|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package strconv | 
|  |  | 
|  | // decimal to binary floating point conversion. | 
|  | // Algorithm: | 
|  | //   1) Store input in multiprecision decimal. | 
|  | //   2) Multiply/divide decimal by powers of two until in range [0.5, 1) | 
|  | //   3) Multiply by 2^precision and round to get mantissa. | 
|  |  | 
|  | import "math" | 
|  | import "runtime" | 
|  |  | 
|  | var optimize = true // can change for testing | 
|  |  | 
|  | func equalIgnoreCase(s1, s2 string) bool { | 
|  | if len(s1) != len(s2) { | 
|  | return false | 
|  | } | 
|  | for i := 0; i < len(s1); i++ { | 
|  | c1 := s1[i] | 
|  | if 'A' <= c1 && c1 <= 'Z' { | 
|  | c1 += 'a' - 'A' | 
|  | } | 
|  | c2 := s2[i] | 
|  | if 'A' <= c2 && c2 <= 'Z' { | 
|  | c2 += 'a' - 'A' | 
|  | } | 
|  | if c1 != c2 { | 
|  | return false | 
|  | } | 
|  | } | 
|  | return true | 
|  | } | 
|  |  | 
|  | func special(s string) (f float64, ok bool) { | 
|  | if len(s) == 0 { | 
|  | return | 
|  | } | 
|  | switch s[0] { | 
|  | default: | 
|  | return | 
|  | case '+': | 
|  | if equalIgnoreCase(s, "+inf") || equalIgnoreCase(s, "+infinity") { | 
|  | return math.Inf(1), true | 
|  | } | 
|  | case '-': | 
|  | if equalIgnoreCase(s, "-inf") || equalIgnoreCase(s, "-infinity") { | 
|  | return math.Inf(-1), true | 
|  | } | 
|  | case 'n', 'N': | 
|  | if equalIgnoreCase(s, "nan") { | 
|  | return math.NaN(), true | 
|  | } | 
|  | case 'i', 'I': | 
|  | if equalIgnoreCase(s, "inf") || equalIgnoreCase(s, "infinity") { | 
|  | return math.Inf(1), true | 
|  | } | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func (b *decimal) set(s string) (ok bool) { | 
|  | i := 0 | 
|  | b.neg = false | 
|  | b.trunc = false | 
|  |  | 
|  | // optional sign | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | switch { | 
|  | case s[i] == '+': | 
|  | i++ | 
|  | case s[i] == '-': | 
|  | b.neg = true | 
|  | i++ | 
|  | } | 
|  |  | 
|  | // digits | 
|  | sawdot := false | 
|  | sawdigits := false | 
|  | for ; i < len(s); i++ { | 
|  | switch { | 
|  | case s[i] == '.': | 
|  | if sawdot { | 
|  | return | 
|  | } | 
|  | sawdot = true | 
|  | b.dp = b.nd | 
|  | continue | 
|  |  | 
|  | case '0' <= s[i] && s[i] <= '9': | 
|  | sawdigits = true | 
|  | if s[i] == '0' && b.nd == 0 { // ignore leading zeros | 
|  | b.dp-- | 
|  | continue | 
|  | } | 
|  | if b.nd < len(b.d) { | 
|  | b.d[b.nd] = s[i] | 
|  | b.nd++ | 
|  | } else if s[i] != '0' { | 
|  | b.trunc = true | 
|  | } | 
|  | continue | 
|  | } | 
|  | break | 
|  | } | 
|  | if !sawdigits { | 
|  | return | 
|  | } | 
|  | if !sawdot { | 
|  | b.dp = b.nd | 
|  | } | 
|  |  | 
|  | // optional exponent moves decimal point. | 
|  | // if we read a very large, very long number, | 
|  | // just be sure to move the decimal point by | 
|  | // a lot (say, 100000).  it doesn't matter if it's | 
|  | // not the exact number. | 
|  | if i < len(s) && (s[i] == 'e' || s[i] == 'E') { | 
|  | i++ | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | esign := 1 | 
|  | if s[i] == '+' { | 
|  | i++ | 
|  | } else if s[i] == '-' { | 
|  | i++ | 
|  | esign = -1 | 
|  | } | 
|  | if i >= len(s) || s[i] < '0' || s[i] > '9' { | 
|  | return | 
|  | } | 
|  | e := 0 | 
|  | for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { | 
|  | if e < 10000 { | 
|  | e = e*10 + int(s[i]) - '0' | 
|  | } | 
|  | } | 
|  | b.dp += e * esign | 
|  | } | 
|  |  | 
|  | if i != len(s) { | 
|  | return | 
|  | } | 
|  |  | 
|  | ok = true | 
|  | return | 
|  | } | 
|  |  | 
|  | // readFloat reads a decimal mantissa and exponent from a float | 
