blob: d2f96b67406d901a842e866fe2339a2a19285a40 [file] [log] [blame]
// types.cc -- Go frontend types.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <algorithm>
#include "go-system.h"
#include <gmp.h>
extern "C"
{
#include "intl.h"
#include "tree.h"
#include "gimple.h"
#include "real.h"
}
#include "go-c.h"
#include "gogo.h"
#include "operator.h"
#include "expressions.h"
#include "statements.h"
#include "export.h"
#include "import.h"
#include "refcount.h"
#include "types.h"
// Class Type.
Type::Type(Type_classification classification)
: classification_(classification), tree_(NULL_TREE),
type_descriptor_decl_(NULL_TREE)
{
}
Type::~Type()
{
}
// Get the base type for a type--skip names and forward declarations.
Type*
Type::base()
{
switch (this->classification_)
{
case TYPE_NAMED:
return static_cast<Named_type*>(this)->real_type()->base();
case TYPE_FORWARD:
return static_cast<Forward_declaration_type*>(this)->real_type()->base();
default:
return this;
}
}
const Type*
Type::base() const
{
switch (this->classification_)
{
case TYPE_NAMED:
return static_cast<const Named_type*>(this)->real_type()->base();
case TYPE_FORWARD:
{
const Forward_declaration_type* ftype =
static_cast<const Forward_declaration_type*>(this);
return ftype->real_type()->base();
}
default:
return this;
}
}
// Skip defined forward declarations.
Type*
Type::forwarded()
{
Type* t = this;
Forward_declaration_type* ftype = t->forward_declaration_type();
while (ftype != NULL && ftype->is_defined())
{
t = ftype->real_type();
ftype = t->forward_declaration_type();
}
return t;
}
const Type*
Type::forwarded() const
{
const Type* t = this;
const Forward_declaration_type* ftype = t->forward_declaration_type();
while (ftype != NULL && ftype->is_defined())
{
t = ftype->real_type();
ftype = t->forward_declaration_type();
}
return t;
}
// If this is a named type, return it. Otherwise, return NULL.
Named_type*
Type::named_type()
{
return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
}
const Named_type*
Type::named_type() const
{
return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
}
// Return true if this type is not defined.
bool
Type::is_undefined() const
{
return this->forwarded()->forward_declaration_type() != NULL;
}
// Return true if this is a basic type: a type which is not composed
// of other types, and is not void.
bool
Type::is_basic_type() const
{
switch (this->classification_)
{
case TYPE_INTEGER:
case TYPE_FLOAT:
case TYPE_COMPLEX:
case TYPE_BOOLEAN:
case TYPE_STRING:
case TYPE_NIL:
return true;
case TYPE_ERROR:
case TYPE_VOID:
case TYPE_FUNCTION:
case TYPE_POINTER:
case TYPE_STRUCT:
case TYPE_ARRAY:
case TYPE_MAP:
case TYPE_CHANNEL:
case TYPE_INTERFACE:
return false;
case TYPE_NAMED:
case TYPE_FORWARD:
return this->base()->is_basic_type();
default:
gcc_unreachable();
}
}
// Return true if this is an abstract type.
bool
Type::is_abstract() const
{
switch (this->classification())
{
case TYPE_INTEGER:
return this->integer_type()->is_abstract();
case TYPE_FLOAT:
return this->float_type()->is_abstract();
case TYPE_COMPLEX:
return this->complex_type()->is_abstract();
default:
return false;
}
}
// Return a non-abstract version of an abstract type.
Type*
Type::make_non_abstract_type()
{
gcc_assert(this->is_abstract());
switch (this->classification())
{
case TYPE_INTEGER:
return Type::lookup_integer_type("int");
case TYPE_FLOAT:
return Type::lookup_float_type("float");
case TYPE_COMPLEX:
return Type::lookup_complex_type("complex");
default:
gcc_unreachable();
}
}
// Add entries to the reference count queue for this type. This is
// the default version, which adds a single pointer.
void
Type::do_add_refcount_queue_entries(Refcounts* refcounts,
Refcount_entry* entry)
{
gcc_assert(this->is_refcounted());
refcounts->add_one(this, entry);
}
// Return true if this is an error type. Don't give an error if we
// try to dereference an undefined forwarding type, as this is called
// in the parser when the type may legitimately be undefined.
bool
Type::is_error_type() const
{
const Type* t = this->forwarded();
// Note that we return false for an undefined forward type.
switch (t->classification_)
{
case TYPE_ERROR:
return true;
case TYPE_NAMED:
return t->named_type()->real_type()->is_error_type();
default:
return false;
}
}
// If this is a pointer type, return the type to which it points.
// Otherwise, return NULL.
Type*
Type::points_to() const
{
const Pointer_type* ptype = this->convert<const Pointer_type,
TYPE_POINTER>();
return ptype == NULL ? NULL : ptype->points_to();
}
// Return whether this is an open array type.
bool
Type::is_open_array_type() const
{
return this->array_type() != NULL && this->array_type()->length() == NULL;
}
// Return whether this is the predeclared constant nil being used as a
// type.
bool
Type::is_nil_constant_as_type() const
{
const Type* t = this->forwarded();
if (t->forward_declaration_type() != NULL)
{
const Named_object* no = t->forward_declaration_type()->named_object();
if (no->is_unknown())
no = no->unknown_value()->real_named_object();
if (no != NULL
&& no->is_const()
&& no->const_value()->expr()->is_nil_expression())
return true;
}
return false;
}
// Traverse a type.
int
Type::traverse(Type* type, Traverse* traverse)
{
gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
|| (traverse->traverse_mask()
& Traverse::traverse_expressions) != 0);
if (traverse->remember_type(type))
{
// We have already traversed this type.
return TRAVERSE_CONTINUE;
}
if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
{
int t = traverse->type(type);
if (t == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
else if (t == TRAVERSE_SKIP_COMPONENTS)
return TRAVERSE_CONTINUE;
}
// An array type has an expression which we need to traverse if
// traverse_expressions is set.
if (type->do_traverse(traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
return TRAVERSE_CONTINUE;
}
// Default implementation for do_traverse for child class.
int
Type::do_traverse(Traverse*)
{
return TRAVERSE_CONTINUE;
}
// Return true if two types are compatible according to COMPATIBLE.
// If REASON is not NULL, optionally set *REASON to the reason the
// types are incompatible.
bool
Type::are_compatible_for(const Type* t1, const Type* t2,
Type_compatible compatible, std::string* reason)
{
if (t1 == NULL || t2 == NULL)
{
// Something is wrong. Return true to avoid cascading errors.
return true;
}
// Skip defined forward declarations.
t1 = t1->forwarded();
t2 = t2->forwarded();
if (t1 == t2)
return true;
// An undefined forward declaration is an error, so we return true
// to avoid cascading errors.
if (t1->forward_declaration_type() != NULL
|| t2->forward_declaration_type() != NULL)
return true;
// Avoid cascading errors with error types.
if (t1->is_error_type() || t2->is_error_type())
return true;
// Get a good reason for the sink type. Note that the sink type on
// the left hand side of an assignment is handled in
// are_compatible_for_assign.
if (t1->is_sink_type() || t2->is_sink_type())
{
if (reason != NULL)
*reason = "invalid use of _";
return false;
}
// Cut off infinite recursion by using a flag on a named type.
const Named_type* nt1 = t1->named_type();
if (nt1 != NULL)
return nt1->is_compatible(t2, compatible, reason);
const Type* t1base = t1->base();
const Type* t2base = t2->base();
if (t1base->classification_ != t2base->classification_)
return false;
switch (t1base->classification_)
{
case TYPE_VOID:
case TYPE_BOOLEAN:
case TYPE_STRING:
case TYPE_NIL:
// These types are always compatible with themselves.
return true;
case TYPE_INTEGER:
return t1base->integer_type()->is_compatible(t2base->integer_type());
case TYPE_FLOAT:
return t1base->float_type()->is_compatible(t2base->float_type());
case TYPE_COMPLEX:
return t1base->complex_type()->is_compatible(t2base->complex_type());
case TYPE_FUNCTION:
return t1base->function_type()->is_compatible(t2base->function_type(),
compatible,
false,
reason);
case TYPE_POINTER:
return Type::are_compatible_for(t1base->points_to(), t2base->points_to(),
compatible, reason);
case TYPE_STRUCT:
return t1base->struct_type()->is_compatible(t2base->struct_type(),
compatible);
case TYPE_ARRAY:
return t1base->array_type()->is_compatible(t2base->array_type(),
compatible);
case TYPE_MAP:
return t1base->map_type()->is_compatible(t2base->map_type(),
compatible);
case TYPE_CHANNEL:
return t1base->channel_type()->is_compatible(t2base->channel_type(),
compatible);
case TYPE_INTERFACE:
return t1base->interface_type()->is_compatible(t2base->interface_type(),
compatible);
default:
gcc_unreachable();
}
}
// Return true if it's OK to have a binary operation with types LHS and RHS.
bool
Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
{
if (Type::are_compatible(lhs, rhs))
return true;
lhs = lhs->base();
rhs = rhs->base();
// A constant of abstract integer, float, or complex type may be
// mixed with an integer, float, or complex type.
if ((rhs->is_abstract()
&& (lhs->integer_type() != NULL
|| lhs->float_type() != NULL
|| lhs->complex_type() != NULL))
|| (lhs->is_abstract()
&& (rhs->integer_type() != NULL
|| rhs->float_type() != NULL
|| rhs->complex_type() != NULL)))
return true;
// The nil type may be compared to a pointer, an interface type, a
// slice type, a channel type, a map type, or a function type.
if (lhs->is_nil_type()
&& (rhs->points_to() != NULL
|| rhs->interface_type() != NULL
|| rhs->is_open_array_type()
|| rhs->map_type() != NULL
|| rhs->channel_type() != NULL
|| rhs->function_type() != NULL))
return true;
if (rhs->is_nil_type()
&& (lhs->points_to() != NULL
|| lhs->interface_type() != NULL
|| lhs->is_open_array_type()
|| lhs->map_type() != NULL
|| lhs->channel_type() != NULL
|| lhs->function_type() != NULL))
return true;
return false;
}
// Return true if a value with type RHS may be assigned to a value
// with type LHS. IS_CONVERSION is true to check for conversion
// compatibility rather than assignment compatibility.
bool
Type::are_assignment_compatible(const Type* lhs, const Type* rhs,
bool is_conversion, std::string* reason)
{
// Any value may be assigned to the blank identifier. Make sure
// that types are reasonable before calling base().
if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
{
if (!is_conversion && lhs->is_sink_type())
return true;
// Check for hidden fields before checking for compatibility.
if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
{
if (lhs->has_hidden_fields(NULL, reason)
|| rhs->has_hidden_fields(NULL, reason))
return false;
}
}
if (Type::are_compatible_for(lhs, rhs,
(is_conversion
? COMPATIBLE_FOR_CONVERSION
: COMPATIBLE_COMPATIBLE),
reason))
return true;
const Type* orig_lhs = lhs;
lhs = lhs->base();
const Type* orig_rhs = rhs;
rhs = rhs->base();
// Any type may be assigned to an interface type if it implements
// the required methods. Note that we must pass ORIG_RHS here, not
// RHS, since the methods will be attached to ORIG_RHS.
if (lhs->interface_type() != NULL
&& lhs->interface_type()->implements_interface(orig_rhs, reason))
return true;
// Interface assignment is permitted if RHS is known to implement
// all the methods in LHS.
if (lhs->interface_type() != NULL
&& rhs->interface_type() != NULL
&& lhs->interface_type()->is_compatible_for_assign(rhs->interface_type(),
reason))
return true;
// Other than the cases checked above, two different named types may
// be compatible for conversion, but are never compatible for
// assignment.
if (!is_conversion
&& orig_lhs->named_type() != NULL
&& orig_rhs->named_type() != NULL)
return false;
// The compatibility level to check for when checking subtypes.
Type_compatible pass = (is_conversion
? COMPATIBLE_FOR_CONVERSION
: COMPATIBLE_COMPATIBLE);
// A pointer to an array may be assigned to a slice of the
// same element type.
if (lhs->is_open_array_type()
&& rhs->points_to() != NULL
&& rhs->points_to()->array_type() != NULL
&& !rhs->is_open_array_type())
{
Type* e1 = lhs->array_type()->element_type();
Type* e2 = rhs->points_to()->array_type()->element_type();
if (Type::are_compatible_for(e1, e2, pass, reason))
return true;
}
// We can assign a bidirectional channel to a uni-directional
// channel.
if (lhs->channel_type() != NULL
&& rhs->channel_type() != NULL
&& rhs->channel_type()->may_send()
&& rhs->channel_type()->may_receive()
&& Type::are_compatible_for(lhs->channel_type()->element_type(),
rhs->channel_type()->element_type(),
pass, reason))
return true;
// A constant of abstract integer or float type may be assigned to
// integer, float, or complex type.
if (rhs->is_abstract()
&& (lhs->integer_type() != NULL
|| lhs->float_type() != NULL
|| lhs->complex_type() != NULL))
return true;
// The nil type may be assigned to a pointer type, an interface
// type, a slice type, a map type, a channel type, or a function
// type.
if (rhs->is_nil_type()
&& (lhs->points_to() != NULL
|| lhs->interface_type() != NULL
|| lhs->is_open_array_type()
|| lhs->map_type() != NULL
|| lhs->channel_type() != NULL
|| lhs->function_type() != NULL))
return true;
// Give some better error messages.
if (reason != NULL && reason->empty())
{
if (rhs->interface_type() != NULL)
reason->assign(_("need explicit conversion"));
else if (rhs->is_call_multiple_result_type())
reason->assign(_("multiple value function call in "
"single value context"));
}
return false;
}
// Return whether this type has any hidden fields. This is only a
// possibility for a few types.
bool
Type::has_hidden_fields(const Named_type* within, std::string* reason) const
{
switch (this->forwarded()->classification_)
{
case TYPE_NAMED:
return this->named_type()->named_type_has_hidden_fields(reason);
case TYPE_STRUCT:
return this->struct_type()->struct_has_hidden_fields(within, reason);
case TYPE_ARRAY:
return this->array_type()->array_has_hidden_fields(within, reason);
default:
return false;
}
}
// Return a hash code for the type to be used for method lookup.
unsigned int
Type::hash_for_method(Gogo* gogo) const
{
unsigned int ret = 0;
if (this->classification_ != TYPE_FORWARD)
ret += this->classification_;
return ret + this->do_hash_for_method(gogo);
}
// Default implementation of do_hash_for_method. This is appropriate
// for types with no subfields.
unsigned int
Type::do_hash_for_method(Gogo*) const
{
return 0;
}
// Return a hash code for a string, given a starting hash.
unsigned int
Type::hash_string(const std::string& s, unsigned int h)
{
const char* p = s.data();
size_t len = s.length();
for (; len > 0; --len)
{
h ^= *p++;
h*= 16777619;
}
return h;
}
// Default check for the expression passed to make. Any type which
// may be used with make implements its own version of this.
