
| byte pad[CacheLineSize]; |
| }; |
| static BufferList bufferList[_MaxGcproc]; |
| |
| static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj); |
| |
| // flushptrbuf moves data from the PtrTarget buffer to the work buffer. |
| // The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned, |
| // while the work buffer contains blocks which have been marked |
| // and are prepared to be scanned by the garbage collector. |
| // |
| // _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer. |
| // |
| // A simplified drawing explaining how the todo-list moves from a structure to another: |
| // |
| // scanblock |
| // (find pointers) |
| // Obj ------> PtrTarget (pointer targets) |
| // ↑ | |
| // | | |
| // `----------' |
| // flushptrbuf |
| // (find block start, mark and enqueue) |
| static void |
| flushptrbuf(Scanbuf *sbuf) |
| { |
| byte *p, *arena_start, *obj; |
| uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; |
| MSpan *s; |
| PageID k; |
| Obj *wp; |
| Workbuf *wbuf; |
| PtrTarget *ptrbuf; |
| PtrTarget *ptrbuf_end; |
| |
| arena_start = runtime_mheap.arena_start; |
| |
| wp = sbuf->wp; |
| wbuf = sbuf->wbuf; |
| nobj = sbuf->nobj; |
| |
| ptrbuf = sbuf->ptr.begin; |
| ptrbuf_end = sbuf->ptr.pos; |
| n = ptrbuf_end - sbuf->ptr.begin; |
| sbuf->ptr.pos = sbuf->ptr.begin; |
| |
| if(CollectStats) { |
| runtime_xadd64(&gcstats.ptr.sum, n); |
| runtime_xadd64(&gcstats.ptr.cnt, 1); |
| } |
| |
| // If buffer is nearly full, get a new one. |
| if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| |
| if(n >= nelem(wbuf->obj)) |
| runtime_throw("ptrbuf has to be smaller than WorkBuf"); |
| } |
| |
| while(ptrbuf < ptrbuf_end) { |
| obj = ptrbuf->p; |
| ti = ptrbuf->ti; |
| ptrbuf++; |
| |
| // obj belongs to interval [mheap.arena_start, mheap.arena_used). |
| if(Debug > 1) { |
| if(obj < runtime_mheap.arena_start || obj >= runtime_mheap.arena_used) |
| runtime_throw("object is outside of mheap"); |
| } |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| ti = 0; |
| } |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.flushptrbuf.foundbit, 1); |
| goto found; |
| } |
| |
| ti = 0; |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| obj = (byte*)obj - (shift-j)*PtrSize; |
| shift = j; |
| bits = xbits>>shift; |
| if(CollectStats) |
| runtime_xadd64(&gcstats.flushptrbuf.foundword, 1); |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime_mheap.spans[x]; |
| if(s == nil || k < s->start || (uintptr)obj >= s->limit || s->state != MSpanInUse) |
| continue; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| size = s->elemsize; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| if(CollectStats) |
| runtime_xadd64(&gcstats.flushptrbuf.foundspan, 1); |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| continue; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| goto continue_obj; |
| if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitScan) == 0) |
| continue; |
| |
| // Ask span about size class. |
| // (Manually inlined copy of MHeap_Lookup.) |
| x = (uintptr)obj >> PageShift; |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime_mheap.spans[x]; |
| |
| PREFETCH(obj); |
| |
| *wp = (Obj){obj, s->elemsize, ti}; |
| wp++; |
| nobj++; |
| continue_obj:; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| sbuf->wp = wp; |
| sbuf->wbuf = wbuf; |
| sbuf->nobj = nobj; |
| } |
| |
| static void |
| flushobjbuf(Scanbuf *sbuf) |
| { |
| uintptr nobj, off; |
| Obj *wp, obj; |
| Workbuf *wbuf; |
| Obj *objbuf; |
| Obj *objbuf_end; |
| |
| wp = sbuf->wp; |
| wbuf = sbuf->wbuf; |
| nobj = sbuf->nobj; |
| |
| objbuf = sbuf->obj.begin; |
| objbuf_end = sbuf->obj.pos; |
| sbuf->obj.pos = sbuf->obj.begin; |
| |
| while(objbuf < objbuf_end) { |
| obj = *objbuf++; |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| continue; |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| sbuf->wp = wp; |
| sbuf->wbuf = wbuf; |
| sbuf->nobj = nobj; |
| } |
| |
| // Program that scans the whole block and treats every block element as a potential pointer |
| static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; |
| |
| // Hchan program |
| static uintptr chanProg[2] = {0, GC_CHAN}; |
| |
| // Local variables of a program fragment or loop |
| typedef struct GCFrame GCFrame; |
| struct GCFrame { |
| uintptr count, elemsize, b; |
| const uintptr *loop_or_ret; |
| }; |
| |
| // Sanity check for the derived type info objti. |
| static void |
| checkptr(void *obj, uintptr objti) |
| { |
| uintptr *pc1, type, tisize, i, j, x; |
| const uintptr *pc2; |
| byte *objstart; |
| Type *t; |
| MSpan *s; |
| |
| if(!Debug) |
| runtime_throw("checkptr is debug only"); |
| |
| if((byte*)obj < runtime_mheap.arena_start || (byte*)obj >= runtime_mheap.arena_used) |
| return; |
| type = runtime_gettype(obj); |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| if(t == nil) |
| return; |
| x = (uintptr)obj >> PageShift; |
| x -= (uintptr)(runtime_mheap.arena_start)>>PageShift; |
| s = runtime_mheap.spans[x]; |
| objstart = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass != 0) { |
| i = ((byte*)obj - objstart)/s->elemsize; |
| objstart += i*s->elemsize; |
| } |
| tisize = *(uintptr*)objti; |
| // Sanity check for object size: it should fit into the memory block. |
| if((byte*)obj + tisize > objstart + s->elemsize) { |
| runtime_printf("object of type '%S' at %p/%p does not fit in block %p/%p\n", |
| *t->string, obj, tisize, objstart, s->elemsize); |
| runtime_throw("invalid gc type info"); |
| } |
| if(obj != objstart) |
| return; |
| // If obj points to the beginning of the memory block, |
| // check type info as well. |
| if(t->string == nil || |
| // Gob allocates unsafe pointers for indirection. |
| (runtime_strcmp((const char *)t->string->str, (const char*)"unsafe.Pointer") && |
| // Runtime and gc think differently about closures. |
| runtime_strstr((const char *)t->string->str, (const char*)"struct { F uintptr") != (const char *)t->string->str)) { |
| pc1 = (uintptr*)objti; |
| pc2 = (const uintptr*)t->__gcdata; |
| // A simple best-effort check until first GC_END. |
| for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) { |
| if(pc1[j] != pc2[j]) { |
| runtime_printf("invalid gc type info for '%s', type info %p [%d]=%p, block info %p [%d]=%p\n", |
| t->string ? (const int8*)t->string->str : (const int8*)"?", pc1, (int32)j, pc1[j], pc2, (int32)j, pc2[j]); |
| runtime_throw("invalid gc type info"); |
| } |
| } |
| } |
| } |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| static void |
| scanblock(Workbuf *wbuf, bool keepworking) |
| { |
| byte *b, *arena_start, *arena_used; |
| uintptr n, i, end_b, elemsize, size, ti, objti, count, type, nobj; |
| uintptr precise_type, nominal_size; |
| const uintptr *pc, *chan_ret; |
| uintptr chancap; |
| void *obj; |
| const Type *t, *et; |
| Slice *sliceptr; |
| String *stringptr; |
| GCFrame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; |
| BufferList *scanbuffers; |
| Scanbuf sbuf; |
| Eface *eface; |
| Iface *iface; |
| Hchan *chan; |
| const ChanType *chantype; |
| Obj *wp; |
| |
| if(sizeof(Workbuf) % WorkbufSize != 0) |