|  | // string representation. It sets ok to false if the number could | 
|  | // not fit return types or is invalid. | 
|  | func readFloat(s string) (mantissa uint64, exp int, neg, trunc, ok bool) { | 
|  | const uint64digits = 19 | 
|  | i := 0 | 
|  |  | 
|  | // optional sign | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | switch { | 
|  | case s[i] == '+': | 
|  | i++ | 
|  | case s[i] == '-': | 
|  | neg = true | 
|  | i++ | 
|  | } | 
|  |  | 
|  | // digits | 
|  | sawdot := false | 
|  | sawdigits := false | 
|  | nd := 0 | 
|  | ndMant := 0 | 
|  | dp := 0 | 
|  | for ; i < len(s); i++ { | 
|  | switch c := s[i]; true { | 
|  | case c == '.': | 
|  | if sawdot { | 
|  | return | 
|  | } | 
|  | sawdot = true | 
|  | dp = nd | 
|  | continue | 
|  |  | 
|  | case '0' <= c && c <= '9': | 
|  | sawdigits = true | 
|  | if c == '0' && nd == 0 { // ignore leading zeros | 
|  | dp-- | 
|  | continue | 
|  | } | 
|  | nd++ | 
|  | if ndMant < uint64digits { | 
|  | mantissa *= 10 | 
|  | mantissa += uint64(c - '0') | 
|  | ndMant++ | 
|  | } else if s[i] != '0' { | 
|  | trunc = true | 
|  | } | 
|  | continue | 
|  | } | 
|  | break | 
|  | } | 
|  | if !sawdigits { | 
|  | return | 
|  | } | 
|  | if !sawdot { | 
|  | dp = nd | 
|  | } | 
|  |  | 
|  | // optional exponent moves decimal point. | 
|  | // if we read a very large, very long number, | 
|  | // just be sure to move the decimal point by | 
|  | // a lot (say, 100000).  it doesn't matter if it's | 
|  | // not the exact number. | 
|  | if i < len(s) && (s[i] == 'e' || s[i] == 'E') { | 
|  | i++ | 
|  | if i >= len(s) { | 
|  | return | 
|  | } | 
|  | esign := 1 | 
|  | if s[i] == '+' { | 
|  | i++ | 
|  | } else if s[i] == '-' { | 
|  | i++ | 
|  | esign = -1 | 
|  | } | 
|  | if i >= len(s) || s[i] < '0' || s[i] > '9' { | 
|  | return | 
|  | } | 
|  | e := 0 | 
|  | for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { | 
|  | if e < 10000 { | 
|  | e = e*10 + int(s[i]) - '0' | 
|  | } | 
|  | } | 
|  | dp += e * esign | 
|  | } | 
|  |  | 
|  | if i != len(s) { | 
|  | return | 
|  | } | 
|  |  | 
|  | if mantissa != 0 { | 
|  | exp = dp - ndMant | 
|  | } | 
|  | ok = true | 
|  | return | 
|  |  | 
|  | } | 
|  |  | 
|  | // decimal power of ten to binary power of two. | 
|  | var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26} | 
|  |  | 
|  | func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) { | 
|  | var exp int | 
|  | var mant uint64 | 
|  |  | 
|  | // Zero is always a special case. | 
|  | if d.nd == 0 { | 
|  | mant = 0 | 
|  | exp = flt.bias | 
|  | goto out | 
|  | } | 
|  |  | 
|  | // Obvious overflow/underflow. | 
|  | // These bounds are for 64-bit floats. | 
|  | // Will have to change if we want to support 80-bit floats in the future. | 
|  | if d.dp > 310 { | 
|  | goto overflow | 
|  | } | 
|  | if d.dp < -330 { | 
|  | // zero | 
|  | mant = 0 | 
|  | exp = flt.bias | 
|  | goto out | 
|  | } | 
|  |  | 
|  | // Scale by powers of two until in range [0.5, 1.0) | 
|  | exp = 0 | 
|  | for d.dp > 0 { | 
|  | var n int | 
|  | if d.dp >= len(powtab) { | 
|  | n = 27 | 
|  | } else { | 
|  | n = powtab[d.dp] | 
|  | } | 
|  | d.Shift(-n) | 
|  | exp += n | 
|  | } | 
|  | for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { | 
|  | var n int | 
|  | if -d.dp >= len(powtab) { | 
|  | n = 27 | 
|  | } else { | 
|  | n = powtab[-d.dp] | 
|  | } | 
|  | d.Shift(n) | 
|  | exp -= n | 
|  | } | 
|  |  | 
|  | // Our range is [0.5,1) but floating point range is [1,2). | 
|  | exp-- | 
|  |  | 
|  | // Minimum representable exponent is flt.bias+1. | 