bool
Type::do_check_make_expression(Expression_list*, source_location)
{
gcc_unreachable();
}
// Return whether an expression has an integer value. Report an error
// if not. This is used when handling calls to the predeclared make
// function.
bool
Type::check_int_value(Expression* e, const char* errmsg,
source_location location)
{
if (e->type()->integer_type() != NULL)
return true;
// Check for a floating point constant with integer value.
mpfr_t fval;
mpfr_init(fval);
Type* dummy;
if (e->float_constant_value(fval, &dummy))
{
mpz_t ival;
mpz_init(ival);
bool ok = false;
mpfr_clear_overflow();
mpfr_clear_erangeflag();
mpfr_get_z(ival, fval, GMP_RNDN);
if (!mpfr_overflow_p()
&& !mpfr_erangeflag_p()
&& mpz_sgn(ival) >= 0)
{
Named_type* ntype = Type::lookup_integer_type("int");
Integer_type* inttype = ntype->integer_type();
mpz_t max;
mpz_init_set_ui(max, 1);
mpz_mul_2exp(max, max, inttype->bits() - 1);
ok = mpz_cmp(ival, max) < 0;
mpz_clear(max);
}
mpz_clear(ival);
if (ok)
{
mpfr_clear(fval);
return true;
}
}
mpfr_clear(fval);
error_at(location, "%s", errmsg);
return false;
}
// Return a tree representing this type.
tree
Type::get_tree(Gogo* gogo)
{
if (this->tree_ == NULL)
{
this->tree_ = this->do_get_tree(gogo);
go_preserve_from_gc(this->tree_);
}
return this->tree_;
}
// Store an incomplete type tree during construction.
void
Type::set_incomplete_type_tree(tree incomplete)
{
gcc_assert(this->tree_ == NULL);
this->tree_ = incomplete;
}
// Return a tree representing a zero initialization for this type.
tree
Type::get_init_tree(Gogo* gogo, bool is_clear)
{
return this->do_init_tree(gogo, is_clear);
}
// Any type which supports the builtin make function must implement
// this.
tree
Type::do_make_expression_tree(Translate_context*, Expression_list*,
source_location)
{
gcc_unreachable();
}
// Return a tree copying VAL, a value of this type, into the reference
// count queue at ENTRY. This modifies ENTRY.
tree
Type::set_refcount_queue_entry(Gogo* gogo, Refcounts* refcounts,
Refcount_entry* entry, tree val) const
{
return this->do_set_refcount_queue_entry(gogo, refcounts, entry, val);
}
// Default implementation of do_set_refcount_queue_entry. This works
// for any reference count type which is represented as a pointer.
tree
Type::do_set_refcount_queue_entry(Gogo* gogo, Refcounts* refcounts,
Refcount_entry* entry, tree val) const
{
gcc_assert(this->is_refcounted());
gcc_assert(POINTER_TYPE_P(TREE_TYPE(val)));
tree ret = refcounts->set_entry_tree(gogo, *entry, val);
entry->increment();
return ret;
}
// Return a type descriptor for this type.
tree
Type::type_descriptor(Gogo* gogo)
{
if (this->type_descriptor_decl_ == NULL_TREE)
{
this->do_type_descriptor_decl(gogo, NULL, &this->type_descriptor_decl_);
gcc_assert(this->type_descriptor_decl_ != NULL_TREE
&& (this->type_descriptor_decl_ == error_mark_node
|| DECL_P(this->type_descriptor_decl_)));
}
if (this->type_descriptor_decl_ == error_mark_node)
return error_mark_node;
return build_fold_addr_expr(this->type_descriptor_decl_);
}
// Set *PDECL to the decl for a type descriptor for TYPE with name
// NAME.
void
Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name,
tree* pdecl)
{
gcc_assert(name != NULL && type->named_type() != name);
type->do_type_descriptor_decl(gogo, name, pdecl);
}
// Return the type reflection string for this type.
std::string
Type::reflection(Gogo* gogo) const
{
std::string ret;
// The do_reflection virtual function should set RET to the
// reflection string.
this->do_reflection(gogo, &ret);
return ret;
}
// Return a mangled name for the type.
std::string
Type::mangled_name(Gogo* gogo) const
{
std::string ret;
// The do_mangled_name virtual function should set RET to the
// mangled name. For a composite type it should append a code for
// the composition and then call do_mangled_name on the components.
this->do_mangled_name(gogo, &ret);
return ret;
}
// Default function to export a type.
void
Type::do_export(Export*) const
{
gcc_unreachable();
}
// Import a type.
Type*
Type::import_type(Import* imp)
{
if (imp->match_c_string("("))
return Function_type::do_import(imp);
else if (imp->match_c_string("*"))
return Pointer_type::do_import(imp);
else if (imp->match_c_string("struct "))
return Struct_type::do_import(imp);
else if (imp->match_c_string("["))
return Array_type::do_import(imp);
else if (imp->match_c_string("map "))
return Map_type::do_import(imp);
else if (imp->match_c_string("chan "))
return Channel_type::do_import(imp);
else if (imp->match_c_string("interface"))
return Interface_type::do_import(imp);
else
{
error_at(imp->location(), "import error: expected type");
return Type::make_error_type();
}
}
// A type used to indicate a parsing error. This exists to simplify
// later error detection.
class Error_type : public Type
{
public:
Error_type()
: Type(TYPE_ERROR)
{ }
protected:
tree
do_get_tree(Gogo*)
{ return error_mark_node; }
tree
do_init_tree(Gogo*, bool)
{ return error_mark_node; }
void
do_type_descriptor_decl(Gogo*, Named_type*, tree* pdecl)
{ *pdecl = error_mark_node; }
void
do_reflection(Gogo*, std::string*) const
{ gcc_assert(saw_errors()); }
void
do_mangled_name(Gogo*, std::string* ret) const
{ ret->push_back('E'); }
};
Type*
Type::make_error_type()
{
static Error_type singleton_error_type;
return &singleton_error_type;
}
// The void type.
class Void_type : public Type
{
public:
Void_type()
: Type(TYPE_VOID)
{ }
protected:
tree
do_get_tree(Gogo*)
{ return void_type_node; }
tree
do_init_tree(Gogo*, bool)
{ gcc_unreachable(); }
void
do_type_descriptor_decl(Gogo*, Named_type*, tree*)
{ gcc_unreachable(); }
void
do_reflection(Gogo*, std::string*) const
{ }
void
do_mangled_name(Gogo*, std::string* ret) const
{ ret->push_back('v'); }
};
Type*
Type::make_void_type()
{
static Void_type singleton_void_type;
return &singleton_void_type;
}
// The boolean type.
class Boolean_type : public Type
{
public:
Boolean_type()
: Type(TYPE_BOOLEAN)
{ }
protected:
tree
do_get_tree(Gogo*)
{ return boolean_type_node; }
tree
do_init_tree(Gogo*, bool is_clear)
{ return is_clear ? NULL : boolean_false_node; }
void
do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl);
// We should not be asked for the reflection string of a basic type.
void
do_reflection(Gogo*, std::string* ret) const
{ ret->append("bool"); }
void
do_mangled_name(Gogo*, std::string* ret) const
{ ret->push_back('b'); }
};
// Make the type descriptor.
void
Boolean_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
if (name != NULL)
gogo->type_descriptor_decl(RUNTIME_TYPE_CODE_BOOL, this, name, pdecl);
else
{
Named_object* no = gogo->lookup_global("bool");
gcc_assert(no != NULL);
*pdecl = build_fold_indirect_ref(no->type_value()->type_descriptor(gogo));
}
}
Type*
Type::make_boolean_type()
{
static Boolean_type boolean_type;
return &boolean_type;
}
// The named type "bool".
static Named_type* named_bool_type;
// Get the named type "bool".
Named_type*
Type::lookup_bool_type()
{
return named_bool_type;
}
// Make the named type "bool".
Named_type*
Type::make_named_bool_type()
{
Type* bool_type = Type::make_boolean_type();
Named_object* named_object = Named_object::make_type("bool", NULL,
bool_type,
BUILTINS_LOCATION);
Named_type* named_type = named_object->type_value();
named_bool_type = named_type;
return named_type;
}
// Class Integer_type.
Integer_type::Named_integer_types Integer_type::named_integer_types;
// Create a new integer type. Non-abstract integer types always have
// names.
Named_type*
Integer_type::create_integer_type(const char* name, bool is_unsigned,
int bits, int runtime_type_code)
{
Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
runtime_type_code);
std::string sname(name);
Named_object* named_object = Named_object::make_type(sname, NULL,
integer_type,
BUILTINS_LOCATION);
Named_type* named_type = named_object->type_value();
std::pair<Named_integer_types::iterator, bool> ins =
Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
gcc_assert(ins.second);
return named_type;
}
// Look up an existing integer type.
Named_type*
Integer_type::lookup_integer_type(const char* name)
{
Named_integer_types::const_iterator p =
Integer_type::named_integer_types.find(name);
gcc_assert(p != Integer_type::named_integer_types.end());
return p->second;
}
// Create a new abstract integer type.
Integer_type*
Integer_type::create_abstract_integer_type()
{
static Integer_type* abstract_type;
if (abstract_type == NULL)
abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
RUNTIME_TYPE_CODE_INT);
return abstract_type;
}
// Integer type compatibility.
bool
Integer_type::is_compatible(const Integer_type* t) const
{
if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
return false;
return this->is_abstract_ == t->is_abstract_;
}
// Hash code.
unsigned int
Integer_type::do_hash_for_method(Gogo*) const
{
return ((this->bits_ << 4)
+ ((this->is_unsigned_ ? 1 : 0) << 8)
+ ((this->is_abstract_ ? 1 : 0) << 9));
}
// Get the tree for an Integer_type.
tree
Integer_type::do_get_tree(Gogo*)
{
gcc_assert(!this->is_abstract_);
if (this->is_unsigned_)
{
if (this->bits_ == INT_TYPE_SIZE)
return unsigned_type_node;
else if (this->bits_ == CHAR_TYPE_SIZE)
return unsigned_char_type_node;
else if (this->bits_ == SHORT_TYPE_SIZE)
return short_unsigned_type_node;
else if (this->bits_ == LONG_TYPE_SIZE)
return long_unsigned_type_node;
else if (this->bits_ == LONG_LONG_TYPE_SIZE)
return long_long_unsigned_type_node;
else
return make_unsigned_type(this->bits_);
}
else
{
if (this->bits_ == INT_TYPE_SIZE)
return integer_type_node;
else if (this->bits_ == CHAR_TYPE_SIZE)
return signed_char_type_node;
else if (this->bits_ == SHORT_TYPE_SIZE)
return short_integer_type_node;
else if (this->bits_ == LONG_TYPE_SIZE)
return long_integer_type_node;
else if (this->bits_ == LONG_LONG_TYPE_SIZE)
return long_long_integer_type_node;
else
return make_signed_type(this->bits_);
}
}
tree
Integer_type::do_init_tree(Gogo* gogo, bool is_clear)
{
return is_clear ? NULL : build_int_cst(this->get_tree(gogo), 0);
}
// The type descriptor for an integer type. Integer types are always
// named.
void
Integer_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
gcc_assert(name != NULL);
gogo->type_descriptor_decl(this->runtime_type_code_, this, name, pdecl);
}
// We should not be asked for the reflection string of a basic type.
void
Integer_type::do_reflection(Gogo*, std::string*) const
{
gcc_unreachable();
}
// Mangled name.
void
Integer_type::do_mangled_name(Gogo*, std::string* ret) const
{
char buf[100];
snprintf(buf, sizeof buf, "i%s%s%de",
this->is_abstract_ ? "a" : "",
this->is_unsigned_ ? "u" : "",
this->bits_);
ret->append(buf);
}
// Make an integer type.
Named_type*
Type::make_integer_type(const char* name, bool is_unsigned, int bits,
int runtime_type_code)
{
return Integer_type::create_integer_type(name, is_unsigned, bits,
runtime_type_code);
}
// Make an abstract integer type.
Integer_type*
Type::make_abstract_integer_type()
{
return Integer_type::create_abstract_integer_type();
}
// Look up an integer type.
Named_type*
Type::lookup_integer_type(const char* name)
{
return Integer_type::lookup_integer_type(name);
}
// Class Float_type.
Float_type::Named_float_types Float_type::named_float_types;
// Create a new float type. Non-abstract float types always have
// names.
Named_type*
Float_type::create_float_type(const char* name, int bits,
int runtime_type_code)
{
Float_type* float_type = new Float_type(false, bits, runtime_type_code);
std::string sname(name);
Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
BUILTINS_LOCATION);
Named_type* named_type = named_object->type_value();
std::pair<Named_float_types::iterator, bool> ins =
Float_type::named_float_types.insert(std::make_pair(sname, named_type));
gcc_assert(ins.second);
return named_type;
}
// Look up an existing float type.
Named_type*
Float_type::lookup_float_type(const char* name)
{
Named_float_types::const_iterator p =
Float_type::named_float_types.find(name);
gcc_assert(p != Float_type::named_float_types.end());
return p->second;
}
// Create a new abstract float type.
Float_type*
Float_type::create_abstract_float_type()
{
static Float_type* abstract_type;
if (abstract_type == NULL)
abstract_type = new Float_type(true, FLOAT_TYPE_SIZE,
RUNTIME_TYPE_CODE_FLOAT);
return abstract_type;
}
// Whether this type is compatible with T.
bool
Float_type::is_compatible(const Float_type* t) const
{
if (this->bits_ != t->bits_)
return false;
return this->is_abstract_ == t->is_abstract_;
}
// Hash code.
unsigned int
Float_type::do_hash_for_method(Gogo*) const
{
return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
}
// Get a tree without using a Gogo*.
tree
Float_type::type_tree() const
{
if (this->bits_ == FLOAT_TYPE_SIZE)
return float_type_node;
else if (this->bits_ == DOUBLE_TYPE_SIZE)
return double_type_node;
else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
return long_double_type_node;
else
{
tree ret = make_node(REAL_TYPE);
TYPE_PRECISION(ret) = this->bits_;
layout_type(ret);
return ret;
}
}
// Get a tree.
tree
Float_type::do_get_tree(Gogo*)
{
return this->type_tree();
}
tree
Float_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
tree type = this->get_tree(gogo);
REAL_VALUE_TYPE r;
real_from_integer(&r, TYPE_MODE(type), 0, 0, 0);
return build_real(type, r);
}
// The type descriptor for a float type. Float types are always named.
void
Float_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
gcc_assert(name != NULL);
gogo->type_descriptor_decl(this->runtime_type_code_, this, name, pdecl);
}
// We should not be asked for the reflection string of a basic type.
void
Float_type::do_reflection(Gogo*, std::string*) const
{
gcc_unreachable();
}
// Mangled name.
void
Float_type::do_mangled_name(Gogo*, std::string* ret) const
{
char buf[100];
snprintf(buf, sizeof buf, "f%s%de",
this->is_abstract_ ? "a" : "",
this->bits_);
ret->append(buf);
}
// Make a floating point type.