| runtime_throw("scanblock: size of Workbuf is suboptimal"); |
| |
| // Memory arena parameters. |
| arena_start = runtime_mheap.arena_start; |
| arena_used = runtime_mheap.arena_used; |
| |
| stack_ptr = stack+nelem(stack)-1; |
| |
| precise_type = false; |
| nominal_size = 0; |
| |
| if(wbuf) { |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| } else { |
| nobj = 0; |
| wp = nil; |
| } |
| |
| // Initialize sbuf |
| scanbuffers = &bufferList[runtime_m()->helpgc]; |
| |
| sbuf.ptr.begin = sbuf.ptr.pos = &scanbuffers->ptrtarget[0]; |
| sbuf.ptr.end = sbuf.ptr.begin + nelem(scanbuffers->ptrtarget); |
| |
| sbuf.obj.begin = sbuf.obj.pos = &scanbuffers->obj[0]; |
| sbuf.obj.end = sbuf.obj.begin + nelem(scanbuffers->obj); |
| |
| sbuf.wbuf = wbuf; |
| sbuf.wp = wp; |
| sbuf.nobj = nobj; |
| |
| // (Silence the compiler) |
| chan = nil; |
| chantype = nil; |
| chan_ret = nil; |
| |
| goto next_block; |
| |
| for(;;) { |
| // Each iteration scans the block b of length n, queueing pointers in |
| // the work buffer. |
| |
| if(CollectStats) { |
| runtime_xadd64(&gcstats.nbytes, n); |
| runtime_xadd64(&gcstats.obj.sum, sbuf.nobj); |
| runtime_xadd64(&gcstats.obj.cnt, 1); |
| } |
| |
| if(ti != 0) { |
| if(Debug > 1) { |
| runtime_printf("scanblock %p %D ti %p\n", b, (int64)n, ti); |
| } |
| pc = (uintptr*)(ti & ~(uintptr)PC_BITS); |
| precise_type = (ti & PRECISE); |
| stack_top.elemsize = pc[0]; |
| if(!precise_type) |
| nominal_size = pc[0]; |
| if(ti & LOOP) { |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.loop_or_ret = pc+1; |
| } else { |
| stack_top.count = 1; |
| } |
| if(Debug) { |
| // Simple sanity check for provided type info ti: |
| // The declared size of the object must be not larger than the actual size |
| // (it can be smaller due to inferior pointers). |
| // It's difficult to make a comprehensive check due to inferior pointers, |
| // reflection, gob, etc. |
| if(pc[0] > n) { |
| runtime_printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n); |
| runtime_throw("invalid gc type info"); |
| } |
| } |
| } else if(UseSpanType) { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.obj.notype, 1); |
| |
| type = runtime_gettype(b); |
| if(type != 0) { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.obj.typelookup, 1); |
| |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| switch(type & (PtrSize-1)) { |
| case TypeInfo_SingleObject: |
| pc = (const uintptr*)t->__gcdata; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 1; |
| stack_top.elemsize = pc[0]; |
| break; |
| case TypeInfo_Array: |
| pc = (const uintptr*)t->__gcdata; |
| if(pc[0] == 0) |
| goto next_block; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.elemsize = pc[0]; |
| stack_top.loop_or_ret = pc+1; |
| break; |
| case TypeInfo_Chan: |
| chan = (Hchan*)b; |
| chantype = (const ChanType*)t; |
| chan_ret = nil; |
| pc = chanProg; |
| break; |
| default: |
| if(Debug > 1) |
| runtime_printf("scanblock %p %D type %p %S\n", b, (int64)n, type, *t->string); |
| runtime_throw("scanblock: invalid type"); |
| return; |
| } |
| if(Debug > 1) |
| runtime_printf("scanblock %p %D type %p %S pc=%p\n", b, (int64)n, type, *t->string, pc); |
| } else { |
| pc = defaultProg; |
| if(Debug > 1) |
| runtime_printf("scanblock %p %D unknown type\n", b, (int64)n); |
| } |
| } else { |
| pc = defaultProg; |
| if(Debug > 1) |
| runtime_printf("scanblock %p %D no span types\n", b, (int64)n); |
| } |
| |
| if(IgnorePreciseGC) |
| pc = defaultProg; |
| |
| pc++; |
| stack_top.b = (uintptr)b; |
| end_b = (uintptr)b + n - PtrSize; |
| |
| for(;;) { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.instr[pc[0]], 1); |
| |
| obj = nil; |
| objti = 0; |
| switch(pc[0]) { |
| case GC_PTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| objti = pc[2]; |
| if(Debug > 2) |
| runtime_printf("gc_ptr @%p: %p ti=%p\n", stack_top.b+pc[1], obj, objti); |
| pc += 3; |
| if(Debug) |
| checkptr(obj, objti); |
| break; |
| |
| case GC_SLICE: |
| sliceptr = (Slice*)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime_printf("gc_slice @%p: %p/%D/%D\n", sliceptr, sliceptr->array, (int64)sliceptr->__count, (int64)sliceptr->cap); |
| if(sliceptr->cap != 0) { |
| obj = sliceptr->array; |
| // Can't use slice element type for scanning, |
| // because if it points to an array embedded |
| // in the beginning of a struct, |
| // we will scan the whole struct as the slice. |
| // So just obtain type info from heap. |
| } |
| pc += 3; |
| break; |
| |
| case GC_APTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime_printf("gc_aptr @%p: %p\n", stack_top.b+pc[1], obj); |
| pc += 2; |
| break; |
| |
| case GC_STRING: |
| stringptr = (String*)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime_printf("gc_string @%p: %p/%D\n", stack_top.b+pc[1], stringptr->str, (int64)stringptr->len); |
| if(stringptr->len != 0) |
| markonly(stringptr->str); |
| pc += 2; |
| continue; |
| |
| case GC_EFACE: |
| eface = (Eface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(Debug > 2) |
| runtime_printf("gc_eface @%p: %p %p\n", stack_top.b+pc[1], eface->_type, eface->data); |
| if(eface->_type == nil) |
| continue; |
| |
| // eface->type |
| t = eface->_type; |
| if((const byte*)t >= arena_start && (const byte*)t < arena_used) { |
| union { const Type *tc; Type *tr; } u; |
| u.tc = t; |
| *sbuf.ptr.pos++ = (PtrTarget){u.tr, 0}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| |
| // eface->data |
| if((byte*)eface->data >= arena_start && (byte*)eface->data < arena_used) { |
| if(__go_is_pointer_type(t)) { |
| if((t->__code & kindNoPointers)) |
| continue; |
| |
| obj = eface->data; |
| if((t->__code & kindMask) == kindPtr) { |
| // Only use type information if it is a pointer-containing type. |
| // This matches the GC programs written by cmd/gc/reflect.c's |
| // dgcsym1 in case TPTR32/case TPTR64. See rationale there. |
| et = ((const PtrType*)t)->elem; |
| if(!(et->__code & kindNoPointers)) |
| objti = (uintptr)((const PtrType*)t)->elem->__gcdata; |
| } |
| } else { |
| obj = eface->data; |
| objti = (uintptr)t->__gcdata; |
| } |
| } |
| break; |
| |
| case GC_IFACE: |
| iface = (Iface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(Debug > 2) |
| runtime_printf("gc_iface @%p: %p/%p %p\n", stack_top.b+pc[1], *(Type**)iface->tab, nil, iface->data); |
| if(iface->tab == nil) |
| continue; |
| |
| // iface->tab |
| if((byte*)iface->tab >= arena_start && (byte*)iface->tab < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){iface->tab, 0}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| |
| // iface->data |
| if((byte*)iface->data >= arena_start && (byte*)iface->data < arena_used) { |
| t = *(Type**)iface->tab; |
| if(__go_is_pointer_type(t)) { |
| if((t->__code & kindNoPointers)) |
| continue; |
| |
| obj = iface->data; |
| if((t->__code & kindMask) == kindPtr) { |
| // Only use type information if it is a pointer-containing type. |
| // This matches the GC programs written by cmd/gc/reflect.c's |
| // dgcsym1 in case TPTR32/case TPTR64. See rationale there. |
| et = ((const PtrType*)t)->elem; |
| if(!(et->__code & kindNoPointers)) |
| objti = (uintptr)((const PtrType*)t)->elem->__gcdata; |