|  | // If the exponent is smaller, move it up and | 
|  | // adjust d accordingly. | 
|  | if exp < flt.bias+1 { | 
|  | n := flt.bias + 1 - exp | 
|  | d.Shift(-n) | 
|  | exp += n | 
|  | } | 
|  |  | 
|  | if exp-flt.bias >= 1<<flt.expbits-1 { | 
|  | goto overflow | 
|  | } | 
|  |  | 
|  | // Extract 1+flt.mantbits bits. | 
|  | d.Shift(int(1 + flt.mantbits)) | 
|  | mant = d.RoundedInteger() | 
|  |  | 
|  | // Rounding might have added a bit; shift down. | 
|  | if mant == 2<<flt.mantbits { | 
|  | mant >>= 1 | 
|  | exp++ | 
|  | if exp-flt.bias >= 1<<flt.expbits-1 { | 
|  | goto overflow | 
|  | } | 
|  | } | 
|  |  | 
|  | // Denormalized? | 
|  | if mant&(1<<flt.mantbits) == 0 { | 
|  | exp = flt.bias | 
|  | } | 
|  | goto out | 
|  |  | 
|  | overflow: | 
|  | // ±Inf | 
|  | mant = 0 | 
|  | exp = 1<<flt.expbits - 1 + flt.bias | 
|  | overflow = true | 
|  |  | 
|  | out: | 
|  | // Assemble bits. | 
|  | bits := mant & (uint64(1)<<flt.mantbits - 1) | 
|  | bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits | 
|  | if d.neg { | 
|  | bits |= 1 << flt.mantbits << flt.expbits | 
|  | } | 
|  | return bits, overflow | 
|  | } | 
|  |  | 
|  | // Exact powers of 10. | 
|  | var float64pow10 = []float64{ | 
|  | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
|  | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
|  | 1e20, 1e21, 1e22, | 
|  | } | 
|  | var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10} | 
|  |  | 
|  | // If possible to convert decimal representation to 64-bit float f exactly, | 
|  | // entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits. | 
|  | // Three common cases: | 
|  | //	value is exact integer | 
|  | //	value is exact integer * exact power of ten | 
|  | //	value is exact integer / exact power of ten | 
|  | // These all produce potentially inexact but correctly rounded answers. | 
|  | func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) { | 
|  | if mantissa>>float64info.mantbits != 0 { | 
|  | return | 
|  | } | 
|  | // gccgo gets this wrong on 32-bit i386 when not using -msse. | 
|  | // See TestRoundTrip in atof_test.go for a test case. | 
|  | if runtime.GOARCH == "386" { | 
|  | return | 
|  | } | 
|  | f = float64(mantissa) | 
|  | if neg { | 
|  | f = -f | 
|  | } | 
|  | switch { | 
|  | case exp == 0: | 
|  | // an integer. | 
|  | return f, true | 
|  | // Exact integers are <= 10^15. | 
|  | // Exact powers of ten are <= 10^22. | 
|  | case exp > 0 && exp <= 15+22: // int * 10^k | 
|  | // If exponent is big but number of digits is not, | 
|  | // can move a few zeros into the integer part. | 
|  | if exp > 22 { | 
|  | f *= float64pow10[exp-22] | 
|  | exp = 22 | 
|  | } | 
|  | if f > 1e15 || f < -1e15 { | 
|  | // the exponent was really too large. | 
|  | return | 
|  | } | 
|  | return f * float64pow10[exp], true | 
|  | case exp < 0 && exp >= -22: // int / 10^k | 
|  | return f / float64pow10[-exp], true | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // If possible to compute mantissa*10^exp to 32-bit float f exactly, | 
|  | // entirely in floating-point math, do so, avoiding the machinery above. | 
|  | func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) { | 
|  | if mantissa>>float32info.mantbits != 0 { | 
|  | return | 
|  | } | 
|  | f = float32(mantissa) | 
|  | if neg { | 
|  | f = -f | 
|  | } | 
|  | switch { | 
|  | case exp == 0: | 
|  | return f, true | 
|  | // Exact integers are <= 10^7. | 
|  | // Exact powers of ten are <= 10^10. | 
|  | case exp > 0 && exp <= 7+10: // int * 10^k | 
|  | // If exponent is big but number of digits is not, | 
|  | // can move a few zeros into the integer part. | 