Named_type*
Type::make_float_type(const char* name, int bits, int runtime_type_code)
{
return Float_type::create_float_type(name, bits, runtime_type_code);
}
// Make an abstract float type.
Float_type*
Type::make_abstract_float_type()
{
return Float_type::create_abstract_float_type();
}
// Look up a float type.
Named_type*
Type::lookup_float_type(const char* name)
{
return Float_type::lookup_float_type(name);
}
// Class Complex_type.
Complex_type::Named_complex_types Complex_type::named_complex_types;
// Create a new complex type. Non-abstract complex types always have
// names.
Named_type*
Complex_type::create_complex_type(const char* name, int bits,
int runtime_type_code)
{
Complex_type* complex_type = new Complex_type(false, bits,
runtime_type_code);
std::string sname(name);
Named_object* named_object = Named_object::make_type(sname, NULL,
complex_type,
BUILTINS_LOCATION);
Named_type* named_type = named_object->type_value();
std::pair<Named_complex_types::iterator, bool> ins =
Complex_type::named_complex_types.insert(std::make_pair(sname,
named_type));
gcc_assert(ins.second);
return named_type;
}
// Look up an existing complex type.
Named_type*
Complex_type::lookup_complex_type(const char* name)
{
Named_complex_types::const_iterator p =
Complex_type::named_complex_types.find(name);
gcc_assert(p != Complex_type::named_complex_types.end());
return p->second;
}
// Create a new abstract complex type.
Complex_type*
Complex_type::create_abstract_complex_type()
{
static Complex_type* abstract_type;
if (abstract_type == NULL)
abstract_type = new Complex_type(true, FLOAT_TYPE_SIZE * 2,
RUNTIME_TYPE_CODE_FLOAT);
return abstract_type;
}
// Whether this type is compatible with T.
bool
Complex_type::is_compatible(const Complex_type *t) const
{
if (this->bits_ != t->bits_)
return false;
return this->is_abstract_ == t->is_abstract_;
}
// Hash code.
unsigned int
Complex_type::do_hash_for_method(Gogo*) const
{
return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
}
// Get a tree without using a Gogo*.
tree
Complex_type::type_tree() const
{
if (this->bits_ == FLOAT_TYPE_SIZE * 2)
return complex_float_type_node;
else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
return complex_double_type_node;
else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
return complex_long_double_type_node;
else
{
tree ret = make_node(REAL_TYPE);
TYPE_PRECISION(ret) = this->bits_ / 2;
layout_type(ret);
return build_complex_type(ret);
}
}
// Get a tree.
tree
Complex_type::do_get_tree(Gogo*)
{
return this->type_tree();
}
// Zero initializer.
tree
Complex_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
tree type = this->get_tree(gogo);
REAL_VALUE_TYPE r;
real_from_integer(&r, TYPE_MODE(TREE_TYPE(type)), 0, 0, 0);
return build_complex(type, build_real(TREE_TYPE(type), r),
build_real(TREE_TYPE(type), r));
}
// The type descriptor for a complex type. Complex types are always
// named.
void
Complex_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name,
tree* pdecl)
{
gcc_assert(name != NULL);
gogo->type_descriptor_decl(this->runtime_type_code_, this, name, pdecl);
}
// We should not be asked for the reflection string of a basic type.
void
Complex_type::do_reflection(Gogo*, std::string*) const
{
gcc_unreachable();
}
// Mangled name.
void
Complex_type::do_mangled_name(Gogo*, std::string* ret) const
{
char buf[100];
snprintf(buf, sizeof buf, "c%s%de",
this->is_abstract_ ? "a" : "",
this->bits_);
ret->append(buf);
}
// Make a complex type.
Named_type*
Type::make_complex_type(const char* name, int bits, int runtime_type_code)
{
return Complex_type::create_complex_type(name, bits, runtime_type_code);
}
// Make an abstract complex type.
Complex_type*
Type::make_abstract_complex_type()
{
return Complex_type::create_abstract_complex_type();
}
// Look up a complex type.
Named_type*
Type::lookup_complex_type(const char* name)
{
return Complex_type::lookup_complex_type(name);
}
// Class String_type.
// Return the tree for String_type. A string is a struct with two
// fields: a pointer to the characters and a length.
tree
String_type::do_get_tree(Gogo*)
{
static tree struct_type;
return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
"__data",
build_pointer_type(unsigned_char_type_node),
"__length",
integer_type_node);
}
// Return a tree for the length of STRING.
tree
String_type::length_tree(Gogo*, tree string)
{
tree string_type = TREE_TYPE(string);
gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
tree length_field = TREE_CHAIN(TYPE_FIELDS(string_type));
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
"__length") == 0);
return fold_build3(COMPONENT_REF, integer_type_node, string,
length_field, NULL_TREE);
}
// Return a tree for a pointer to the bytes of STRING.
tree
String_type::bytes_tree(Gogo*, tree string)
{
tree string_type = TREE_TYPE(string);
gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
tree bytes_field = TYPE_FIELDS(string_type);
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
"__data") == 0);
return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
bytes_field, NULL_TREE);
}
// We initialize a string to { NULL, 0 }.
tree
String_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL_TREE;
tree type_tree = this->get_tree(gogo);
gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
for (tree field = TYPE_FIELDS(type_tree);
field != NULL_TREE;
field = TREE_CHAIN(field))
{
constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
elt->index = field;
elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
}
tree ret = build_constructor(type_tree, init);
TREE_CONSTANT(ret) = 1;
return ret;
}
// Copy a string into the reference count queue.
tree
String_type::do_set_refcount_queue_entry(Gogo *gogo, Refcounts* refcounts,
Refcount_entry *entry, tree val) const
{
tree ret = refcounts->set_entry_tree(gogo, *entry,
this->bytes_tree(gogo, val));
entry->increment();
return ret;
}
// The type descriptor for the string type.
void
String_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
if (name != NULL)
gogo->type_descriptor_decl(RUNTIME_TYPE_CODE_STRING, this, name, pdecl);
else
{
Named_object* no = gogo->lookup_global("string");
gcc_assert(no != NULL);
*pdecl = build_fold_indirect_ref(no->type_value()->type_descriptor(gogo));
}
}
// We should not be asked for the reflection string of a basic type.
void
String_type::do_reflection(Gogo*, std::string* ret) const
{
ret->append("string");
}
// Mangled name of a string type.
void
String_type::do_mangled_name(Gogo*, std::string* ret) const
{
ret->push_back('z');
}
// Make a string type.
Type*
Type::make_string_type()
{
static String_type string_type;
return &string_type;
}
// The named type "string".
static Named_type* named_string_type;
// Get the named type "string".
Named_type*
Type::lookup_string_type()
{
return named_string_type;
}
// Make the named type string.
Named_type*
Type::make_named_string_type()
{
Type* string_type = Type::make_string_type();
Named_object* named_object = Named_object::make_type("string", NULL,
string_type,
BUILTINS_LOCATION);
Named_type* named_type = named_object->type_value();
named_string_type = named_type;
return named_type;
}
// The sink type. This is the type of the blank identifier _. Any
// type may be assigned to it.
class Sink_type : public Type
{
public:
Sink_type()
: Type(TYPE_SINK)
{ }
protected:
tree
do_get_tree(Gogo*)
{ gcc_unreachable(); }
tree
do_init_tree(Gogo*, bool)
{ gcc_unreachable(); }
void
do_type_descriptor_decl(Gogo*, Named_type*, tree*)
{ gcc_unreachable(); }
void
do_reflection(Gogo*, std::string*) const
{ gcc_unreachable(); }
void
do_mangled_name(Gogo*, std::string*) const
{ gcc_unreachable(); }
};
// Make the sink type.
Type*
Type::make_sink_type()
{
static Sink_type sink_type;
return &sink_type;
}
// Class Function_type.
// Traversal.
int
Function_type::do_traverse(Traverse* traverse)
{
if (this->receiver_ != NULL
&& Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
if (this->parameters_ != NULL
&& this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
if (this->results_ != NULL
&& this->results_->traverse(traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
return TRAVERSE_CONTINUE;
}
// Returns whether T is a valid redeclaration of this type. If this
// returns false, and REASON is not NULL, *REASON may be set to a
// brief explanation of why it returned false.
bool
Function_type::is_valid_redeclaration(const Function_type* t,
std::string* reason) const
{
if (!this->is_compatible(t, COMPATIBLE_IDENTICAL, false, reason))
return false;
// A redeclaration of a function is required to use the same names
// for the receiver and parameters.
if (this->receiver() != NULL
&& this->receiver()->name() != t->receiver()->name()
&& this->receiver()->name() != Import::import_marker
&& t->receiver()->name() != Import::import_marker)
{
if (reason != NULL)
*reason = "receiver name changed";
return false;
}
const Typed_identifier_list* parms1 = this->parameters();
const Typed_identifier_list* parms2 = t->parameters();
if (parms1 != NULL)
{
Typed_identifier_list::const_iterator p1 = parms1->begin();
for (Typed_identifier_list::const_iterator p2 = parms2->begin();
p2 != parms2->end();
++p2, ++p1)
{
if (p1->name() != p2->name()
&& p1->name() != Import::import_marker
&& p2->name() != Import::import_marker)
{
if (reason != NULL)
*reason = "parameter name changed";
return false;
}
// This is called at parse time, so we may have unknown
// types. They will appear compatible according to
// Type::is_compatible.
Type* t1 = p1->type()->forwarded();
Type* t2 = p2->type()->forwarded();
if (t1 != t2
&& t1->forward_declaration_type() != NULL
&& (t2->forward_declaration_type() == NULL
|| (t1->forward_declaration_type()->named_object()
!= t2->forward_declaration_type()->named_object())))
return false;
}
}
const Typed_identifier_list* results1 = this->results();
const Typed_identifier_list* results2 = t->results();
if (results1 != NULL)
{
Typed_identifier_list::const_iterator res1 = results1->begin();
for (Typed_identifier_list::const_iterator res2 = results2->begin();
res2 != results2->end();
++res2, ++res1)
{
if (res1->name() != res2->name()
&& res1->name() != Import::import_marker
&& res2->name() != Import::import_marker)
{
if (reason != NULL)
*reason = "result name changed";
return false;
}
// This is called at parse time, so we may have unknown
// types. They will appear compatible according to
// Type::is_compatible.
Type* t1 = res1->type()->forwarded();
Type* t2 = res2->type()->forwarded();
if (t1 != t2
&& t1->forward_declaration_type() != NULL
&& (t2->forward_declaration_type() == NULL
|| (t1->forward_declaration_type()->named_object()
!= t2->forward_declaration_type()->named_object())))
return false;
}
}
return true;
}
// Check whether T is the same as this type.
bool
Function_type::is_compatible(const Function_type* t,
Type_compatible compatible,
bool ignore_receiver,
std::string* reason) const
{
if (!ignore_receiver)
{
const Typed_identifier* r1 = this->receiver();
const Typed_identifier* r2 = t->receiver();
if ((r1 != NULL) != (r2 != NULL))
{
if (reason != NULL)
*reason = _("different receiver types");
return false;
}
if (r1 != NULL)
{
if (!Type::are_compatible_for(r1->type(), r2->type(), compatible,
reason))
{
if (reason != NULL && !reason->empty())
*reason = "receiver: " + *reason;
return false;
}
}
}
const Typed_identifier_list* parms1 = this->parameters();
const Typed_identifier_list* parms2 = t->parameters();
if ((parms1 != NULL) != (parms2 != NULL))
{
if (reason != NULL)
*reason = _("different number of parameters");
return false;
}
if (parms1 != NULL)
{
Typed_identifier_list::const_iterator p1 = parms1->begin();
for (Typed_identifier_list::const_iterator p2 = parms2->begin();
p2 != parms2->end();
++p2, ++p1)
{
if (p1 == parms1->end())
{
if (reason != NULL)
*reason = _("different number of parameters");
return false;
}
if (!Type::are_compatible_for(p1->type(), p2->type(), compatible,
NULL))
{
if (reason != NULL)
*reason = _("different parameter types");
return false;
}
}
if (p1 != parms1->end())
{
if (reason != NULL)
*reason = _("different number of parameters");
return false;
}
}
if (this->is_varargs() != t->is_varargs())
{
if (reason != NULL)
*reason = _("different varargs");
return false;
}
const Typed_identifier_list* results1 = this->results();
const Typed_identifier_list* results2 = t->results();
if ((results1 != NULL) != (results2 != NULL))
{
if (reason != NULL)
*reason = _("different number of results");
return false;
}
if (results1 != NULL)
{
Typed_identifier_list::const_iterator res1 = results1->begin();
for (Typed_identifier_list::const_iterator res2 = results2->begin();
res2 != results2->end();
++res2, ++res1)
{
if (res1 == results1->end())
{
if (reason != NULL)
*reason = _("different number of results");
return false;
}
if (!Type::are_compatible_for(res1->type(), res2->type(), compatible,
NULL))
{
if (reason != NULL)
*reason = _("different result types");
return false;
}
}
if (res1 != results1->end())
{
if (reason != NULL)
*reason = _("different number of results");
return false;
}
}
return true;
}
// Hash code.
unsigned int
Function_type::do_hash_for_method(Gogo* gogo) const
{
unsigned int ret = 0;
// We ignore the receiver type for hash codes, because we need to
// get the same hash code for a method in an interface and a method
// declared for a type. The former will not have a receiver.
if (this->parameters_ != NULL)
{
int shift = 1;
for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
p != this->parameters_->end();
++p, ++shift)
ret += p->type()->hash_for_method(gogo) << shift;
}
if (this->results_ != NULL)
{
int shift = 2;
for (Typed_identifier_list::const_iterator p = this->results_->begin();
p != this->results_->end();
++p, ++shift)
ret += p->type()->hash_for_method(gogo) << shift;
}
if (this->is_varargs_)
ret += 1;
ret <<= 4;
return ret;
}
// Get the tree for a function type.
tree
Function_type::do_get_tree(Gogo* gogo)
{
tree args = NULL_TREE;
tree* pp = &args;
if (this->receiver_ != NULL)
{
Type* rtype = this->receiver_->type();
tree ptype = rtype->get_tree(gogo);
if (ptype == error_mark_node)
return error_mark_node;
// We always pass the address of the receiver parameter, in
// order to make interface calls work with unknown types.
if (rtype->points_to() == NULL)
ptype = build_pointer_type(ptype);
*pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
pp = &TREE_CHAIN (*pp);
}
if (this->parameters_ != NULL)
{
for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
p != this->parameters_->end();
++p)
{
tree ptype = p->type()->get_tree(gogo);
if (ptype == error_mark_node)
return error_mark_node;
*pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
pp = &TREE_CHAIN (*pp);
}
}
// Varargs is handled entirely at the Go level. At the tree level,
// functions are not varargs.