| } |
| } else { |
| obj = iface->data; |
| objti = (uintptr)t->__gcdata; |
| } |
| } |
| break; |
| |
| case GC_DEFAULT_PTR: |
| while(stack_top.b <= end_b) { |
| obj = *(byte**)stack_top.b; |
| if(Debug > 2) |
| runtime_printf("gc_default_ptr @%p: %p\n", stack_top.b, obj); |
| stack_top.b += PtrSize; |
| if((byte*)obj >= arena_start && (byte*)obj < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){obj, 0}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| } |
| goto next_block; |
| |
| case GC_END: |
| if(--stack_top.count != 0) { |
| // Next iteration of a loop if possible. |
| stack_top.b += stack_top.elemsize; |
| if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) { |
| pc = stack_top.loop_or_ret; |
| continue; |
| } |
| i = stack_top.b; |
| } else { |
| // Stack pop if possible. |
| if(stack_ptr+1 < stack+nelem(stack)) { |
| pc = stack_top.loop_or_ret; |
| stack_top = *(++stack_ptr); |
| continue; |
| } |
| i = (uintptr)b + nominal_size; |
| } |
| if(!precise_type) { |
| // Quickly scan [b+i,b+n) for possible pointers. |
| for(; i<=end_b; i+=PtrSize) { |
| if(*(byte**)i != nil) { |
| // Found a value that may be a pointer. |
| // Do a rescan of the entire block. |
| enqueue((Obj){b, n, 0}, &sbuf.wbuf, &sbuf.wp, &sbuf.nobj); |
| if(CollectStats) { |
| runtime_xadd64(&gcstats.rescan, 1); |
| runtime_xadd64(&gcstats.rescanbytes, n); |
| } |
| break; |
| } |
| } |
| } |
| goto next_block; |
| |
| case GC_ARRAY_START: |
| i = stack_top.b + pc[1]; |
| count = pc[2]; |
| elemsize = pc[3]; |
| pc += 4; |
| |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (GCFrame){count, elemsize, i, pc}; |
| continue; |
| |
| case GC_ARRAY_NEXT: |
| if(--stack_top.count != 0) { |
| stack_top.b += stack_top.elemsize; |
| pc = stack_top.loop_or_ret; |
| } else { |
| // Stack pop. |
| stack_top = *(++stack_ptr); |
| pc += 1; |
| } |
| continue; |
| |
| case GC_CALL: |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (GCFrame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; |
| pc = (const uintptr*)((const byte*)pc + *(const int32*)(pc+2)); // target of the CALL instruction |
| continue; |
| |
| case GC_REGION: |
| obj = (void*)(stack_top.b + pc[1]); |
| size = pc[2]; |
| objti = pc[3]; |
| pc += 4; |
| |
| if(Debug > 2) |
| runtime_printf("gc_region @%p: %D %p\n", stack_top.b+pc[1], (int64)size, objti); |
| *sbuf.obj.pos++ = (Obj){obj, size, objti}; |
| if(sbuf.obj.pos == sbuf.obj.end) |
| flushobjbuf(&sbuf); |
| continue; |
| |
| case GC_CHAN_PTR: |
| chan = *(Hchan**)(stack_top.b + pc[1]); |
| if(Debug > 2 && chan != nil) |
| runtime_printf("gc_chan_ptr @%p: %p/%D/%D %p\n", stack_top.b+pc[1], chan, (int64)chan->qcount, (int64)chan->dataqsiz, pc[2]); |
| if(chan == nil) { |
| pc += 3; |
| continue; |
| } |
| if(markonly(chan)) { |
| chantype = (ChanType*)pc[2]; |
| if(!(chantype->elem->__code & kindNoPointers)) { |
| // Start chanProg. |
| chan_ret = pc+3; |
| pc = chanProg+1; |
| continue; |
| } |
| } |
| pc += 3; |
| continue; |
| |
| case GC_CHAN: |
| // There are no heap pointers in struct Hchan, |
| // so we can ignore the leading sizeof(Hchan) bytes. |
| if(!(chantype->elem->__code & kindNoPointers)) { |
| chancap = chan->dataqsiz; |
| if(chancap > 0 && markonly(chan->buf)) { |
| // TODO(atom): split into two chunks so that only the |
| // in-use part of the circular buffer is scanned. |
| // (Channel routines zero the unused part, so the current |
| // code does not lead to leaks, it's just a little inefficient.) |
| *sbuf.obj.pos++ = (Obj){chan->buf, chancap*chantype->elem->__size, |
| (uintptr)chantype->elem->__gcdata | PRECISE | LOOP}; |
| if(sbuf.obj.pos == sbuf.obj.end) |
| flushobjbuf(&sbuf); |
| } |
| } |
| if(chan_ret == nil) |
| goto next_block; |
| pc = chan_ret; |
| continue; |
| |
| default: |
| runtime_printf("runtime: invalid GC instruction %p at %p\n", pc[0], pc); |
| runtime_throw("scanblock: invalid GC instruction"); |
| return; |
| } |
| |
| if((byte*)obj >= arena_start && (byte*)obj < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){obj, objti}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| } |
| |
| next_block: |
| // Done scanning [b, b+n). Prepare for the next iteration of |
| // the loop by setting b, n, ti to the parameters for the next block. |
| |
| if(sbuf.nobj == 0) { |
| flushptrbuf(&sbuf); |
| flushobjbuf(&sbuf); |
| |
| if(sbuf.nobj == 0) { |
| if(!keepworking) { |
| if(sbuf.wbuf) |
| putempty(sbuf.wbuf); |
| return; |
| } |
| // Emptied our buffer: refill. |
| sbuf.wbuf = getfull(sbuf.wbuf); |
| if(sbuf.wbuf == nil) |
| return; |
| sbuf.nobj = sbuf.wbuf->nobj; |
| sbuf.wp = sbuf.wbuf->obj + sbuf.wbuf->nobj; |
| } |
| } |
| |
| // Fetch b from the work buffer. |
| --sbuf.wp; |
| b = sbuf.wp->p; |
| n = sbuf.wp->n; |
| ti = sbuf.wp->ti; |
| sbuf.nobj--; |
| } |
| } |
| |
| static struct gcRootList* roots; |
| |
| void |
| __go_register_gc_roots (struct gcRootList* r) |
| { |
| // FIXME: This needs locking if multiple goroutines can call |
| // dlopen simultaneously. |
| r->next = roots; |
| roots = r; |
| } |
| |
| // Append obj to the work buffer. |
| // _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer. |
| static void |
| enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj) |
| { |
| uintptr nobj, off; |
| Obj *wp; |
| Workbuf *wbuf; |
| |
| if(Debug > 1) |
| runtime_printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| return; |
| |
| // Load work buffer state |
| wp = *_wp; |
| wbuf = *_wbuf; |
| nobj = *_nobj; |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| |
| // Save work buffer state |
| *_wp = wp; |
| *_wbuf = wbuf; |
| *_nobj = nobj; |
| } |
| |
| static void |
| enqueue1(Workbuf **wbufp, Obj obj) |
| { |
| Workbuf *wbuf; |
| |
| wbuf = *wbufp; |
| if(wbuf->nobj >= nelem(wbuf->obj)) |
| *wbufp = wbuf = getempty(wbuf); |
| wbuf->obj[wbuf->nobj++] = obj; |
| } |
| |
| static void |
| markroot(ParFor *desc, uint32 i) |
| { |
| Workbuf *wbuf; |
| FinBlock *fb; |
| MHeap *h; |
| MSpan **allspans, *s; |
| uint32 spanidx, sg; |
| G *gp; |
| void *p; |
| |
| USED(&desc); |
| wbuf = getempty(nil); |
| // Note: if you add a case here, please also update heapdump.c:dumproots. |
| switch(i) { |
| case RootData: |
| // For gccgo this is both data and bss. |
| { |
| struct gcRootList *pl; |
| |
| for(pl = roots; pl != nil; pl = pl->next) { |
| struct gcRoot *pr = &pl->roots[0]; |
| intgo count = pl->count; |
| intgo i; |
| |
| for (i = 0; i < count; i++) { |
| void *decl = pr->decl; |
| enqueue1(&wbuf, (Obj){decl, pr->ptrdata, 0}); |
| pr++; |
| } |
| } |
| } |
| break; |
| |
| case RootBss: |
| // For gccgo we use this for all the other global roots. |
| enqueue1(&wbuf, (Obj){(byte*)runtime_m0(), sizeof(M), 0}); |
| enqueue1(&wbuf, (Obj){(byte*)runtime_g0(), sizeof(G), 0}); |
| enqueue1(&wbuf, (Obj){(byte*)runtime_getAllP(), _MaxGomaxprocs * sizeof(P*), 0}); |
| enqueue1(&wbuf, (Obj){(byte*)&work, sizeof work, 0}); |
| break; |
| |
| case RootFinalizers: |
| for(fb=runtime_getallfin(); fb; fb=fb->alllink) |
| enqueue1(&wbuf, (Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); |
| break; |
| |
| case RootSpanTypes: |