|  | if exp > 10 { | 
|  | f *= float32pow10[exp-10] | 
|  | exp = 10 | 
|  | } | 
|  | if f > 1e7 || f < -1e7 { | 
|  | // the exponent was really too large. | 
|  | return | 
|  | } | 
|  | return f * float32pow10[exp], true | 
|  | case exp < 0 && exp >= -10: // int / 10^k | 
|  | return f / float32pow10[-exp], true | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | const fnParseFloat = "ParseFloat" | 
|  |  | 
|  | func atof32(s string) (f float32, err error) { | 
|  | if val, ok := special(s); ok { | 
|  | return float32(val), nil | 
|  | } | 
|  |  | 
|  | if optimize { | 
|  | // Parse mantissa and exponent. | 
|  | mantissa, exp, neg, trunc, ok := readFloat(s) | 
|  | if ok { | 
|  | // Try pure floating-point arithmetic conversion. | 
|  | if !trunc { | 
|  | if f, ok := atof32exact(mantissa, exp, neg); ok { | 
|  | return f, nil | 
|  | } | 
|  | } | 
|  | // Try another fast path. | 
|  | ext := new(extFloat) | 
|  | if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float32info); ok { | 
|  | b, ovf := ext.floatBits(&float32info) | 
|  | f = math.Float32frombits(uint32(b)) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, err | 
|  | } | 
|  | } | 
|  | } | 
|  | var d decimal | 
|  | if !d.set(s) { | 
|  | return 0, syntaxError(fnParseFloat, s) | 
|  | } | 
|  | b, ovf := d.floatBits(&float32info) | 
|  | f = math.Float32frombits(uint32(b)) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, err | 
|  | } | 
|  |  | 
|  | func atof64(s string) (f float64, err error) { | 
|  | if val, ok := special(s); ok { | 
|  | return val, nil | 
|  | } | 
|  |  | 
|  | if optimize { | 
|  | // Parse mantissa and exponent. | 
|  | mantissa, exp, neg, trunc, ok := readFloat(s) | 
|  | if ok { | 
|  | // Try pure floating-point arithmetic conversion. | 
|  | if !trunc { | 
|  | if f, ok := atof64exact(mantissa, exp, neg); ok { | 
|  | return f, nil | 
|  | } | 
|  | } | 
|  | // Try another fast path. | 
|  | ext := new(extFloat) | 
|  | if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float64info); ok { | 
|  | b, ovf := ext.floatBits(&float64info) | 
|  | f = math.Float64frombits(b) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, err | 
|  | } | 
|  | } | 
|  | } | 
|  | var d decimal | 
|  | if !d.set(s) { | 
|  | return 0, syntaxError(fnParseFloat, s) | 
|  | } | 
|  | b, ovf := d.floatBits(&float64info) | 
|  | f = math.Float64frombits(b) | 
|  | if ovf { | 
|  | err = rangeError(fnParseFloat, s) | 
|  | } | 
|  | return f, err | 
|  | } | 
|  |  | 
|  | // ParseFloat converts the string s to a floating-point number | 
|  | // with the precision specified by bitSize: 32 for float32, or 64 for float64. | 
|  | // When bitSize=32, the result still has type float64, but it will be | 
|  | // convertible to float32 without changing its value. | 
|  | // | 
|  | // If s is well-formed and near a valid floating point number, | 
|  | // ParseFloat returns the nearest floating point number rounded | 
|  | // using IEEE754 unbiased rounding. | 
|  | // | 
|  | // The errors that ParseFloat returns have concrete type *NumError | 
|  | // and include err.Num = s. | 
|  | // | 
|  | // If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax. | 
|  | // | 
|  | // If s is syntactically well-formed but is more than 1/2 ULP | 
|  | // away from the largest floating point number of the given size, | 
|  | // ParseFloat returns f = ±Inf, err.Err = ErrRange. | 
|  | func ParseFloat(s string, bitSize int) (float64, error) { | 
|  | if bitSize == 32 { | 
|  | f, err := atof32(s) | 
|  | return float64(f), err | 
|  | } | 
|  | return atof64(s) | 
|  | } |