*pp = void_list_node;
tree result;
if (this->results_ == NULL)
result = void_type_node;
else if (this->results_->size() == 1)
result = this->results_->begin()->type()->get_tree(gogo);
else
{
result = make_node(RECORD_TYPE);
tree field_trees = NULL_TREE;
tree* pp = &field_trees;
for (Typed_identifier_list::const_iterator p = this->results_->begin();
p != this->results_->end();
++p)
{
const std::string name = (p->name().empty()
? "UNNAMED"
: Gogo::unpack_hidden_name(p->name()));
tree name_tree = get_identifier_with_length(name.data(),
name.length());
tree field_type_tree = p->type()->get_tree(gogo);
if (field_type_tree == error_mark_node)
return error_mark_node;
tree field = build_decl(this->location_, FIELD_DECL, name_tree,
field_type_tree);
DECL_CONTEXT(field) = result;
*pp = field;
pp = &TREE_CHAIN(field);
}
TYPE_FIELDS(result) = field_trees;
layout_type(result);
}
if (result == error_mark_node)
return error_mark_node;
tree ret = build_function_type(result, args);
if (ret == error_mark_node)
return ret;
// The type "func ()" is represented as a pointer to a function.
return build_pointer_type(ret);
}
// Functions are initialized to NULL.
tree
Function_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
tree type_tree = this->get_tree(gogo);
if (type_tree == error_mark_node)
return error_mark_node;
return fold_convert(type_tree, null_pointer_node);
}
// The type descriptor for a function.
void
Function_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name,
tree* pdecl)
{
gogo->function_type_descriptor_decl(this, name, pdecl);
}
// The reflection string.
void
Function_type::do_reflection(Gogo* gogo, std::string* ret) const
{
// FIXME: Turn this off until we straighten out the type of the
// struct field used in a go statement which calls a method.
// gcc_assert(this->receiver_ == NULL);
ret->append("func");
if (this->receiver_ != NULL)
{
ret->push_back('(');
this->append_reflection(this->receiver_->type(), gogo, ret);
ret->push_back(')');
}
ret->push_back('(');
const Typed_identifier_list* params = this->parameters();
if (params != NULL)
{
bool is_varargs = this->is_varargs_;
for (Typed_identifier_list::const_iterator p = params->begin();
p != params->end();
++p)
{
if (p != params->begin())
ret->append(", ");
if (!is_varargs || p + 1 != params->end())
this->append_reflection(p->type(), gogo, ret);
else
{
ret->append("...");
if (p->type()->array_type() != NULL)
this->append_reflection(p->type()->array_type()->element_type(),
gogo, ret);
}
}
}
ret->push_back(')');
const Typed_identifier_list* results = this->results();
if (results != NULL && !results->empty())
{
if (results->size() == 1)
ret->push_back(' ');
else
ret->append(" (");
for (Typed_identifier_list::const_iterator p = results->begin();
p != results->end();
++p)
{
if (p != results->begin())
ret->append(", ");
this->append_reflection(p->type(), gogo, ret);
}
if (results->size() > 1)
ret->push_back(')');
}
}
// Mangled name.
void
Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('F');
if (this->receiver_ != NULL)
{
ret->push_back('m');
this->append_mangled_name(this->receiver_->type(), gogo, ret);
}
const Typed_identifier_list* params = this->parameters();
if (params != NULL)
{
ret->push_back('p');
for (Typed_identifier_list::const_iterator p = params->begin();
p != params->end();
++p)
this->append_mangled_name(p->type(), gogo, ret);
if (this->is_varargs_)
ret->push_back('V');
ret->push_back('e');
}
const Typed_identifier_list* results = this->results();
if (results != NULL)
{
ret->push_back('r');
for (Typed_identifier_list::const_iterator p = results->begin();
p != results->end();
++p)
this->append_mangled_name(p->type(), gogo, ret);
ret->push_back('e');
}
ret->push_back('e');
}
// Export a function type.
void
Function_type::do_export(Export* exp) const
{
// We don't write out the receiver. The only function types which
// should have a receiver are the ones associated with explicitly
// defined methods. For those the receiver type is written out by
// Function::export_func.
exp->write_c_string("(");
bool first = true;
if (this->parameters_ != NULL)
{
bool is_varargs = this->is_varargs_;
for (Typed_identifier_list::const_iterator p =
this->parameters_->begin();
p != this->parameters_->end();
++p)
{
if (first)
first = false;
else
exp->write_c_string(", ");
if (!is_varargs || p + 1 != this->parameters_->end())
exp->write_type(p->type());
else
{
exp->write_c_string("...");
if (p->type()->array_type() != NULL)
exp->write_type(p->type()->array_type()->element_type());
}
}
}
exp->write_c_string(")");
const Typed_identifier_list* results = this->results_;
if (results != NULL)
{
exp->write_c_string(" ");
if (results->size() == 1)
exp->write_type(results->begin()->type());
else
{
first = true;
exp->write_c_string("(");
for (Typed_identifier_list::const_iterator p = results->begin();
p != results->end();
++p)
{
if (first)
first = false;
else
exp->write_c_string(", ");
exp->write_type(p->type());
}
exp->write_c_string(")");
}
}
}
// Import a function type.
Function_type*
Function_type::do_import(Import* imp)
{
imp->require_c_string("(");
Typed_identifier_list* parameters;
bool is_varargs = false;
if (imp->peek_char() == ')')
parameters = NULL;
else
{
parameters = new Typed_identifier_list();
while (true)
{
if (imp->match_c_string("..."))
{
imp->advance(3);
is_varargs = true;
if (imp->peek_char() == ')')
{
Type* empty = Type::make_interface_type(NULL,
imp->location());
parameters->push_back(Typed_identifier(Import::import_marker,
empty,
imp->location()));
break;
}
}
Type* ptype = imp->read_type();
if (is_varargs)
ptype = Type::make_array_type(ptype, NULL);
parameters->push_back(Typed_identifier(Import::import_marker,
ptype, imp->location()));
if (imp->peek_char() != ',')
break;
gcc_assert(!is_varargs);
imp->require_c_string(", ");
}
}
imp->require_c_string(")");
Typed_identifier_list* results;
if (imp->peek_char() != ' ')
results = NULL;
else
{
imp->advance(1);
results = new Typed_identifier_list;
if (imp->peek_char() != '(')
{
Type* rtype = imp->read_type();
results->push_back(Typed_identifier(Import::import_marker, rtype,
imp->location()));
}
else
{
imp->advance(1);
while (true)
{
Type* rtype = imp->read_type();
results->push_back(Typed_identifier(Import::import_marker,
rtype, imp->location()));
if (imp->peek_char() != ',')
break;
imp->require_c_string(", ");
}
imp->require_c_string(")");
}
}
Function_type* ret = Type::make_function_type(NULL, parameters, results,
imp->location());
if (is_varargs)
ret->set_is_varargs();
return ret;
}
// Make a copy of a function type without a receiver.
Function_type*
Function_type::copy_without_receiver() const
{
gcc_assert(this->is_method());
Function_type *ret = Type::make_function_type(NULL, this->parameters_,
this->results_,
this->location_);
if (this->is_varargs())
ret->set_is_varargs();
if (this->is_builtin())
ret->set_is_builtin();
return ret;
}
// Make a copy of a function type with a receiver.
Function_type*
Function_type::copy_with_receiver(Type* receiver_type) const
{
gcc_assert(!this->is_method());
Typed_identifier* receiver = new Typed_identifier("", receiver_type,
this->location_);
return Type::make_function_type(receiver, this->parameters_,
this->results_, this->location_);
}
// Make a function type.
Function_type*
Type::make_function_type(Typed_identifier* receiver,
Typed_identifier_list* parameters,
Typed_identifier_list* results,
source_location location)
{
return new Function_type(receiver, parameters, results, location);
}
// Class Pointer_type.
// Traversal.
int
Pointer_type::do_traverse(Traverse* traverse)
{
return Type::traverse(this->to_type_, traverse);
}
// Hash code.
unsigned int
Pointer_type::do_hash_for_method(Gogo* gogo) const
{
return this->to_type_->hash_for_method(gogo) << 4;
}
// The tree for a pointer type.
tree
Pointer_type::do_get_tree(Gogo* gogo)
{
return build_pointer_type(this->to_type_->get_tree(gogo));
}
// Initialize a pointer type.
tree
Pointer_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
tree type_tree = this->get_tree(gogo);
if (type_tree == error_mark_node)
return error_mark_node;
return fold_convert(type_tree, null_pointer_node);
}
// The type descriptor.
void
Pointer_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
if (!this->is_unsafe_pointer_type())
gogo->pointer_type_descriptor_decl(this, name, pdecl);
else
{
gcc_assert(name != NULL);
gogo->type_descriptor_decl(RUNTIME_TYPE_CODE_UNSAFE_POINTER, this,
name, pdecl);
}
}
// Reflection string.
void
Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
{
ret->push_back('*');
this->append_reflection(this->to_type_, gogo, ret);
}
// Mangled name.
void
Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('p');
this->append_mangled_name(this->to_type_, gogo, ret);
}
// Export.
void
Pointer_type::do_export(Export* exp) const
{
exp->write_c_string("*");
if (this->is_unsafe_pointer_type())
exp->write_c_string("any");
else
exp->write_type(this->to_type_);
}
// Import.
Pointer_type*
Pointer_type::do_import(Import* imp)
{
imp->require_c_string("*");
if (imp->match_c_string("any"))
{
imp->advance(3);
return Type::make_pointer_type(Type::make_void_type());
}
Type* to = imp->read_type();
return Type::make_pointer_type(to);
}
// Make a pointer type.
Pointer_type*
Type::make_pointer_type(Type* to_type)
{
typedef std::tr1::unordered_map<Type*, Pointer_type*> Hashtable;
static Hashtable pointer_types;
Hashtable::const_iterator p = pointer_types.find(to_type);
if (p != pointer_types.end())
return p->second;
Pointer_type* ret = new Pointer_type(to_type);
pointer_types[to_type] = ret;
return ret;
}
// The nil type. We use a special type for nil because it is not the
// same as any other type. In C term nil has type void*, but there is
// no such type in Go.
class Nil_type : public Type
{
public:
Nil_type()
: Type(TYPE_NIL)
{ }
protected:
tree
do_get_tree(Gogo*)
{ return ptr_type_node; }
tree
do_init_tree(Gogo*, bool is_clear)
{ return is_clear ? NULL : null_pointer_node; }
void
do_type_descriptor_decl(Gogo*, Named_type*, tree*)
{ gcc_unreachable(); }
void
do_reflection(Gogo*, std::string*) const
{ gcc_unreachable(); }
void
do_mangled_name(Gogo*, std::string* ret) const
{ ret->push_back('n'); }
};
// Make the nil type.
Type*
Type::make_nil_type()
{
static Nil_type singleton_nil_type;
return &singleton_nil_type;
}
// The type of a function call which returns multiple values. This is
// really a struct, but we don't want to confuse a function call which
// returns a struct with a function call which returns multiple
// values.
class Call_multiple_result_type : public Type
{
public:
Call_multiple_result_type(Call_expression* call)
: Type(TYPE_CALL_MULTIPLE_RESULT),
call_(call)
{ }
protected:
tree
do_get_tree(Gogo*);
tree
do_init_tree(Gogo*, bool)
{ gcc_unreachable(); }
void
do_type_descriptor_decl(Gogo*, Named_type*, tree*)
{ gcc_unreachable(); }
void
do_reflection(Gogo*, std::string*) const
{ gcc_unreachable(); }
void
do_mangled_name(Gogo*, std::string*) const
{ gcc_unreachable(); }
private:
// The expression being called.
Call_expression* call_;
};
// Return the tree for a call result.
tree
Call_multiple_result_type::do_get_tree(Gogo* gogo)
{
Function_type* fntype = this->call_->get_function_type();
gcc_assert(fntype != NULL);
const Typed_identifier_list* results = fntype->results();
gcc_assert(results != NULL && results->size() > 1);
Struct_field_list* sfl = new Struct_field_list;
for (Typed_identifier_list::const_iterator p = results->begin();
p != results->end();
++p)
{
const std::string name = ((p->name().empty()
|| p->name() == Import::import_marker)
? "UNNAMED"
: p->name());
sfl->push_back(Struct_field(Typed_identifier(name, p->type(),
this->call_->location())));
}
return Type::make_struct_type(sfl, this->call_->location())->get_tree(gogo);
}
// Make a call result type.
Type*
Type::make_call_multiple_result_type(Call_expression* call)
{
return new Call_multiple_result_type(call);
}
// Class Struct_field.
// Get the name of a field.
const std::string&
Struct_field::field_name() const
{
const std::string& name(this->typed_identifier_.name());
if (!name.empty())
return name;
else
{
// This is called during parsing, before anything is lowered, so
// we have to be pretty careful to avoid dereferencing an
// unknown type name.
Type* t = this->typed_identifier_.type();
Type* dt = t;
if (t->classification() == Type::TYPE_POINTER)
{
// Very ugly.
Pointer_type* ptype = static_cast<Pointer_type*>(t);
dt = ptype->points_to();
}
if (dt->forward_declaration_type() != NULL)
return dt->forward_declaration_type()->name();
else if (dt->named_type() != NULL)
return dt->named_type()->name();
else if (t->is_error_type() || dt->is_error_type())
{
static const std::string error_string = "*error*";
return error_string;
}
else
{
// Avoid crashing in the erroneous case where T is named but
// DT is not.
gcc_assert(t != dt);
if (t->forward_declaration_type() != NULL)
return t->forward_declaration_type()->name();
else if (t->named_type() != NULL)
return t->named_type()->name();
else
gcc_unreachable();
}
}
}
// Class Struct_type.