| // mark span types and MSpan.specials (to walk spans only once) |
| h = &runtime_mheap; |
| sg = h->sweepgen; |
| allspans = h->allspans; |
| for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) { |
| Special *sp; |
| SpecialFinalizer *spf; |
| |
| s = allspans[spanidx]; |
| if(s->sweepgen != sg) { |
| runtime_printf("sweep %d %d\n", s->sweepgen, sg); |
| runtime_throw("gc: unswept span"); |
| } |
| if(s->state != MSpanInUse) |
| continue; |
| // The garbage collector ignores type pointers stored in MSpan.types: |
| // - Compiler-generated types are stored outside of heap. |
| // - The reflect package has runtime-generated types cached in its data structures. |
| // The garbage collector relies on finding the references via that cache. |
| if(s->types.compression == MTypes_Words || s->types.compression == MTypes_Bytes) |
| markonly((byte*)s->types.data); |
| for(sp = s->specials; sp != nil; sp = sp->next) { |
| if(sp->kind != KindSpecialFinalizer) |
| continue; |
| // don't mark finalized object, but scan it so we |
| // retain everything it points to. |
| spf = (SpecialFinalizer*)sp; |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (void*)((s->start << PageShift) + spf->offset/s->elemsize*s->elemsize); |
| enqueue1(&wbuf, (Obj){p, s->elemsize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->fn, PtrSize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->ft, PtrSize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->ot, PtrSize, 0}); |
| } |
| } |
| break; |
| |
| case RootFlushCaches: |
| flushallmcaches(); |
| break; |
| |
| default: |
| // the rest is scanning goroutine stacks |
| if(i - RootCount >= runtime_getallglen()) |
| runtime_throw("markroot: bad index"); |
| gp = runtime_getallg(i - RootCount); |
| // remember when we've first observed the G blocked |
| // needed only to output in traceback |
| if((gp->atomicstatus == _Gwaiting || gp->atomicstatus == _Gsyscall) && gp->waitsince == 0) |
| gp->waitsince = work.tstart; |
| addstackroots(gp, &wbuf); |
| break; |
| |
| } |
| |
| if(wbuf) |
| scanblock(wbuf, false); |
| } |
| |
| static const FuncVal markroot_funcval = { (void *) markroot }; |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| if(b != nil) |
| runtime_lfstackpush(&work.full, &b->node); |
| b = (Workbuf*)runtime_lfstackpop(&work.wempty); |
| if(b == nil) { |
| // Need to allocate. |
| runtime_lock(&work); |
| if(work.nchunk < sizeof *b) { |
| work.nchunk = 1<<20; |
| work.chunk = runtime_SysAlloc(work.nchunk, &mstats()->gc_sys); |
| if(work.chunk == nil) |
| runtime_throw("runtime: cannot allocate memory"); |
| } |
| b = (Workbuf*)work.chunk; |
| work.chunk += sizeof *b; |
| work.nchunk -= sizeof *b; |
| runtime_unlock(&work); |
| } |
| b->nobj = 0; |
| return b; |
| } |
| |
| static void |
| putempty(Workbuf *b) |
| { |
| if(CollectStats) |
| runtime_xadd64(&gcstats.putempty, 1); |
| |
| runtime_lfstackpush(&work.wempty, &b->node); |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| M *m; |
| int32 i; |
| |
| if(CollectStats) |
| runtime_xadd64(&gcstats.getfull, 1); |
| |
| if(b != nil) |
| runtime_lfstackpush(&work.wempty, &b->node); |
| b = (Workbuf*)runtime_lfstackpop(&work.full); |
| if(b != nil || work.nproc == 1) |
| return b; |
| |
| m = runtime_m(); |
| runtime_xadd(&work.nwait, +1); |
| for(i=0;; i++) { |
| if(work.full != 0) { |
| runtime_xadd(&work.nwait, -1); |
| b = (Workbuf*)runtime_lfstackpop(&work.full); |
| if(b != nil) |
| return b; |
| runtime_xadd(&work.nwait, +1); |
| } |
| if(work.nwait == work.nproc) |
| return nil; |
| if(i < 10) { |
| m->gcstats.nprocyield++; |
| runtime_procyield(20); |
| } else if(i < 20) { |
| m->gcstats.nosyield++; |
| runtime_osyield(); |
| } else { |
| m->gcstats.nsleep++; |
| runtime_usleep(100); |
| } |
| } |
| } |
| |
| static Workbuf* |
| handoff(Workbuf *b) |
| { |
| M *m; |
| int32 n; |
| Workbuf *b1; |
| |
| m = runtime_m(); |
| |
| // Make new buffer with half of b's pointers. |
| b1 = getempty(nil); |
| n = b->nobj/2; |
| b->nobj -= n; |
| b1->nobj = n; |
| runtime_memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); |
| m->gcstats.nhandoff++; |
| m->gcstats.nhandoffcnt += n; |
| |
| // Put b on full list - let first half of b get stolen. |
| runtime_lfstackpush(&work.full, &b->node); |
| return b1; |
| } |
| |
| static void |
| addstackroots(G *gp, Workbuf **wbufp) |
| { |
| switch(gp->atomicstatus){ |
| default: |
| runtime_printf("unexpected G.status %d (goroutine %p %D)\n", gp->atomicstatus, gp, gp->goid); |
| runtime_throw("mark - bad status"); |
| case _Gdead: |
| return; |
| case _Grunning: |
| runtime_throw("mark - world not stopped"); |
| case _Grunnable: |
| case _Gsyscall: |
| case _Gwaiting: |
| break; |
| } |
| |
| // Explicitly scan the saved contexts. |
| // We have to pass defaultProg to prevent scanblock from looking |
| // up the pointer to get the type. |
| enqueue1(wbufp, (Obj){(byte*)(&gp->gcregs[0]), sizeof(gp->gcregs), (uintptr)(&defaultProg[0])}); |
| enqueue1(wbufp, (Obj){(byte*)(&gp->context[0]), sizeof(gp->context), (uintptr)(&defaultProg[0])}); |
| |
| #ifdef USING_SPLIT_STACK |
| M *mp; |
| void* sp; |
| size_t spsize; |
| void* next_segment; |
| void* next_sp; |
| void* initial_sp; |
| |
| if(gp == runtime_g()) { |
| // Scanning our own stack. |
| sp = __splitstack_find(nil, nil, &spsize, &next_segment, |
| &next_sp, &initial_sp); |
| } else if((mp = gp->m) != nil && mp->helpgc) { |
| // gchelper's stack is in active use and has no interesting pointers. |
| return; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| |
| // The exception is that if the goroutine is about to enter or might |
| // have just exited a system call, it may be executing code such |
| // as schedlock and may have needed to start a new stack segment. |
| // Use the stack segment and stack pointer at the time of |
| // the system call instead, since that won't change underfoot. |
| if(gp->gcstack != nil) { |
| sp = gp->gcstack; |
| spsize = gp->gcstacksize; |
| next_segment = gp->gcnextsegment; |
| next_sp = gp->gcnextsp; |
| initial_sp = gp->gcinitialsp; |
| } else { |
| sp = __splitstack_find_context((void*)(&gp->stackcontext[0]), |
| &spsize, &next_segment, |
| &next_sp, &initial_sp); |
| } |
| } |
| if(sp != nil) { |
| enqueue1(wbufp, (Obj){sp, spsize, 0}); |
| while((sp = __splitstack_find(next_segment, next_sp, |
| &spsize, &next_segment, |
| &next_sp, &initial_sp)) != nil) |
| enqueue1(wbufp, (Obj){sp, spsize, 0}); |
| } |
| #else |
| M *mp; |
| byte* bottom; |
| byte* top; |
| |
| if(gp == runtime_g()) { |
| // Scanning our own stack. |
| bottom = (byte*)&gp; |
| } else if((mp = gp->m) != nil && mp->helpgc) { |
| // gchelper's stack is in active use and has no interesting pointers. |
| return; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| bottom = (byte*)gp->gcnextsp; |
| if(bottom == nil) |
| return; |
| } |
| top = (byte*)gp->gcinitialsp + gp->gcstacksize; |
| if(top > bottom) |
| enqueue1(wbufp, (Obj){bottom, top - bottom, 0}); |
| else |
| enqueue1(wbufp, (Obj){top, bottom - top, 0}); |
| #endif |
| } |
| |
| void |
| runtime_MSpan_EnsureSwept(MSpan *s) |
| { |
| M *m = runtime_m(); |
| G *g = runtime_g(); |
| uint32 sg; |
| |
| // Caller must disable preemption. |
| // Otherwise when this function returns the span can become unswept again |
| // (if GC is triggered on another goroutine). |
| if(m->locks == 0 && m->mallocing == 0 && g != m->g0) |
| runtime_throw("MSpan_EnsureSwept: m is not locked"); |
| |
| sg = runtime_mheap.sweepgen; |
| if(runtime_atomicload(&s->sweepgen) == sg) |
| return; |
| if(runtime_cas(&s->sweepgen, sg-2, sg-1)) { |
| runtime_MSpan_Sweep(s); |
| return; |
| } |
| // unfortunate condition, and we don't have efficient means to wait |
| while(runtime_atomicload(&s->sweepgen) != sg) |
| runtime_osyield(); |
| } |
| |
| // Sweep frees or collects finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| // Returns true if the span was returned to heap. |
| bool |
| runtime_MSpan_Sweep(MSpan *s) |
| { |
| M *m; |
| int32 cl, n, npages, nfree; |
| uintptr size, off, *bitp, shift, bits; |
| uint32 sweepgen; |
| byte *p; |
| MCache *c; |
| byte *arena_start; |
| MLink head, *end; |
| byte *type_data; |
| byte compression; |
| uintptr type_data_inc; |
| MLink *x; |
| Special *special, **specialp, *y; |
| bool res, sweepgenset; |
| |
| m = runtime_m(); |
| |
| // It's critical that we enter this function with preemption disabled, |
| // GC must not start while we are in the middle of this function. |
| if(m->locks == 0 && m->mallocing == 0 && runtime_g() != m->g0) |
| runtime_throw("MSpan_Sweep: m is not locked"); |
| sweepgen = runtime_mheap.sweepgen; |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime_printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime_throw("MSpan_Sweep: bad span state"); |
| } |
| arena_start = runtime_mheap.arena_start; |
| cl = s->sizeclass; |
| size = s->elemsize; |
| if(cl == 0) { |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| npages = runtime_class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| res = false; |
| nfree = 0; |
| end = &head; |
| c = m->mcache; |
| sweepgenset = false; |
| |
| // mark any free objects in this span so we don't collect them |
| for(x = s->freelist; x != nil; x = x->next) { |
| // This is markonly(x) but faster because we don't need |
| // atomic access and we're guaranteed to be pointing at |
| // the head of a valid object. |
| off = (uintptr*)x - (uintptr*)runtime_mheap.arena_start; |
| bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *bitp |= bitMarked<<shift; |
| } |
| |
| // Unlink & free special records for any objects we're about to free. |
| specialp = &s->specials; |
| special = *specialp; |
| while(special != nil) { |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (byte*)(s->start << PageShift) + special->offset/size*size; |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| if((bits & (bitAllocated|bitMarked)) == bitAllocated) { |
| // Find the exact byte for which the special was setup |
| // (as opposed to object beginning). |
| p = (byte*)(s->start << PageShift) + special->offset; |
| // about to free object: splice out special record |
| y = special; |
| special = special->next; |
| *specialp = special; |
| if(!runtime_freespecial(y, p, size, false)) { |
| // stop freeing of object if it has a finalizer |
| *bitp |= bitMarked << shift; |
| } |
| } else { |
| // object is still live: keep special record |
| specialp = &special->next; |
| special = *specialp; |
| } |
| } |
| |
| type_data = (byte*)s->types.data; |
| type_data_inc = sizeof(uintptr); |
| compression = s->types.compression; |
| switch(compression) { |
| case MTypes_Bytes: |
| type_data += 8*sizeof(uintptr); |
| type_data_inc = 1; |
| break; |
| } |
| |
| // Sweep through n objects of given size starting at p. |
| // This thread owns the span now, so it can manipulate |
| // the block bitmap without atomic operations. |
| p = (byte*)(s->start << PageShift); |
| for(; n > 0; n--, p += size, type_data+=type_data_inc) { |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| if((bits & bitAllocated) == 0) |
| continue; |
| |
| if((bits & bitMarked) != 0) { |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| |
| if(runtime_debug.allocfreetrace) |
| runtime_tracefree(p, size); |
| |
| // Clear mark and scan bits. |
| *bitp &= ~((bitScan|bitMarked)<<shift); |
| |
| if(cl == 0) { |
| // Free large span. |
| runtime_unmarkspan(p, 1<<PageShift); |
| s->needzero = 1; |
| // important to set sweepgen before returning it to heap |
| runtime_atomicstore(&s->sweepgen, sweepgen); |
| sweepgenset = true; |
| // See note about SysFault vs SysFree in malloc.goc. |
| if(runtime_debug.efence) |
| runtime_SysFault(p, size); |
| else |
| runtime_MHeap_Free(&runtime_mheap, s, 1); |
| c->local_nlargefree++; |
| c->local_largefree += size; |
| runtime_xadd64(&mstats()->next_gc, -(uint64)(size * (gcpercent + 100)/100)); |
| res = true; |
| } else { |
| // Free small object. |
| switch(compression) { |
| case MTypes_Words: |
| *(uintptr*)type_data = 0; |
| break; |
| case MTypes_Bytes: |
| *(byte*)type_data = 0; |
| break; |
| } |
| if(size > 2*sizeof(uintptr)) |
| ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" |
| else if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = 0; |
| |
| end->next = (MLink*)p; |
| end = (MLink*)p; |
| nfree++; |
| } |
| } |
| |
| // We need to set s->sweepgen = h->sweepgen only when all blocks are swept, |
| // because of the potential for a concurrent free/SetFinalizer. |
| // But we need to set it before we make the span available for allocation |
| // (return it to heap or mcentral), because allocation code assumes that a |
| // span is already swept if available for allocation. |
| |
| if(!sweepgenset && nfree == 0) { |
| // The span must be in our exclusive ownership until we update sweepgen, |
| // check for potential races. |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime_printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime_throw("MSpan_Sweep: bad span state after sweep"); |
| } |
| runtime_atomicstore(&s->sweepgen, sweepgen); |
| } |
| if(nfree > 0) { |
| c->local_nsmallfree[cl] += nfree; |
| c->local_cachealloc -= nfree * size; |
| runtime_xadd64(&mstats()->next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100)); |
| res = runtime_MCentral_FreeSpan(&runtime_mheap.central[cl], s, nfree, head.next, end); |
| //MCentral_FreeSpan updates sweepgen |
| } |
| return res; |
| } |
| |
| // State of background sweep. |
| // Protected by gclock. |
| static struct |
| { |
| G* g; |
| bool parked; |
| |
| MSpan** spans; |
| uint32 nspan; |
| uint32 spanidx; |
| } sweep; |
| |
| // background sweeping goroutine |
| static void |
| bgsweep(void* dummy __attribute__ ((unused))) |
| { |
| runtime_g()->issystem = 1; |
| for(;;) { |
| while(runtime_sweepone() != (uintptr)-1) { |
| gcstats.nbgsweep++; |
| runtime_gosched(); |
| } |
| runtime_lock(&gclock); |
| if(!runtime_mheap.sweepdone) { |
| // It's possible if GC has happened between sweepone has |
| // returned -1 and gclock lock. |
| runtime_unlock(&gclock); |
| continue; |
| } |
| sweep.parked = true; |
| runtime_g()->isbackground = true; |
| runtime_goparkunlock(&gclock, runtime_gostringnocopy((const byte*)"GC sweep wait"), traceEvGoBlock, 1); |