// Traversal.
int
Struct_type::do_traverse(Traverse* traverse)
{
Struct_field_list* fields = this->fields_;
if (fields != NULL)
{
for (Struct_field_list::iterator p = fields->begin();
p != fields->end();
++p)
{
if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
}
}
return TRAVERSE_CONTINUE;
}
// Verify that the struct type is complete and valid.
bool
Struct_type::do_verify()
{
Struct_field_list* fields = this->fields_;
if (fields == NULL)
return true;
for (Struct_field_list::iterator p = fields->begin();
p != fields->end();
++p)
{
Type* t = p->type();
if (t->is_undefined())
{
error_at(p->location(), "struct field type is incomplete");
p->set_type(Type::make_error_type());
return false;
}
else if (p->is_anonymous())
{
if (t->named_type() != NULL && t->points_to() != NULL)
{
error_at(p->location(), "embedded type may not be a pointer");
p->set_type(Type::make_error_type());
return false;
}
}
}
return true;
}
// Whether this contains a reference counted component.
bool
Struct_type::do_has_refcounted_component() const
{
const Struct_field_list* fields = this->fields();
if (fields == NULL)
return false;
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
++p)
{
if (p->type()->has_refcounted_component())
return true;
}
return false;
}
// Add entries to the refcount queue for this type.
void
Struct_type::do_add_refcount_queue_entries(Refcounts* refcounts,
Refcount_entry* entry)
{
const Struct_field_list* fields = this->fields();
gcc_assert(fields != NULL);
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
++p)
{
if (p->type()->has_refcounted_component())
p->type()->add_refcount_queue_entries(refcounts, entry);
}
}
// Whether this type is compatible with T.
bool
Struct_type::is_compatible(const Struct_type* t,
Type_compatible compatible) const
{
const Struct_field_list* fields1 = this->fields();
const Struct_field_list* fields2 = t->fields();
if (fields1 == NULL || fields2 == NULL)
return fields1 == fields2;
Struct_field_list::const_iterator pf2 = fields2->begin();
for (Struct_field_list::const_iterator pf1 = fields1->begin();
pf1 != fields1->end();
++pf1, ++pf2)
{
if (pf2 == fields2->end())
return false;
if (compatible == COMPATIBLE_IDENTICAL
&& pf1->field_name() != pf2->field_name())
return false;
if (pf1->is_anonymous() != pf2->is_anonymous()
|| !Type::are_compatible_for(pf1->type(), pf2->type(), compatible,
NULL))
return false;
if (compatible == COMPATIBLE_IDENTICAL)
{
if (!pf1->has_tag())
{
if (pf2->has_tag())
return false;
}
else
{
if (!pf2->has_tag())
return false;
if (pf1->tag() != pf2->tag())
return false;
}
}
}
if (pf2 != fields2->end())
return false;
return true;
}
// Whether this struct type has any hidden fields.
bool
Struct_type::struct_has_hidden_fields(const Named_type* within,
std::string* reason) const
{
const Struct_field_list* fields = this->fields();
if (fields == NULL)
return false;
const Package* within_package = (within == NULL
? NULL
: within->named_object()->package());
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf)
{
if (within_package != NULL
&& !pf->is_anonymous()
&& Gogo::is_hidden_name(pf->field_name()))
{
if (reason != NULL)
{
std::string within_name = within->named_object()->message_name();
std::string name = Gogo::unpack_hidden_name(pf->field_name());
size_t bufsize = 200 + within_name.length() + name.length();
char* buf = new char[bufsize];
snprintf(buf, bufsize,
_("implicit assignment of %s%s%s hidden field %s%s%s"),
open_quote, within_name.c_str(), close_quote,
open_quote, name.c_str(), close_quote);
reason->assign(buf);
delete[] buf;
}
return true;
}
if (pf->type()->has_hidden_fields(within, reason))
return true;
}
return false;
}
// Hash code.
unsigned int
Struct_type::do_hash_for_method(Gogo* gogo) const
{
unsigned int ret = 0;
if (this->fields() != NULL)
{
for (Struct_field_list::const_iterator pf = this->fields()->begin();
pf != this->fields()->end();
++pf)
ret = (ret << 1) + pf->type()->hash_for_method(gogo);
}
return ret <<= 2;
}
// Find the local field NAME.
const Struct_field*
Struct_type::find_local_field(const std::string& name,
unsigned int *pindex) const
{
const Struct_field_list* fields = this->fields_;
if (fields == NULL)
return NULL;
unsigned int i = 0;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf, ++i)
{
if (pf->field_name() == name)
{
if (pindex != NULL)
*pindex = i;
return &*pf;
}
}
return NULL;
}
// Return an expression for field NAME in STRUCT_EXPR, or NULL.
Field_reference_expression*
Struct_type::field_reference(Expression* struct_expr, const std::string& name,
source_location location) const
{
unsigned int depth;
return this->field_reference_depth(struct_expr, name, location, &depth);
}
// Return an expression for a field, along with the depth at which it
// was found.
Field_reference_expression*
Struct_type::field_reference_depth(Expression* struct_expr,
const std::string& name,
source_location location,
unsigned int* depth) const
{
const Struct_field_list* fields = this->fields_;
if (fields == NULL)
return NULL;
// Look for a field with this name.
unsigned int i = 0;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf, ++i)
{
if (pf->field_name() == name)
{
*depth = 0;
return Expression::make_field_reference(struct_expr, i, location);
}
}
// Look for an anonymous field which contains a field with this
// name.
unsigned int found_depth = 0;
Field_reference_expression* ret = NULL;
const Struct_field* parent = NULL;
i = 0;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf, ++i)
{
if (!pf->is_anonymous())
continue;
Struct_type* st = pf->type()->deref()->struct_type();
if (st == NULL)
continue;
// Look for a reference using a NULL struct expression. If we
// find one, fill in the struct expression with a reference to
// this field.
unsigned int subdepth;
Field_reference_expression* sub = st->field_reference_depth(NULL, name,
location,
&subdepth);
if (sub == NULL)
continue;
if (ret == NULL || subdepth < found_depth)
{
if (ret != NULL)
delete ret;
ret = sub;
parent = &*pf;
found_depth = subdepth;
Expression* here = Expression::make_field_reference(struct_expr, i,
location);
while (sub->expr() != NULL)
{
sub = sub->expr()->field_reference_expression();
gcc_assert(sub != NULL);
}
sub->set_struct_expression(here);
}
else if (subdepth > found_depth)
delete sub;
else
{
// We do not handle ambiguity here--it should be handled by
// Type::bind_field_or_method.
delete sub;
found_depth = 0;
ret = NULL;
}
}
if (ret != NULL)
*depth = found_depth + 1;
return ret;
}
// Return the total number of fields, including embedded fields.
unsigned int
Struct_type::total_field_count() const
{
if (this->fields_ == NULL)
return 0;
unsigned int ret = 0;
for (Struct_field_list::const_iterator pf = this->fields_->begin();
pf != this->fields_->end();
++pf)
{
if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
++ret;
else
ret += pf->type()->struct_type()->total_field_count();
}
return ret;
}
// Return whether NAME is an unexported field, for better error reporting.
bool
Struct_type::is_unexported_local_field(Gogo* gogo,
const std::string& name) const
{
const Struct_field_list* fields = this->fields_;
if (fields != NULL)
{
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf)
{
const std::string& field_name(pf->field_name());
if (Gogo::is_hidden_name(field_name)
&& name == Gogo::unpack_hidden_name(field_name)
&& gogo->pack_hidden_name(name, false) != field_name)
return true;
}
}
return false;
}
// Finalize the methods of an unnamed struct.
void
Struct_type::finalize_methods(Gogo* gogo)
{
Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
}
// Return the method NAME, or NULL if there isn't one or if it is
// ambiguous. Set *IS_AMBIGUOUS if the method exists but is
// ambiguous.
Method*
Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
{
return Type::method_function(this->all_methods_, name, is_ambiguous);
}
// Get the tree for a struct type.
tree
Struct_type::do_get_tree(Gogo* gogo)
{
tree type = make_node(RECORD_TYPE);
this->set_incomplete_type_tree(type);
tree field_trees = NULL_TREE;
tree* pp = &field_trees;
gcc_assert(this->fields_ != NULL);
for (Struct_field_list::const_iterator p = this->fields_->begin();
p != this->fields_->end();
++p)
{
std::string name = Gogo::unpack_hidden_name(p->field_name());
tree name_tree = get_identifier_with_length(name.data(), name.length());
tree field_type_tree = p->type()->get_tree(gogo);
if (field_type_tree == error_mark_node)
return error_mark_node;
tree field = build_decl(p->location(), FIELD_DECL, name_tree,
field_type_tree);
DECL_CONTEXT(field) = type;
*pp = field;
pp = &TREE_CHAIN(field);
}
TYPE_FIELDS(type) = field_trees;
layout_type(type);
return type;
}
// Initialize struct fields.
tree
Struct_type::do_init_tree(Gogo* gogo, bool is_clear)
{
tree type_tree = this->get_tree(gogo);
if (type_tree == error_mark_node)
return error_mark_node;
if (this->fields_ == NULL || this->fields_->empty())
{
if (is_clear)
return NULL;
else
{
tree ret = build_constructor(type_tree,
VEC_alloc(constructor_elt, gc, 0));
TREE_CONSTANT(ret) = 1;
return ret;
}
}
bool is_constant = true;
bool any_fields_set = false;
VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
this->fields_->size());
Struct_field_list::const_iterator p = this->fields_->begin();
for (tree field = TYPE_FIELDS(type_tree);
field != NULL_TREE;
field = TREE_CHAIN(field), ++p)
{
gcc_assert(p != this->fields_->end());
tree value = p->type()->get_init_tree(gogo, is_clear);
if (value != NULL)
{
constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
elt->index = field;
elt->value = value;
any_fields_set = true;
if (!TREE_CONSTANT(value))
is_constant = false;
}
}
gcc_assert(p == this->fields_->end());
if (!any_fields_set)
{
gcc_assert(is_clear);
VEC_free(constructor_elt, gc, init);
return NULL;
}
tree ret = build_constructor(type_tree, init);
if (is_constant)
TREE_CONSTANT(ret) = 1;
return ret;
}
// Copy a struct into the reference count queue.
tree
Struct_type::do_set_refcount_queue_entry(Gogo* gogo, Refcounts* refcounts,
Refcount_entry* entry, tree val) const
{
const Struct_field_list* fields = this->fields();
gcc_assert(fields != NULL);
tree ret = NULL_TREE;
tree field = TYPE_FIELDS(TREE_TYPE(val));
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
++p, field = TREE_CHAIN(field))
{
gcc_assert(field != NULL_TREE);
if (p->type()->has_refcounted_component())
{
tree f = build3(COMPONENT_REF, TREE_TYPE(field), val, field,
NULL_TREE);
tree set = p->type()->set_refcount_queue_entry(gogo, refcounts,
entry, f);
if (ret == NULL_TREE)
ret = set;
else
ret = build2(COMPOUND_EXPR, void_type_node, ret, set);
}
}
gcc_assert(field == NULL_TREE);
gcc_assert(ret != NULL_TREE);
return ret;
}
// Type descriptor.
void
Struct_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
gogo->struct_type_descriptor_decl(this, name, pdecl);
}
// Reflection string.
void
Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
{
ret->append("struct { ");
for (Struct_field_list::const_iterator p = this->fields_->begin();
p != this->fields_->end();
++p)
{
if (p != this->fields_->begin())
ret->append("; ");
if (p->is_anonymous())
ret->push_back('?');
else
ret->append(Gogo::unpack_hidden_name(p->field_name()));
ret->push_back(' ');
this->append_reflection(p->type(), gogo, ret);
if (p->has_tag())
{
const std::string& tag(p->tag());
ret->append(" \"");
for (std::string::const_iterator p = tag.begin();
p != tag.end();
++p)
{
if (*p == '\0')
ret->append("\\x00");
else if (*p == '\n')
ret->append("\\n");
else if (*p == '\t')
ret->append("\\t");
else if (*p == '"')
ret->append("\\\"");
else if (*p == '\\')
ret->append("\\\\");
else
ret->push_back(*p);
}
ret->push_back('"');
}
}
ret->append(" }");
}
// Mangled name.
void
Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('S');
const Struct_field_list* fields = this->fields_;
if (fields != NULL)
{
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
++p)
{
if (p->is_anonymous())
ret->append("0_");
else
{
std::string n = Gogo::unpack_hidden_name(p->field_name());
char buf[20];
snprintf(buf, sizeof buf, "%u_",
static_cast<unsigned int>(n.length()));
ret->append(buf);
ret->append(n);
}
this->append_mangled_name(p->type(), gogo, ret);
if (p->has_tag())
{
const std::string& tag(p->tag());
std::string out;
for (std::string::const_iterator p = tag.begin();
p != tag.end();
++p)
{
if (ISALNUM(*p) || *p == '_')
out.push_back(*p);
else
{
char buf[20];
snprintf(buf, sizeof buf, ".%x.",
static_cast<unsigned int>(*p));
out.append(buf);
}
}
char buf[20];
snprintf(buf, sizeof buf, "T%u_",
static_cast<unsigned int>(out.length()));
ret->append(buf);
ret->append(out);
}
}
}
ret->push_back('e');
}
// Export.
void
Struct_type::do_export(Export* exp) const
{
exp->write_c_string("struct { ");
const Struct_field_list* fields = this->fields_;
gcc_assert(fields != NULL);
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
++p)
{
if (p->is_anonymous())
exp->write_string("? ");
else
{
exp->write_string(p->field_name());
exp->write_c_string(" ");
}
exp->write_type(p->type());
if (p->has_tag())
{
exp->write_c_string(" ");
Expression* expr = Expression::make_string(p->tag(),
BUILTINS_LOCATION);
expr->export_expression(exp);
delete expr;
}
exp->write_c_string("; ");
}
exp->write_c_string("}");
}
// Import.
Struct_type*
Struct_type::do_import(Import* imp)
{
imp->require_c_string("struct { ");
Struct_field_list* fields = new Struct_field_list;
if (imp->peek_char() != '}')
{
while (true)
{
std::string name;
if (imp->match_c_string("? "))
imp->advance(2);
else
{
name = imp->read_identifier();
imp->require_c_string(" ");
}
Type* ftype = imp->read_type();
Struct_field sf(Typed_identifier(name, ftype, imp->location()));
if (imp->peek_char() == ' ')
{
imp->advance(1);
Expression* expr = Expression::import_expression(imp);
String_expression* sexpr = expr->string_expression();
gcc_assert(sexpr != NULL);
sf.set_tag(sexpr->val());
delete sexpr;
}
imp->require_c_string("; ");
fields->push_back(sf);
if (imp->peek_char() == '}')
break;
}
}
imp->require_c_string("}");
return Type::make_struct_type(fields, imp->location());
}
// Make a struct type.
Struct_type*
Type::make_struct_type(Struct_field_list* fields,
source_location location)
{
return new Struct_type(fields, location);
}
// Class Array_type.
Array_type::Array_trees Array_type::array_trees;
// Whether two array types are compatible.
bool
Array_type::is_compatible(const Array_type* t,
Type_compatible compatible) const
{
if (!Type::are_compatible_for(this->element_type(), t->element_type(),
compatible, NULL))
return false;
Expression* l1 = this->length();
Expression* l2 = t->length();
// Open arrays of the same element type are identical.
if (l1 == NULL && l2 == NULL)
return true;
// Fixed arrays of the same element type are identical if they have
// the same length.
if (l1 != NULL && l2 != NULL)
{
if (l1 == l2)
return true;
// Try to determine the lengths. If we can't, assume the arrays
// are not identical.
bool ret = false;
mpz_t v1;
mpz_init(v1);
Type* type1;
mpz_t v2;
mpz_init(v2);
Type* type2;
if (l1->integer_constant_value(true, v1, &type1)
&& l2->integer_constant_value(true, v2, &type2))
ret = mpz_cmp(v1, v2) == 0;
mpz_clear(v1);
mpz_clear(v2);
return ret;
}
// Otherwise the arrays are not identical.
return false;
}
// Traversal.
int
Array_type::do_traverse(Traverse* traverse)
{
if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
if (this->length_ != NULL
&& Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
return TRAVERSE_CONTINUE;
}
// Array type hash code.
unsigned int
Array_type::do_hash_for_method(Gogo* gogo) const
{
// There is no very convenient way to get a hash code for the
// length.
return this->element_type_->hash_for_method(gogo) + 1;
}
// See if the expression passed to make is suitable. The first
// argument is required, and gives the length. An optional second
// argument is permitted for the capacity.
bool
Array_type::do_check_make_expression(Expression_list* args,
source_location location)
{
gcc_assert(this->length_ == NULL);
if (args == NULL || args->empty())
{
error_at(location, "length required when allocating a slice");
return false;
}
else if (args->size() > 2)
{
error_at(location, "too many expressions passed to make");
return false;
}
else
{
if (!Type::check_int_value(args->front(),
_("bad length when making slice"), location))
return false;
if (args->size() > 1)
{
if (!Type::check_int_value(args->back(),
_("bad capacity when making slice"),
location))
return false;
}
return true;
}
}
// Get a tree for the length of a fixed array. The length may be
// computed using a function call, so we must only evaluate it once.
tree
Array_type::get_length_tree(Gogo* gogo)
{
gcc_assert(this->length_ != NULL);
if (this->length_tree_ == NULL_TREE)
{
mpz_t val;
mpz_init(val);
Type* t;
if (this->length_->integer_constant_value(true, val, &t))
{
if (t == NULL)
t = Type::lookup_integer_type("int");
else if (t->is_abstract())
t = t->make_non_abstract_type();
tree tt = t->get_tree(gogo);
this->length_tree_ = Expression::integer_constant_tree(val, tt);
mpz_clear(val);
}
else
{
mpz_clear(val);
// Make up a translation context for the array length
// expression. FIXME: This won't work in general.