| runtime_g()->isbackground = false; |
| } |
| } |
| |
| // sweeps one span |
| // returns number of pages returned to heap, or -1 if there is nothing to sweep |
| uintptr |
| runtime_sweepone(void) |
| { |
| M *m = runtime_m(); |
| MSpan *s; |
| uint32 idx, sg; |
| uintptr npages; |
| |
| // increment locks to ensure that the goroutine is not preempted |
| // in the middle of sweep thus leaving the span in an inconsistent state for next GC |
| m->locks++; |
| sg = runtime_mheap.sweepgen; |
| for(;;) { |
| idx = runtime_xadd(&sweep.spanidx, 1) - 1; |
| if(idx >= sweep.nspan) { |
| runtime_mheap.sweepdone = true; |
| m->locks--; |
| return (uintptr)-1; |
| } |
| s = sweep.spans[idx]; |
| if(s->state != MSpanInUse) { |
| s->sweepgen = sg; |
| continue; |
| } |
| if(s->sweepgen != sg-2 || !runtime_cas(&s->sweepgen, sg-2, sg-1)) |
| continue; |
| if(s->incache) |
| runtime_throw("sweep of incache span"); |
| npages = s->npages; |
| if(!runtime_MSpan_Sweep(s)) |
| npages = 0; |
| m->locks--; |
| return npages; |
| } |
| } |
| |
| static void |
| dumpspan(uint32 idx) |
| { |
| int32 sizeclass, n, npages, i, column; |
| uintptr size; |
| byte *p; |
| byte *arena_start; |
| MSpan *s; |
| bool allocated; |
| |
| s = runtime_mheap.allspans[idx]; |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime_mheap.arena_start; |
| p = (byte*)(s->start << PageShift); |
| sizeclass = s->sizeclass; |
| size = s->elemsize; |
| if(sizeclass == 0) { |
| n = 1; |
| } else { |
| npages = runtime_class_to_allocnpages[sizeclass]; |
| n = (npages << PageShift) / size; |
| } |
| |
| runtime_printf("%p .. %p:\n", p, p+n*size); |
| column = 0; |
| for(; n>0; n--, p+=size) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| allocated = ((bits & bitAllocated) != 0); |
| |
| for(i=0; (uint32)i<size; i+=sizeof(void*)) { |
| if(column == 0) { |
| runtime_printf("\t"); |
| } |
| if(i == 0) { |
| runtime_printf(allocated ? "(" : "["); |
| runtime_printf("%p: ", p+i); |
| } else { |
| runtime_printf(" "); |
| } |
| |
| runtime_printf("%p", *(void**)(p+i)); |
| |
| if(i+sizeof(void*) >= size) { |
| runtime_printf(allocated ? ") " : "] "); |
| } |
| |
| column++; |
| if(column == 8) { |
| runtime_printf("\n"); |
| column = 0; |
| } |
| } |
| } |
| runtime_printf("\n"); |
| } |
| |
| // A debugging function to dump the contents of memory |
| void |
| runtime_memorydump(void) |
| { |
| uint32 spanidx; |
| |
| for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) { |
| dumpspan(spanidx); |
| } |
| } |
| |
| void |
| runtime_gchelper(void) |
| { |
| uint32 nproc; |
| |
| runtime_m()->traceback = 2; |
| gchelperstart(); |
| |
| // parallel mark for over gc roots |
| runtime_parfordo(work.markfor); |
| |
| // help other threads scan secondary blocks |
| scanblock(nil, true); |
| |
| bufferList[runtime_m()->helpgc].busy = 0; |
| nproc = work.nproc; // work.nproc can change right after we increment work.ndone |
| if(runtime_xadd(&work.ndone, +1) == nproc-1) |
| runtime_notewakeup(&work.alldone); |
| runtime_m()->traceback = 0; |
| } |
| |
| static void |
| cachestats(void) |
| { |
| MCache *c; |
| P *p, **pp; |
| |
| for(pp=runtime_getAllP(); (p=*pp) != nil; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime_purgecachedstats(c); |
| } |
| } |
| |
| static void |
| flushallmcaches(void) |
| { |
| P *p, **pp; |
| MCache *c; |
| |
| // Flush MCache's to MCentral. |
| for(pp=runtime_getAllP(); (p=*pp) != nil; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime_MCache_ReleaseAll(c); |
| } |
| } |
| |
| void |
| runtime_updatememstats(GCStats *stats) |
| { |
| M *mp; |
| MSpan *s; |
| uint32 i; |
| uint64 stacks_inuse, smallfree; |
| uint64 *src, *dst; |
| MStats *pmstats; |
| |
| if(stats) |
| runtime_memclr((byte*)stats, sizeof(*stats)); |
| stacks_inuse = 0; |
| for(mp=runtime_getallm(); mp; mp=mp->alllink) { |
| //stacks_inuse += mp->stackinuse*FixedStack; |
| if(stats) { |
| src = (uint64*)&mp->gcstats; |
| dst = (uint64*)stats; |
| for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) |
| dst[i] += src[i]; |
| runtime_memclr((byte*)&mp->gcstats, sizeof(mp->gcstats)); |
| } |
| } |
| pmstats = mstats(); |
| pmstats->stacks_inuse = stacks_inuse; |
| pmstats->mcache_inuse = runtime_mheap.cachealloc.inuse; |
| pmstats->mspan_inuse = runtime_mheap.spanalloc.inuse; |
| pmstats->sys = pmstats->heap_sys + pmstats->stacks_sys + pmstats->mspan_sys + |
| pmstats->mcache_sys + pmstats->buckhash_sys + pmstats->gc_sys + pmstats->other_sys; |
| |
| // Calculate memory allocator stats. |
| // During program execution we only count number of frees and amount of freed memory. |
| // Current number of alive object in the heap and amount of alive heap memory |
| // are calculated by scanning all spans. |
| // Total number of mallocs is calculated as number of frees plus number of alive objects. |
| // Similarly, total amount of allocated memory is calculated as amount of freed memory |
| // plus amount of alive heap memory. |
| pmstats->alloc = 0; |
| pmstats->total_alloc = 0; |
| pmstats->nmalloc = 0; |
| pmstats->nfree = 0; |
| for(i = 0; i < nelem(pmstats->by_size); i++) { |
| pmstats->by_size[i].nmalloc = 0; |
| pmstats->by_size[i].nfree = 0; |
| } |
| |
| // Flush MCache's to MCentral. |
| flushallmcaches(); |
| |
| // Aggregate local stats. |
| cachestats(); |
| |
| // Scan all spans and count number of alive objects. |
| for(i = 0; i < runtime_mheap.nspan; i++) { |
| s = runtime_mheap.allspans[i]; |
| if(s->state != MSpanInUse) |
| continue; |
| if(s->sizeclass == 0) { |
| pmstats->nmalloc++; |
| pmstats->alloc += s->elemsize; |
| } else { |
| pmstats->nmalloc += s->ref; |
| pmstats->by_size[s->sizeclass].nmalloc += s->ref; |
| pmstats->alloc += s->ref*s->elemsize; |
| } |
| } |
| |
| // Aggregate by size class. |
| smallfree = 0; |
| pmstats->nfree = runtime_mheap.nlargefree; |
| for(i = 0; i < nelem(pmstats->by_size); i++) { |
| pmstats->nfree += runtime_mheap.nsmallfree[i]; |
| pmstats->by_size[i].nfree = runtime_mheap.nsmallfree[i]; |
| pmstats->by_size[i].nmalloc += runtime_mheap.nsmallfree[i]; |
| smallfree += runtime_mheap.nsmallfree[i] * runtime_class_to_size[i]; |
| } |
| pmstats->nmalloc += pmstats->nfree; |
| |
| // Calculate derived stats. |
| pmstats->total_alloc = pmstats->alloc + runtime_mheap.largefree + smallfree; |
| pmstats->heap_alloc = pmstats->alloc; |
| pmstats->heap_objects = pmstats->nmalloc - pmstats->nfree; |
| } |
| |
| // Structure of arguments passed to function gc(). |
| // This allows the arguments to be passed via runtime_mcall. |
| struct gc_args |
| { |
| int64 start_time; // start time of GC in ns (just before stoptheworld) |
| bool eagersweep; |
| }; |
| |
| static void gc(struct gc_args *args); |
| static void mgc(G *gp); |
| static FuncVal mgcGo = { (void(*)(void))mgc }; |
| |
| static int32 |
| readgogc(void) |
| { |
| String s; |
| const byte *p; |
| |
| s = runtime_getenv("GOGC"); |
| if(s.len == 0) |
| return 100; |
| p = s.str; |
| if(s.len == 3 && runtime_strcmp((const char *)p, "off") == 0) |
| return -1; |
| return runtime_atoi(p, s.len); |
| } |
| |
| // force = 1 - do GC regardless of current heap usage |
| // force = 2 - go GC and eager sweep |
| void |
| runtime_gc(int32 force) |
| { |
| M *m; |
| G *g; |
| struct gc_args a; |
| int32 i; |
| MStats *pmstats; |
| |
| // The atomic operations are not atomic if the uint64s |
| // are not aligned on uint64 boundaries. This has been |
| // a problem in the past. |
| if((((uintptr)&work.wempty) & 7) != 0) |
| runtime_throw("runtime: gc work buffer is misaligned"); |
| if((((uintptr)&work.full) & 7) != 0) |
| runtime_throw("runtime: gc work buffer is misaligned"); |
| |
| // Make sure all registers are saved on stack so that |
| // scanstack sees them. |
| __builtin_unwind_init(); |
| |
| // The gc is turned off (via enablegc) until |
| // the bootstrap has completed. |
| // Also, malloc gets called in the guts |
| // of a number of libraries that might be |
| // holding locks. To avoid priority inversion |
| // problems, don't bother trying to run gc |
| // while holding a lock. The next mallocgc |
| // without a lock will do the gc instead. |
| m = runtime_m(); |
| pmstats = mstats(); |
| if(!pmstats->enablegc || runtime_g() == m->g0 || m->locks > 0 || runtime_panicking() || m->preemptoff.len > 0) |
| return; |
| |
| if(gcpercent == GcpercentUnknown) { // first time through |
| runtime_lock(&runtime_mheap); |
| if(gcpercent == GcpercentUnknown) |
| gcpercent = readgogc(); |
| runtime_unlock(&runtime_mheap); |
| } |
| if(gcpercent < 0) |
| return; |
| |
| runtime_acquireWorldsema(); |
| if(force==0 && pmstats->heap_alloc < pmstats->next_gc) { |
| // typically threads which lost the race to grab |
| // worldsema exit here when gc is done. |
| runtime_releaseWorldsema(); |
| return; |
| } |
| |
| // Ok, we're doing it! Stop everybody else |
| a.start_time = runtime_nanotime(); |
| a.eagersweep = force >= 2; |
| m->gcing = 1; |
| runtime_callStopTheWorldWithSema(); |
| |
| clearpools(); |
| |
| // Run gc on the g0 stack. We do this so that the g stack |
| // we're currently running on will no longer change. Cuts |
| // the root set down a bit (g0 stacks are not scanned, and |
| // we don't need to scan gc's internal state). Also an |
| // enabler for copyable stacks. |
| for(i = 0; i < (runtime_debug.gctrace > 1 ? 2 : 1); i++) { |
| if(i > 0) |
| a.start_time = runtime_nanotime(); |
| // switch to g0, call gc(&a), then switch back |
| g = runtime_g(); |
| g->param = &a; |
| g->atomicstatus = _Gwaiting; |
| g->waitreason = runtime_gostringnocopy((const byte*)"garbage collection"); |
| runtime_mcall(&mgcGo); |
| m = runtime_m(); |
| } |
| |
| // all done |
| m->gcing = 0; |
| m->locks++; |
| runtime_releaseWorldsema(); |
| runtime_callStartTheWorldWithSema(); |
| m->locks--; |
| |
| // now that gc is done, kick off finalizer thread if needed |
| if(!ConcurrentSweep) { |
| // give the queued finalizers, if any, a chance to run |
| runtime_gosched(); |
| } else { |
| // For gccgo, let other goroutines run. |
| runtime_gosched(); |
| } |
| } |
| |
| static void |
| mgc(G *gp) |
| { |
| gc(gp->param); |
| gp->param = nil; |
| gp->atomicstatus = _Grunning; |
| runtime_gogo(gp); |
| } |
| |
| static void |
| gc(struct gc_args *args) |
| { |
| M *m; |
| int64 tm0, tm1, tm2, tm3, tm4; |
| uint64 heap0, heap1, obj, ninstr; |
| GCStats stats; |
| uint32 i; |
| MStats *pmstats; |
| // Eface eface; |
| |
| m = runtime_m(); |
| |
| if(runtime_debug.allocfreetrace) |
| runtime_tracegc(); |
| |
| m->traceback = 2; |
| tm0 = args->start_time; |
| work.tstart = args->start_time; |
| |
| if(CollectStats) |
| runtime_memclr((byte*)&gcstats, sizeof(gcstats)); |
| |
| m->locks++; // disable gc during mallocs in parforalloc |
| if(work.markfor == nil) |
| work.markfor = runtime_parforalloc(_MaxGcproc); |
| m->locks--; |
| |
| tm1 = 0; |
| if(runtime_debug.gctrace) |
| tm1 = runtime_nanotime(); |
| |
| // Sweep what is not sweeped by bgsweep. |
| while(runtime_sweepone() != (uintptr)-1) |
| gcstats.npausesweep++; |
| |
| work.nwait = 0; |
| work.ndone = 0; |
| work.nproc = runtime_gcprocs(); |
| runtime_parforsetup(work.markfor, work.nproc, RootCount + runtime_getallglen(), false, &markroot_funcval); |
| if(work.nproc > 1) { |
| runtime_noteclear(&work.alldone); |
| runtime_helpgc(work.nproc); |
| } |
| |
| tm2 = 0; |
| if(runtime_debug.gctrace) |
| tm2 = runtime_nanotime(); |
| |
| gchelperstart(); |
| runtime_parfordo(work.markfor); |
| scanblock(nil, true); |
| |
| tm3 = 0; |
| if(runtime_debug.gctrace) |
| tm3 = runtime_nanotime(); |
| |
| bufferList[m->helpgc].busy = 0; |
| if(work.nproc > 1) |
| runtime_notesleep(&work.alldone); |
| |
| cachestats(); |
| // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap |
| // estimate what was live heap size after previous GC (for tracing only) |
| pmstats = mstats(); |
| heap0 = pmstats->next_gc*100/(gcpercent+100); |
| // conservatively set next_gc to high value assuming that everything is live |
| // concurrent/lazy sweep will reduce this number while discovering new garbage |
| pmstats->next_gc = pmstats->heap_alloc+(pmstats->heap_alloc-runtime_stacks_sys)*gcpercent/100; |
| |
| tm4 = runtime_nanotime(); |
| pmstats->last_gc = runtime_unixnanotime(); // must be Unix time to make sense to user |
| pmstats->pause_ns[pmstats->numgc%nelem(pmstats->pause_ns)] = tm4 - tm0; |
| pmstats->pause_end[pmstats->numgc%nelem(pmstats->pause_end)] = pmstats->last_gc; |
| pmstats->pause_total_ns += tm4 - tm0; |
| pmstats->numgc++; |
| if(pmstats->debuggc) |
| runtime_printf("pause %D\n", tm4-tm0); |
| |
| if(runtime_debug.gctrace) { |
| heap1 = pmstats->heap_alloc; |
| runtime_updatememstats(&stats); |
| if(heap1 != pmstats->heap_alloc) { |
| runtime_printf("runtime: mstats skew: heap=%D/%D\n", heap1, pmstats->heap_alloc); |
| runtime_throw("mstats skew"); |
| } |
| obj = pmstats->nmalloc - pmstats->nfree; |
| |
| stats.nprocyield += work.markfor->nprocyield; |
| stats.nosyield += work.markfor->nosyield; |
| stats.nsleep += work.markfor->nsleep; |
| |
| runtime_printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects," |
| " %d/%d/%d sweeps," |
| " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", |
| pmstats->numgc, work.nproc, (tm1-tm0)/1000, (tm2-tm1)/1000, (tm3-tm2)/1000, (tm4-tm3)/1000, |
| heap0>>20, heap1>>20, obj, |
| pmstats->nmalloc, pmstats->nfree, |
| sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep, |
| stats.nhandoff, stats.nhandoffcnt, |
| work.markfor->nsteal, work.markfor->nstealcnt, |
| stats.nprocyield, stats.nosyield, stats.nsleep); |
| gcstats.nbgsweep = gcstats.npausesweep = 0; |
| if(CollectStats) { |
| runtime_printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", |
| gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); |
| if(gcstats.ptr.cnt != 0) |
| runtime_printf("avg ptrbufsize: %D (%D/%D)\n", |
| gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); |
| if(gcstats.obj.cnt != 0) |
| runtime_printf("avg nobj: %D (%D/%D)\n", |
| gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); |
| runtime_printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); |
| |
| runtime_printf("instruction counts:\n"); |
| ninstr = 0; |
| for(i=0; i<nelem(gcstats.instr); i++) { |