Translate_context context(gogo, NULL, NULL, NULL_TREE);
this->length_tree_ = save_expr(this->length_->get_tree(&context));
}
}
return this->length_tree_;
}
// Get a tree for the type of this array. A fixed array is simply
// represented as ARRAY_TYPE with the appropriate index--i.e., it is
// just like an array in C. An open array is a struct with three
// fields: a data pointer, the length, and the capacity.
tree
Array_type::do_get_tree(Gogo* gogo)
{
if (this->length_ != NULL)
{
tree element_type_tree = this->element_type_->get_tree(gogo);
tree length_tree = this->get_length_tree(gogo);
if (element_type_tree == error_mark_node
|| length_tree == error_mark_node)
return error_mark_node;
length_tree = fold_convert(sizetype, length_tree);
// build_index_type takes the maximum index, which is one less
// than the length.
tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
length_tree,
size_one_node));
tree ret = build_array_type(element_type_tree, index_type);
// If the element type requires reference counting, then we need
// this to be stored in memory.
if (this->element_type_->has_refcounted_component())
TREE_ADDRESSABLE(ret) = 1;
return ret;
}
else
{
// Two different slices of the same element type are really the
// same type. In order to make that valid at the tree level, we
// make sure to return the same struct.
std::pair<Type*, tree> val(this->element_type_, NULL);
std::pair<Array_trees::iterator, bool> ins =
Array_type::array_trees.insert(val);
if (!ins.second)
{
// We've already created a tree type for a slice with this
// element type.
gcc_assert(ins.first->second != NULL_TREE);
return ins.first->second;
}
// A slice type can be recursive, as in "type T []T". Avoid
// infinite recursion by creating the struct first, and then
// filling in the element type.
tree struct_type = gogo->slice_type_tree(void_type_node);
this->set_incomplete_type_tree(struct_type);
ins.first->second = struct_type;
tree element_type_tree = this->element_type_->get_tree(gogo);
tree field = TYPE_FIELDS(struct_type);
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
&& TREE_TYPE(TREE_TYPE(field)) == void_type_node);
TREE_TYPE(field) = build_pointer_type(element_type_tree);
return struct_type;
}
}
// Return an initializer for an array type.
tree
Array_type::do_init_tree(Gogo* gogo, bool is_clear)
{
tree type_tree = this->get_tree(gogo);
if (this->length_ == NULL)
{
// Open array.
if (is_clear)
return NULL;
gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
for (tree field = TYPE_FIELDS(type_tree);
field != NULL_TREE;
field = TREE_CHAIN(field))
{
constructor_elt* elt = VEC_quick_push(constructor_elt, init,
NULL);
elt->index = field;
elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
}
tree ret = build_constructor(type_tree, init);
TREE_CONSTANT(ret) = 1;
return ret;
}
else
{
// Fixed array.
tree value = this->element_type_->get_init_tree(gogo, is_clear);
if (value == NULL)
return NULL;
tree length_tree = this->get_length_tree(gogo);
length_tree = fold_convert(sizetype, length_tree);
tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
fold_build2(MINUS_EXPR, sizetype,
length_tree, size_one_node));
tree ret = build_constructor_single(type_tree, range, value);
if (TREE_CONSTANT(value))
TREE_CONSTANT(ret) = 1;
return ret;
}
}
// Handle the builtin make function for a slice.
tree
Array_type::do_make_expression_tree(Translate_context* context,
Expression_list* args,
source_location location)
{
gcc_assert(this->length_ == NULL);
Gogo* gogo = context->gogo();
tree type_tree = this->get_tree(gogo);
if (type_tree == error_mark_node)
return error_mark_node;
tree values_field = TYPE_FIELDS(type_tree);
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
"__values") == 0);
tree count_field = TREE_CHAIN(values_field);
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
"__count") == 0);
tree element_type_tree = this->element_type_->get_tree(gogo);
if (element_type_tree == error_mark_node)
return error_mark_node;
tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
element_size_tree = fold_convert_loc(location, TREE_TYPE(count_field),
element_size_tree);
tree value = this->element_type_->get_init_tree(gogo, true);
// The first argument is the number of elements, the optional second
// argument is the capacity.
gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
tree length_tree = args->front()->get_tree(context);
if (length_tree == error_mark_node)
return error_mark_node;
length_tree = ::convert(TREE_TYPE(count_field), length_tree);
length_tree = save_expr(length_tree);
tree capacity_tree;
if (args->size() == 1)
capacity_tree = length_tree;
else
{
capacity_tree = args->back()->get_tree(context);
capacity_tree = ::convert(TREE_TYPE(count_field), capacity_tree);
capacity_tree = save_expr(capacity_tree);
capacity_tree = fold_build3_loc(location, COND_EXPR,
TREE_TYPE(count_field),
fold_build2_loc(location,
LT_EXPR,
boolean_type_node,
capacity_tree,
length_tree),
length_tree,
capacity_tree);
capacity_tree = save_expr(capacity_tree);
}
tree size_tree = fold_build2_loc(location, MULT_EXPR, TREE_TYPE(count_field),
element_size_tree, capacity_tree);
tree space = context->gogo()->allocate_memory(size_tree, location);
if (value != NULL_TREE)
space = save_expr(space);
space = fold_convert(TREE_TYPE(values_field), space);
tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
capacity_tree);
if (value == NULL_TREE)
{
// The array contents are zero initialized.
return constructor;
}
// The elements must be initialized.
tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
capacity_tree,
fold_convert_loc(location, TREE_TYPE(count_field),
integer_one_node));
tree array_type = build_array_type(element_type_tree,
build_index_type(max));
tree value_pointer = fold_convert_loc(location,
build_pointer_type(array_type),
space);
tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
tree space_init = build_constructor_single(array_type, range, value);
return build2(COMPOUND_EXPR, TREE_TYPE(space),
build2(MODIFY_EXPR, void_type_node,
build_fold_indirect_ref(value_pointer),
space_init),
constructor);
}
// Copy an array into the reference count queue.
tree
Array_type::do_set_refcount_queue_entry(Gogo* gogo, Refcounts* refcounts,
Refcount_entry* entry, tree val) const
{
tree ret = refcounts->set_entry_tree(gogo, *entry,
this->value_pointer_tree(gogo, val));
entry->increment();
return ret;
}
// Return a tree for a pointer to the values in ARRAY.
tree
Array_type::value_pointer_tree(Gogo*, tree array) const
{
tree ret;
if (this->length() != NULL)
{
// Fixed array.
ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
build_fold_addr_expr(array));
}
else
{
// Open array.
tree field = TYPE_FIELDS(TREE_TYPE(array));
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
"__values") == 0);
ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
NULL_TREE);
}
if (TREE_CONSTANT(array))
TREE_CONSTANT(ret) = 1;
return ret;
}
// Return a tree for the length of the array ARRAY which has this
// type.
tree
Array_type::length_tree(Gogo* gogo, tree array)
{
if (this->length_ != NULL)
{
if (TREE_CODE(array) == SAVE_EXPR)
return fold_convert(integer_type_node, this->get_length_tree(gogo));
else
return omit_one_operand(integer_type_node,
this->get_length_tree(gogo), array);
}
// This is an open array. We need to read the length field.
tree type = TREE_TYPE(array);
gcc_assert(TREE_CODE(type) == RECORD_TYPE);
tree field = TREE_CHAIN(TYPE_FIELDS(type));
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
if (TREE_CONSTANT(array))
TREE_CONSTANT(ret) = 1;
return ret;
}
// Return a tree for the capacity of the array ARRAY which has this
// type.
tree
Array_type::capacity_tree(Gogo* gogo, tree array)
{
if (this->length_ != NULL)
return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
// This is an open array. We need to read the capacity field.
tree type = TREE_TYPE(array);
gcc_assert(TREE_CODE(type) == RECORD_TYPE);
tree field = TREE_CHAIN(TREE_CHAIN(TYPE_FIELDS(type)));
gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
}
// Export.
void
Array_type::do_export(Export* exp) const
{
exp->write_c_string("[");
if (this->length_ != NULL)
this->length_->export_expression(exp);
exp->write_c_string("] ");
exp->write_type(this->element_type_);
}
// Import.
Array_type*
Array_type::do_import(Import* imp)
{
imp->require_c_string("[");
Expression* length;
if (imp->peek_char() == ']')
length = NULL;
else
length = Expression::import_expression(imp);
imp->require_c_string("] ");
Type* element_type = imp->read_type();
return Type::make_array_type(element_type, length);
}
// Type descriptor.
void
Array_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
if (this->length_ != NULL)
gogo->array_type_descriptor_decl(this, name, pdecl);
else
gogo->slice_type_descriptor_decl(this, name, pdecl);
}
// Reflection string.
void
Array_type::do_reflection(Gogo* gogo, std::string* ret) const
{
ret->push_back('[');
if (this->length_ != NULL)
{
mpz_t val;
mpz_init(val);
Type* type;
if (!this->length_->integer_constant_value(true, val, &type))
error_at(this->length_->location(),
"array length must be integer constant expression");
else if (mpz_cmp_si(val, 0) < 0)
error_at(this->length_->location(), "array length is negative");
else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
error_at(this->length_->location(), "array length is too large");
else
{
char buf[50];
snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
ret->append(buf);
}
mpz_clear(val);
}
ret->push_back(']');
this->append_reflection(this->element_type_, gogo, ret);
}
// Mangled name.
void
Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('A');
this->append_mangled_name(this->element_type_, gogo, ret);
if (this->length_ != NULL)
{
mpz_t val;
mpz_init(val);
Type* type;
if (!this->length_->integer_constant_value(true, val, &type))
error_at(this->length_->location(),
"array length must be integer constant expression");
else if (mpz_cmp_si(val, 0) < 0)
error_at(this->length_->location(), "array length is negative");
else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
error_at(this->length_->location(), "array size is too large");
else
{
char buf[50];
snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
ret->append(buf);
}
mpz_clear(val);
}
ret->push_back('e');
}
// Make an array type.
Array_type*
Type::make_array_type(Type* element_type, Expression* length)
{
return new Array_type(element_type, length);
}
// Class Map_type.
// Traversal.
int
Map_type::do_traverse(Traverse* traverse)
{
if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
|| Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
return TRAVERSE_CONTINUE;
}
// Check that the map type is OK.
bool
Map_type::do_verify()
{
if (this->key_type_->struct_type() != NULL
|| this->key_type_->array_type() != NULL
|| this->key_type_->map_type() != NULL)
{
error_at(this->location_, "invalid map key type");
return false;
}
return true;
}
// Whether two map types are compatible.
bool
Map_type::is_compatible(const Map_type* t, Type_compatible compatible) const
{
return (Type::are_compatible_for(this->key_type(), t->key_type(),
compatible, NULL)
&& Type::are_compatible_for(this->val_type(), t->val_type(),
compatible, NULL));
}
// Hash code.
unsigned int
Map_type::do_hash_for_method(Gogo* gogo) const
{
return (this->key_type_->hash_for_method(gogo)
+ this->val_type_->hash_for_method(gogo)
+ 2);
}
// Check that a call to the builtin make function is valid. For a map
// the optional argument is the number of spaces to preallocate for
// values.
bool
Map_type::do_check_make_expression(Expression_list* args,
source_location location)
{
if (args != NULL && !args->empty())
{
if (!Type::check_int_value(args->front(), _("bad size when making map"),
location))
return false;
else if (args->size() > 1)
{
error_at(location, "too many arguments when making map");
return false;
}
}
return true;
}
// Get a tree for a map type. A map type is represented as a pointer
// to a struct. The struct is __go_map in libgo/map.h.
tree
Map_type::do_get_tree(Gogo* gogo)
{
static tree type_tree;
if (type_tree == NULL_TREE)
{
tree struct_type = make_node(RECORD_TYPE);
tree map_descriptor_type = gogo->map_descriptor_type();
tree const_map_descriptor_type =
build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
tree name = get_identifier("__descriptor");
tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
build_pointer_type(const_map_descriptor_type));
DECL_CONTEXT(field) = struct_type;
TYPE_FIELDS(struct_type) = field;
tree last_field = field;
name = get_identifier("__element_count");
field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
DECL_CONTEXT(field) = struct_type;
TREE_CHAIN(last_field) = field;
last_field = field;
name = get_identifier("__bucket_count");
field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
DECL_CONTEXT(field) = struct_type;
TREE_CHAIN(last_field) = field;
last_field = field;
name = get_identifier("__buckets");
field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
build_pointer_type(ptr_type_node));
DECL_CONTEXT(field) = struct_type;
TREE_CHAIN(last_field) = field;
layout_type(struct_type);
// Give the struct a name for better debugging info.
name = get_identifier("__go_map");
tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
struct_type);
DECL_ARTIFICIAL(type_decl) = 1;
TYPE_NAME(struct_type) = type_decl;
go_preserve_from_gc(type_decl);
rest_of_decl_compilation(type_decl, 1, 0);
type_tree = build_pointer_type(struct_type);
go_preserve_from_gc(type_tree);
}
return type_tree;
}
// Initialize a map.
tree
Map_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
return fold_convert(this->get_tree(gogo), null_pointer_node);
}
// Return an expression for a newly allocated map.
tree
Map_type::do_make_expression_tree(Translate_context* context,
Expression_list* args,
source_location location)
{
tree expr_tree;
if (args == NULL || args->empty())
expr_tree = size_zero_node;
else
{
expr_tree = args->front()->get_tree(context);
if (expr_tree == error_mark_node)
return error_mark_node;
expr_tree = ::convert(sizetype, expr_tree);
}
tree map_type = this->get_tree(context->gogo());
static tree new_map_fndecl;
return Gogo::call_builtin(&new_map_fndecl,
location,
"__go_new_map",
2,
map_type,
TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
context->gogo()->map_descriptor(this),
sizetype,
expr_tree);
}
// Type descriptor.
void
Map_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
gogo->map_type_descriptor_decl(this, name, pdecl);
}
// Reflection string for a map.
void
Map_type::do_reflection(Gogo* gogo, std::string* ret) const
{
ret->append("map[");
this->append_reflection(this->key_type_, gogo, ret);
ret->append("] ");
this->append_reflection(this->val_type_, gogo, ret);
}
// Mangled name for a map.
void
Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('M');
this->append_mangled_name(this->key_type_, gogo, ret);
ret->append("__");
this->append_mangled_name(this->val_type_, gogo, ret);
}
// Export a map type.
void
Map_type::do_export(Export* exp) const
{
exp->write_c_string("map [");
exp->write_type(this->key_type_);
exp->write_c_string("] ");
exp->write_type(this->val_type_);
}
// Import a map type.