| runtime_printf("\t%d:\t%D\n", i, gcstats.instr[i]); |
| ninstr += gcstats.instr[i]; |
| } |
| runtime_printf("\ttotal:\t%D\n", ninstr); |
| |
| runtime_printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull); |
| |
| runtime_printf("markonly base lookup: bit %D word %D span %D\n", gcstats.markonly.foundbit, gcstats.markonly.foundword, gcstats.markonly.foundspan); |
| runtime_printf("flushptrbuf base lookup: bit %D word %D span %D\n", gcstats.flushptrbuf.foundbit, gcstats.flushptrbuf.foundword, gcstats.flushptrbuf.foundspan); |
| } |
| } |
| |
| // We cache current runtime_mheap.allspans array in sweep.spans, |
| // because the former can be resized and freed. |
| // Otherwise we would need to take heap lock every time |
| // we want to convert span index to span pointer. |
| |
| // Free the old cached array if necessary. |
| if(sweep.spans && sweep.spans != runtime_mheap.allspans) |
| runtime_SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &pmstats->other_sys); |
| // Cache the current array. |
| runtime_mheap.sweepspans = runtime_mheap.allspans; |
| runtime_mheap.sweepgen += 2; |
| runtime_mheap.sweepdone = false; |
| sweep.spans = runtime_mheap.allspans; |
| sweep.nspan = runtime_mheap.nspan; |
| sweep.spanidx = 0; |
| |
| // Temporary disable concurrent sweep, because we see failures on builders. |
| if(ConcurrentSweep && !args->eagersweep) { |
| runtime_lock(&gclock); |
| if(sweep.g == nil) |
| sweep.g = __go_go(bgsweep, nil); |
| else if(sweep.parked) { |
| sweep.parked = false; |
| runtime_ready(sweep.g, 0, true); |
| } |
| runtime_unlock(&gclock); |
| } else { |
| // Sweep all spans eagerly. |
| while(runtime_sweepone() != (uintptr)-1) |
| gcstats.npausesweep++; |
| // Do an additional mProf_GC, because all 'free' events are now real as well. |
| runtime_MProf_GC(); |
| } |
| |
| runtime_MProf_GC(); |
| m->traceback = 0; |
| } |
| |
| void runtime_debug_readGCStats(Slice*) |
| __asm__("runtime_debug.readGCStats"); |
| |
| void |
| runtime_debug_readGCStats(Slice *pauses) |
| { |
| uint64 *p; |
| uint32 i, n; |
| MStats *pmstats; |
| |
| // Calling code in runtime/debug should make the slice large enough. |
| pmstats = mstats(); |
| if((size_t)pauses->cap < nelem(pmstats->pause_ns)+3) |
| runtime_throw("runtime: short slice passed to readGCStats"); |
| |
| // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. |
| p = (uint64*)pauses->array; |
| runtime_lock(&runtime_mheap); |
| n = pmstats->numgc; |
| if(n > nelem(pmstats->pause_ns)) |
| n = nelem(pmstats->pause_ns); |
| |
| // The pause buffer is circular. The most recent pause is at |
| // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward |
| // from there to go back farther in time. We deliver the times |
| // most recent first (in p[0]). |
| for(i=0; i<n; i++) { |
| p[i] = pmstats->pause_ns[(pmstats->numgc-1-i)%nelem(pmstats->pause_ns)]; |
| p[n+i] = pmstats->pause_end[(pmstats->numgc-1-i)%nelem(pmstats->pause_ns)]; |
| } |
| |
| p[n+n] = pmstats->last_gc; |
| p[n+n+1] = pmstats->numgc; |
| p[n+n+2] = pmstats->pause_total_ns; |
| runtime_unlock(&runtime_mheap); |
| pauses->__count = n+n+3; |
| } |
| |
| int32 |
| runtime_setgcpercent(int32 in) { |
| int32 out; |
| |
| runtime_lock(&runtime_mheap); |
| if(gcpercent == GcpercentUnknown) |
| gcpercent = readgogc(); |
| out = gcpercent; |
| if(in < 0) |
| in = -1; |
| gcpercent = in; |
| runtime_unlock(&runtime_mheap); |
| return out; |
| } |
| |
| static void |
| gchelperstart(void) |
| { |
| M *m; |
| |
| m = runtime_m(); |
| if(m->helpgc < 0 || m->helpgc >= _MaxGcproc) |
| runtime_throw("gchelperstart: bad m->helpgc"); |
| if(runtime_xchg(&bufferList[m->helpgc].busy, 1)) |
| runtime_throw("gchelperstart: already busy"); |
| if(runtime_g() != m->g0) |
| runtime_throw("gchelper not running on g0 stack"); |
| } |
| |
| void |
| runtime_marknogc(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitAllocated<<shift)) | bitBlockBoundary<<shift; |
| } |
| |
| void |
| runtime_markscan(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b |= bitScan<<shift; |
| } |
| |
| // mark the block at v as freed. |
| void |
| runtime_markfreed(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| if(0) |
| runtime_printf("markfreed %p\n", v); |
| |
| if((byte*)v > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markfreed: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitMask<<shift)) | (bitAllocated<<shift); |
| } |
| |
| // check that the block at v of size n is marked freed. |
| void |
| runtime_checkfreed(void *v, uintptr n) |
| { |
| uintptr *b, bits, off, shift; |
| |
| if(!runtime_checking) |
| return; |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| return; // not allocated, so okay |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| bits = *b>>shift; |
| if((bits & bitAllocated) != 0) { |
| runtime_printf("checkfreed %p+%p: off=%p have=%p\n", |
| v, n, off, bits & bitMask); |
| runtime_throw("checkfreed: not freed"); |
| } |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime_markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr *b, *b0, off, shift, i, x; |
| byte *p; |
| |
| if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markspan: bad pointer"); |
| |
| if(runtime_checking) { |
| // bits should be all zero at the start |
| off = (byte*)v + size - runtime_mheap.arena_start; |
| b = (uintptr*)(runtime_mheap.arena_start - off/wordsPerBitmapWord); |
| for(i = 0; i < size/PtrSize/wordsPerBitmapWord; i++) { |
| if(b[i] != 0) |
| runtime_throw("markspan: span bits not zero"); |
| } |
| } |
| |
| p = v; |
| if(leftover) // mark a boundary just past end of last block too |
| n++; |
| |
| b0 = nil; |
| x = 0; |
| for(; n-- > 0; p += size) { |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| if(b0 != b) { |
| if(b0 != nil) |
| *b0 = x; |
| b0 = b; |
| x = 0; |
| } |
| x |= bitAllocated<<shift; |
| } |
| *b0 = x; |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime_unmarkspan(void *v, uintptr n) |
| { |
| uintptr *p, *b, off; |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markspan: bad pointer"); |
| |
| p = v; |
| off = p - (uintptr*)runtime_mheap.arena_start; // word offset |
| if(off % wordsPerBitmapWord != 0) |
| runtime_throw("markspan: unaligned pointer"); |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| n /= PtrSize; |
| if(n%wordsPerBitmapWord != 0) |
| runtime_throw("unmarkspan: unaligned length"); |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| n /= wordsPerBitmapWord; |
| while(n-- > 0) |
| *b-- = 0; |
| } |
| |
| void |
| runtime_MHeap_MapBits(MHeap *h) |
| { |
| size_t page_size; |
| |
| // Caller has added extra mappings to the arena. |
| // Add extra mappings of bitmap words as needed. |
| // We allocate extra bitmap pieces in chunks of bitmapChunk. |
| enum { |
| bitmapChunk = 8192 |
| }; |
| uintptr n; |
| |
| n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; |
| n = ROUND(n, bitmapChunk); |
| n = ROUND(n, PageSize); |
| page_size = getpagesize(); |
| n = ROUND(n, page_size); |
| if(h->bitmap_mapped >= n) |
| return; |
| |
| runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats()->gc_sys); |
| h->bitmap_mapped = n; |
| } |