Map_type*
Map_type::do_import(Import* imp)
{
imp->require_c_string("map [");
Type* key_type = imp->read_type();
imp->require_c_string("] ");
Type* val_type = imp->read_type();
return Type::make_map_type(key_type, val_type, imp->location());
}
// Make a map type.
Map_type*
Type::make_map_type(Type* key_type, Type* val_type, source_location location)
{
return new Map_type(key_type, val_type, location);
}
// Class Channel_type.
// Hash code.
unsigned int
Channel_type::do_hash_for_method(Gogo* gogo) const
{
unsigned int ret = 0;
if (this->may_send_)
ret += 1;
if (this->may_receive_)
ret += 2;
if (this->element_type_ != NULL)
ret += this->element_type_->hash_for_method(gogo) << 2;
return ret << 3;
}
// Whether this type is the same as T.
bool
Channel_type::is_compatible(const Channel_type* t,
Type_compatible compatible) const
{
if (!Type::are_compatible_for(this->element_type(), t->element_type(),
compatible, NULL))
return false;
return (this->may_send_ == t->may_send_
&& this->may_receive_ == t->may_receive_);
}
// Check whether the parameters for a call to the builtin function
// make are OK for a channel. A channel can take an optional single
// parameter which is the buffer size.
bool
Channel_type::do_check_make_expression(Expression_list* args,
source_location location)
{
if (args != NULL && !args->empty())
{
if (!Type::check_int_value(args->front(),
_("bad buffer size when making channel"),
location))
return false;
else if (args->size() > 1)
{
error_at(location, "too many arguments when making channel");
return false;
}
}
return true;
}
// Return the tree for a channel type. A channel is a pointer to a
// __go_channel struct. The __go_channel struct is defined in
// libgo/runtime/channel.h.
tree
Channel_type::do_get_tree(Gogo*)
{
static tree type_tree;
if (type_tree == NULL_TREE)
{
tree ret = make_node(RECORD_TYPE);
TYPE_NAME(ret) = get_identifier("__go_channel");
TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
ret);
type_tree = build_pointer_type(ret);
go_preserve_from_gc(type_tree);
}
return type_tree;
}
// Initialize a channel variable.
tree
Channel_type::do_init_tree(Gogo* gogo, bool is_clear)
{
if (is_clear)
return NULL;
return fold_convert(this->get_tree(gogo), null_pointer_node);
}
// Handle the builtin function make for a channel.
tree
Channel_type::do_make_expression_tree(Translate_context* context,
Expression_list* args,
source_location location)
{
Gogo* gogo = context->gogo();
tree channel_type = this->get_tree(gogo);
tree element_tree = this->element_type_->get_tree(gogo);
tree element_size_tree = size_in_bytes(element_tree);
tree expr_tree;
if (args != NULL && !args->empty())
expr_tree = ::convert(sizetype, args->front()->get_tree(context));
else
expr_tree = size_zero_node;
static tree new_channel_fndecl;
return Gogo::call_builtin(&new_channel_fndecl,
location,
"__go_new_channel",
2,
channel_type,
sizetype,
element_size_tree,
sizetype,
expr_tree);
}
// Type descriptor.
void
Channel_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
gogo->channel_type_descriptor_decl(this, name, pdecl);
}
// Reflection string.
void
Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
{
if (!this->may_send_)
ret->append("<-");
ret->append("chan");
if (!this->may_receive_)
ret->append("<-");
ret->push_back(' ');
this->append_reflection(this->element_type_, gogo, ret);
}
// Mangled name.
void
Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('C');
this->append_mangled_name(this->element_type_, gogo, ret);
if (this->may_send_)
ret->push_back('s');
if (this->may_receive_)
ret->push_back('r');
ret->push_back('e');
}
// Export.
void
Channel_type::do_export(Export* exp) const
{
exp->write_c_string("chan ");
if (this->may_send_ && !this->may_receive_)
exp->write_c_string("-< ");
else if (this->may_receive_ && !this->may_send_)
exp->write_c_string("<- ");
exp->write_type(this->element_type_);
}
// Import.
Channel_type*
Channel_type::do_import(Import* imp)
{
imp->require_c_string("chan ");
bool may_send;
bool may_receive;
if (imp->match_c_string("-< "))
{
imp->advance(3);
may_send = true;
may_receive = false;
}
else if (imp->match_c_string("<- "))
{
imp->advance(3);
may_receive = true;
may_send = false;
}
else
{
may_send = true;
may_receive = true;
}
Type* element_type = imp->read_type();
return Type::make_channel_type(may_send, may_receive, element_type);
}
// Make a new channel type.
Channel_type*
Type::make_channel_type(bool send, bool receive, Type* element_type)
{
return new Channel_type(send, receive, element_type);
}
// Class Interface_type.
// Traversal.
int
Interface_type::do_traverse(Traverse* traverse)
{
if (this->methods_ == NULL)
return TRAVERSE_CONTINUE;
return this->methods_->traverse(traverse);
}
// Finalize the methods. This handles interface inheritance.
void
Interface_type::finalize_methods()
{
if (this->methods_ == NULL)
return;
bool is_recursive = false;
size_t from = 0;
size_t to = 0;
while (from < this->methods_->size())
{
const Typed_identifier* p = &this->methods_->at(from);
if (!p->name().empty())
{
if (from != to)
this->methods_->set(to, *p);
++from;
++to;
continue;
}
Interface_type* it = p->type()->interface_type();
if (it == NULL)
{
error_at(p->location(), "interface contains embedded non-interface");
++from;
continue;
}
if (it == this)
{
if (!is_recursive)
{
error_at(p->location(), "invalid recursive interface");
is_recursive = true;
}
++from;
continue;
}
const Typed_identifier_list* methods = it->methods();
if (methods == NULL)
{
++from;
continue;
}
for (Typed_identifier_list::const_iterator q = methods->begin();
q != methods->end();
++q)
{
if (q->name().empty() || this->find_method(q->name()) == NULL)
this->methods_->push_back(Typed_identifier(q->name(), q->type(),
p->location()));
else
{
if (!is_recursive)
error_at(p->location(), "inherited method %qs is ambiguous",
Gogo::unpack_hidden_name(q->name()).c_str());
}
}
++from;
}
if (to == 0)
{
delete this->methods_;
this->methods_ = NULL;
}
else
{
this->methods_->resize(to);
this->methods_->sort_by_name();
}
}
// Return the method NAME, or NULL.
const Typed_identifier*
Interface_type::find_method(const std::string& name) const
{
if (this->methods_ == NULL)
return NULL;
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
if (p->name() == name)
return &*p;
return NULL;
}
// Return the method index.
size_t
Interface_type::method_index(const std::string& name) const
{
gcc_assert(this->methods_ != NULL);
size_t ret = 0;
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p, ++ret)
if (p->name() == name)
return ret;
gcc_unreachable();
}
// Return whether NAME is an unexported method, for better error
// reporting.
bool
Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
{
if (this->methods_ == NULL)
return false;
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
{
const std::string& method_name(p->name());
if (Gogo::is_hidden_name(method_name)
&& name == Gogo::unpack_hidden_name(method_name)
&& gogo->pack_hidden_name(name, false) != method_name)
return true;
}
return false;
}
// Whether this type is compatible with T.
bool
Interface_type::is_compatible(const Interface_type* t,
Type_compatible compatible) const
{
// We require the same methods with the same types. The methods
// have already been sorted.
if (this->methods() == NULL || t->methods() == NULL)
return this->methods() == t->methods();
Typed_identifier_list::const_iterator p1 = this->methods()->begin();
for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
p2 != t->methods()->end();
++p1, ++p2)
{
if (p1 == this->methods()->end())
return false;
if (p1->name() != p2->name()
|| !Type::are_compatible_for(p1->type(), p2->type(), compatible,
NULL))
return false;
}
if (p1 != this->methods()->end())
return false;
return true;
}
// Whether we can assign the interface type T to this type. The types
// are known to not be compatible. An interface assignment is only
// permitted if T is known to implement all methods in THIS.
// Otherwise a type guard is required.
bool
Interface_type::is_compatible_for_assign(const Interface_type* t,
std::string* reason) const
{
if (this->methods() == NULL)
return true;
for (Typed_identifier_list::const_iterator p = this->methods()->begin();
p != this->methods()->end();
++p)
{
const Typed_identifier* m = t->find_method(p->name());
if (m == NULL)
{
if (reason != NULL)
{
char buf[200];
snprintf(buf, sizeof buf,
_("need explicit conversion; missing method %s%s%s"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
reason->assign(buf);
}
return false;
}
std::string subreason;
if (!Type::are_compatible_for(p->type(), m->type(), COMPATIBLE_COMPATIBLE,
&subreason))
{
if (reason != NULL)
{
size_t len = 200 + p->name().length() + subreason.length();
char* buf = new char[len];
if (subreason.empty())
snprintf(buf, len, _("incompatible type for method %s%s%s"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
else
snprintf(buf, len,
_("incompatible type for method %s%s%s (%s)"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote, subreason.c_str());
reason->assign(buf);
delete[] buf;
}
return false;
}
}
return true;
}
// Hash code.
unsigned int
Interface_type::do_hash_for_method(Gogo* gogo) const
{
unsigned int ret = 0;
if (this->methods_ != NULL)
{
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
{
ret = Type::hash_string(p->name(), ret);
ret += p->type()->hash_for_method(gogo);
ret <<= 1;
}
}
return ret;
}
// Return true if T implements the interface. If it does not, and
// REASON is not NULL, set *REASON to a useful error message.
bool
Interface_type::implements_interface(const Type* t, std::string* reason) const
{
if (this->methods_ == NULL || this->methods_->empty())
return true;
bool is_pointer = false;
const Named_type* nt = t->named_type();
const Struct_type* st = t->struct_type();
// If we start with a named type, we don't dereference it to find
// methods.
if (nt == NULL)
{
const Type* pt = t->points_to();
if (pt != NULL)
{
// If T is a pointer to a named type, then we need to look at
// the type to which it points.
is_pointer = true;
nt = pt->named_type();
st = pt->struct_type();
}
}
// If we have a named type, get the methods from it rather than from
// any struct type.
if (nt != NULL)
st = NULL;
// Only named and struct types have methods.
if (nt == NULL && st == NULL)
{
if (reason != NULL)
reason->assign(_("type has no methods"));
return false;
}
if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
{
if (reason != NULL)
reason->assign(_("type has no methods"));
return false;
}
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
{
bool is_ambiguous = false;
Method* m = (nt != NULL
? nt->method_function(p->name(), &is_ambiguous)
: st->method_function(p->name(), &is_ambiguous));
if (m == NULL)
{
if (reason != NULL)
{
char buf[200];
if (is_ambiguous)
snprintf(buf, sizeof buf, _("ambiguous method %s%s%s"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
else
snprintf(buf, sizeof buf, _("missing method %s%s%s"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
reason->assign(buf);
}
return false;
}
Function_type *p_fn_type = p->type()->function_type();
Function_type* m_fn_type = m->type()->function_type();
gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
std::string subreason;
if (!p_fn_type->is_compatible(m_fn_type, COMPATIBLE_COMPATIBLE, true,
&subreason))
{
if (reason != NULL)
{
size_t len = 200 + p->name().length() + subreason.length();
char* buf = new char[len];
if (subreason.empty())
snprintf(buf, len, _("incompatible type for method %s%s%s"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
else
snprintf(buf, len,
_("incompatible type for method %s%s%s (%s)"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote, subreason.c_str());
reason->assign(buf);
delete[] buf;
}
return false;
}
if (!is_pointer && !m->is_value_method())
{
if (reason != NULL)
{
size_t len = 200 + p->name().length();
char* buf = new char[len];
snprintf(buf, len, _("method %s%s%s requires a pointer"),
open_quote,
Gogo::unpack_hidden_name(p->name()).c_str(),
close_quote);
reason->assign(buf);
delete[] buf;
}
return false;
}
}
return true;
}
// Return a tree for an interface type. An interface is a pointer to
// a struct. The struct has three fields. The first field is a
// pointer to the type descriptor for the dynamic type of the object.
// The second field is a pointer to a table of methods for the
// interface to be used with the object. The third field is the value
// of the object itself.
tree
Interface_type::do_get_tree(Gogo* gogo)
{
// Interface types can refer to themselves via pointers.
tree ret = make_node(POINTER_TYPE);
SET_TYPE_MODE(ret, ptr_mode);
layout_type(ret);
this->set_incomplete_type_tree(ret);
// Build the type of the table of methods.
std::string last_name = "";
tree method_table = make_node(RECORD_TYPE);
if (this->methods_ != NULL)
{
tree* pp = &TYPE_FIELDS(method_table);
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
{
std::string name = Gogo::unpack_hidden_name(p->name());
tree name_tree = get_identifier_with_length(name.data(),
name.length());
tree field_type = p->type()->get_tree(gogo);
if (field_type == error_mark_node)
return error_mark_node;
tree field = build_decl(this->location_, FIELD_DECL, name_tree,
field_type);
DECL_CONTEXT(field) = method_table;
*pp = field;
pp = &TREE_CHAIN(field);
// Sanity check: the names should be sorted.
gcc_assert(p->name() > last_name);
last_name = p->name();
}
}
layout_type(method_table);
// Build the type of the struct. We don't use finish_builtin_struct
// because we want to set the name of the interface to the name of
// the type, if possible.
tree struct_type = make_node(RECORD_TYPE);
tree id = get_identifier("__type_descriptor");
tree dtype = gogo->type_descriptor_type_tree();
dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
tree field = build_decl(this->location_, FIELD_DECL, id,
build_pointer_type(dtype));
DECL_CONTEXT(field) = struct_type;
TYPE_FIELDS(struct_type) = field;
tree last_field = field;
id = get_identifier("__methods");
field = build_decl(this->location_, FIELD_DECL, id,
build_pointer_type(method_table));
DECL_CONTEXT(field) = struct_type;
TREE_CHAIN(last_field) = field;
last_field = field;
id = get_identifier("__object");
field = build_decl(this->location_, FIELD_DECL, id, ptr_type_node);
DECL_CONTEXT(field) = struct_type;
TREE_CHAIN(last_field) = field;
layout_type(struct_type);
// We have to do this by hand since we had to create the node
// already.
TREE_TYPE(ret) = struct_type;
TYPE_POINTER_TO(struct_type) = ret;
if (TYPE_STRUCTURAL_EQUALITY_P(struct_type))
SET_TYPE_STRUCTURAL_EQUALITY(ret);
return ret;
}
// Initialization value.
tree
Interface_type::do_init_tree(Gogo* gogo, bool is_clear)
{
return (is_clear
? NULL
: fold_convert(this->get_tree(gogo), null_pointer_node));
}
// Type descriptor.
void
Interface_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name,
tree* pdecl)
{
gogo->interface_type_descriptor_decl(this, name, pdecl);
}
// Reflection string.
void
Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
{
ret->append("interface {");
if (this->methods_ != NULL)
{
for (Typed_identifier_list::const_iterator p = this->methods_->begin();
p != this->methods_->end();
++p)
{
if (p != this->methods_->begin())
ret->append(";");
ret->push_back(' ');
ret->append(Gogo::unpack_hidden_name(p->name()));
std::string sub = p->type()->reflection(gogo);
gcc_assert(sub.compare(0, 4, "func") == 0);
sub = sub.substr(4);
ret->append(sub);
}
}
ret->append(" }");
}
// Mangled name.
void
Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
ret->push_back('I');
const Typed_identifier_list* methods = this->methods_;
if (methods != NULL)
{
for (Typed_identifier_list::const_iterator p = methods->begin();
p != methods->end();
++p)
{
std::string n = Gogo::unpack_hidden_name(p->name());
char buf[20];
snprintf(buf, sizeof buf, "%u_",
static_cast<unsigned int>(n.length()));
ret->append(buf);
ret->append(n);
this->append_mangled_name(p->type(), gogo, ret);
}
}
ret->push_back('e');
}
// Export.
void
Interface_type::do_export(Export* exp) const
{
exp->write_c_string("interface { ");
const Typed_identifier_list* methods = this->methods_;
if (methods != NULL)
{
for (Typed_identifier_list::const_iterator pm = methods->begin();
pm != methods->end();
++pm)
{
exp->write_string(pm->name());
exp->write_c_string(" (");
const Function_type* fntype = pm->type()->function_type();
bool first = true;
const Typed_identifier_list* parameters = fntype->parameters();
if (parameters != NULL)
{
bool is_varargs = fntype->is_varargs();
for (Typed_identifier_list::const_iterator pp =
parameters->begin();
pp != parameters->end();
++pp)
{
if (first)
first = false;
else
exp->write_c_string(", ");
if (!is_varargs || pp + 1 != parameters->end())
exp->write_type(pp->type());
else
{
exp->write_c_string("...");
Type *pptype = pp->type();
if (pptype->array_type() != NULL)
exp->write_type(pptype->array_type()->element_type());
}
}
}
exp->write_c_string(")");
const Typed_identifier_list* results = fntype->results();
if (results != NULL)
{
exp->write_c_string(" ");
if (results->size() == 1)
exp->write_type(results->begin()->type());
else
{
first = true;
exp->write_c_string("(");
for (Typed_identifier_list::const_iterator p =
results->begin();
p != results->end();
++p)
{
if (first)
first = false;
else
exp->write_c_string(", ");
exp->write_type(p->type());
}
exp->write_c_string(")");
}
}
exp->write_c_string("; ");
}
}
exp->write_c_string("}");
}
// Import an interface type.
Interface_type*
Interface_type::do_import(Import* imp)
{
imp->require_c_string("interface { ");
Typed_identifier_list* methods = new Typed_identifier_list;
while (imp->peek_char() != '}')
{
std::string name = imp->read_identifier();
imp->require_c_string(" (");
Typed_identifier_list* parameters;
bool is_varargs = false;
if (imp->peek_char() == ')')
parameters = NULL;
else
{
parameters = new Typed_identifier_list;
while (true)
{
if (imp->match_c_string("..."))
{
imp->advance(3);
is_varargs = true;
if (imp->peek_char() == ')')
{
Type* empty = Type::make_interface_type(NULL,
imp->location());
Typed_identifier tid(Import::import_marker, empty,
imp->location());
parameters->push_back(tid);
break;
}
}
Type* ptype = imp->read_type();
if (is_varargs)
ptype = Type::make_array_type(ptype, NULL);
parameters->push_back(Typed_identifier(Import::import_marker,
ptype, imp->location()));
if (imp->peek_char() != ',')
break;
gcc_assert(!is_varargs);
imp->require_c_string(", ");
}
}
imp->require_c_string(")");
Typed_identifier_list* results;
if (imp->peek_char() != ' ')
results = NULL;
else
{
results = new Typed_identifier_list;
imp->advance(1);
if (imp->peek_char() != '(')
{
Type* rtype = imp->read_type();
results->push_back(Typed_identifier(Import::import_marker,
rtype, imp->location()));
}
else
{
imp->advance(1);
while (true)
{
Type* rtype = imp->read_type();
results->push_back(Typed_identifier(Import::import_marker,
rtype, imp->location()));
if (imp->peek_char() != ',')
break;
imp->require_c_string(", ");
}
imp->require_c_string(")");
}
}
Function_type* fntype = Type::make_function_type(NULL, parameters,
results,
imp->location());
if (is_varargs)
fntype->set_is_varargs();
methods->push_back(Typed_identifier(name, fntype, imp->location()));
imp->require_c_string("; ");
}
imp->require_c_string("}");
if (methods->empty())
{
delete methods;
methods = NULL;
}
return Type::make_interface_type(methods, imp->location());
}
// Make an interface type.
Interface_type*
Type::make_interface_type(Typed_identifier_list* methods,
source_location location)
{
return new Interface_type(methods, location);
}
// Make the type of a pointer to a type descriptor as represented in
// Go. We should really tie this to runtime.Type rather than copying
// it.
Type*
Type::make_type_descriptor_ptr_type()
{
static Type* ret;
if (ret == NULL)
{
source_location bloc = BUILTINS_LOCATION;
Struct_field_list* sfl = new Struct_field_list();
Type* uint8_type = Type::lookup_integer_type("uint8");
Type* uintptr_type = Type::lookup_integer_type("uintptr");
sfl->push_back(Struct_field(Typed_identifier("Code", uint8_type, bloc)));
sfl->push_back(Struct_field(Typed_identifier("align", uint8_type, bloc)));
sfl->push_back(Struct_field(Typed_identifier("fieldAlign", uint8_type,
bloc)));
sfl->push_back(Struct_field(Typed_identifier("size", uintptr_type,
bloc)));
// We don't try to represent the real function type.
Type* fntype = Type::make_function_type(NULL, NULL, NULL, bloc);
sfl->push_back(Struct_field(Typed_identifier("hash", fntype, bloc)));
sfl->push_back(Struct_field(Typed_identifier("equal", fntype, bloc)));
Type* stype = Type::make_pointer_type(Type::lookup_string_type());
sfl->push_back(Struct_field(Typed_identifier("string", stype, bloc)));
// We omit the pointer to uncommonType.
Type* t = Type::make_struct_type(sfl, bloc);
ret = Type::make_pointer_type(t);
}
return ret;
}
// Class Method.
// Bind a method to an object.
Expression*
Method::bind_method(Expression* expr, source_location location) const
{
if (this->stub_ == NULL)
{
// When there is no stub object, the binding is determined by
// the child class.
return this->do_bind_method(expr, location);
}
Expression* func = Expression::make_func_reference(this->stub_, NULL,
location);
return Expression::make_bound_method(expr, func, location);
}
// Return the named object associated with a method. This may only be
// called after methods are finalized.
Named_object*
Method::named_object() const
{
if (this->stub_ != NULL)
return this->stub_;
return this->do_named_object();
}
// Class Named_method.
// The type of the method.
Function_type*
Named_method::do_type() const
{
if (this->named_object_->is_function())
return this->named_object_->func_value()->type();
else if (this->named_object_->is_function_declaration())
return this->named_object_->func_declaration_value()->type();
else
gcc_unreachable();
}
// Return the location of the method receiver.
source_location
Named_method::do_receiver_location() const
{
return this->do_type()->receiver()->location();
}
// Bind a method to an object.
Expression*
Named_method::do_bind_method(Expression* expr, source_location location) const
{
Expression* func = Expression::make_func_reference(this->named_object_, NULL,
location);
Bound_method_expression* bme = Expression::make_bound_method(expr, func,
location);
// If this is not a local method, and it does not use a stub, then
// the real method expects a different type. We need to cast the
// first argument.
if (this->depth() > 0 && !this->needs_stub_method())
{
Function_type* ftype = this->do_type();
gcc_assert(ftype->is_method());
Type* frtype = ftype->receiver()->type();
bme->set_first_argument_type(frtype);
}
return bme;
}
// Class Interface_method.
// Bind a method to an object.
Expression*
Interface_method::do_bind_method(Expression* expr,
source_location location) const
{
return Expression::make_interface_field_reference(expr, this->name_,
location);
}
// Class Methods.
// Insert a new method. Return true if it was inserted, false
// otherwise.
bool
Methods::insert(const std::string& name, Method* m)
{
std::pair<Method_map::iterator, bool> ins =
this->methods_.insert(std::make_pair(name, m));
if (ins.second)
return true;
else
{
Method* old_method = ins.first->second;
if (m->depth() < old_method->depth())
{
delete old_method;
ins.first->second = m;
return true;
}
else
{
if (m->depth() == old_method->depth())
old_method->set_is_ambiguous();
return false;
}
}
}
// Return the number of unambiguous methods.
size_t
Methods::count() const
{
size_t ret = 0;
for (Method_map::const_iterator p = this->methods_.begin();
p != this->methods_.end();
++p)
if (!p->second->is_ambiguous())
++ret;
return ret;
}
// Class Named_type.
// Return the name of the type.
const std::string&
Named_type::name() const
{
return this->named_object_->name();
}
// Return the name of the type to use in an error message.
std::string
Named_type::message_name() const
{
return this->named_object_->message_name();
}
// Add a method to this type.
Named_object*
Named_type::add_method(const std::string& name, Function* function)
{
if (this->local_methods_ == NULL)
this->local_methods_ = new Bindings(NULL);
return this->local_methods_->add_function(name, NULL, function);
}
// Add a method declaration to this type.
Named_object*
Named_type::add_method_declaration(const std::string& name, Package* package,
Function_type* type,
source_location location)
{
if (this->local_methods_ == NULL)
this->local_methods_ = new Bindings(NULL);
return this->local_methods_->add_function_declaration(name, package, type,
location);
}
// Add an existing method to this type.
void
Named_type::add_existing_method(Named_object* no)
{
if (this->local_methods_ == NULL)
this->local_methods_ = new Bindings(NULL);
this->local_methods_->add_named_object(no);
}
// Look for a local method NAME, and returns its named object, or NULL
// if not there.
Named_object*
Named_type::find_local_method(const std::string& name) const
{
if (this->local_methods_ == NULL)
return NULL;
return this->local_methods_->lookup(name);
}
// Return whether NAME is an unexported field or method, for better
// error reporting.
bool
Named_type::is_unexported_local_method(Gogo* gogo,
const std::string& name) const
{
Bindings* methods = this->local_methods_;
if (methods != NULL)
{
for (Bindings::const_declarations_iterator p =
methods->begin_declarations();
p != methods->end_declarations();
++p)
{
if (Gogo::is_hidden_name(p->first)
&& name == Gogo::unpack_hidden_name(p->first)
&& gogo->pack_hidden_name(name, false) != p->first)
return true;
}
}
return false;
}
// Build the complete list of methods for this type, which means
// recursively including all methods for anonymous fields. Create all
// stub methods.
void
Named_type::finalize_methods(Gogo* gogo)
{
if (this->local_methods_ != NULL
&& (this->points_to() != NULL || this->interface_type() != NULL))
{
const Bindings* lm = this->local_methods_;
for (Bindings::const_declarations_iterator p = lm->begin_declarations();
p != lm->end_declarations();
++p)
error_at(p->second->location(),
"invalid pointer or interface receiver type");
delete this->local_methods_;
this->local_methods_ = NULL;
return;
}
Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
}
// Return the method NAME, or NULL if there isn't one or if it is
// ambiguous. Set *IS_AMBIGUOUS if the method exists but is
// ambiguous.
Method*
Named_type::method_function(const std::string& name, bool* is_ambiguous) const
{
return Type::method_function(this->all_methods_, name, is_ambiguous);
}
// Return a pointer to the interface method table for this type for
// the interface INTERFACE. IS_POINTER is true if this is for value
// of pointer type.
tree
Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface)
{
if (interface->method_count() == 0)
return null_pointer_node;
if (this->interface_method_tables_ == NULL)
this->interface_method_tables_ = new Interface_method_tables(5);
std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
std::pair<Interface_method_tables::iterator, bool> ins =
this->interface_method_tables_->insert(val);
if (ins.second)
{
// This is a new entry in the hash table.
gcc_assert(ins.first->second == NULL_TREE);
ins.first->second = gogo->interface_method_table_for_type(interface,
this);
}
tree decl = ins.first->second;
if (decl == error_mark_node)
return error_mark_node;
gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
return build_fold_addr_expr(decl);
}
// Whether this type is compatible with T.
bool
Named_type::is_compatible(const Type* t, Type_compatible compatible,
std::string* reason) const
{
if (compatible == COMPATIBLE_IDENTICAL)
return this == t;
// In general, different named types are not compatible other than
// for type conversion. An exception is assigning to an variable
// with interface type.
if (t->named_type() != NULL && compatible != COMPATIBLE_FOR_CONVERSION)
{
if (reason != NULL)
{
size_t len = (this->name().length()
+ t->named_type()->name().length()
+ 100);
char* buf = new char[len];
snprintf(buf, len, _("cannot use type %s as type %s"),
t->named_type()->message_name().c_str(),
this->message_name().c_str());
reason->assign(buf);
delete[] buf;
}
return false;
}
// We use the seen_ flag to cut off recursion.
if (this->seen_)
return this->type_->base() == t->base();
this->seen_ = true;
bool ret = Type::are_compatible_for(this->type_, t, compatible, reason);
this->seen_ = false;
return ret;
}
// Return whether a named type has any hidden fields.
bool
Named_type::named_type_has_hidden_fields(std::string* reason) const
{
if (this->seen_)
return false;
this->seen_ = true;
bool ret = this->type_->has_hidden_fields(this, reason);
this->seen_ = false;
return ret;
}
// Look for a use of a complete type within another type. This is
// used to check that we don't try to use a type within itself.
class Find_type_use : public Traverse
{
public:
Find_type_use(Type* find_type)
: Traverse(traverse_types),
find_type_(find_type), found_(false)
{ }
// Whether we found the type.
bool
found() const
{ return this->found_; }
protected:
int
type(Type*);
private:
// The type we are looking for.
Type* find_type_;
// Whether we found the type.
bool found_;
};
// Check for FIND_TYPE in TYPE.
int
Find_type_use::type(Type* type)
{
if (this->find_type_ == type)
{
this->found_ = true;
return TRAVERSE_EXIT;
}
// It's OK if we see a reference to the type in any type which is
// essentially a pointer: a pointer, a slice, a function, a map, or
// a channel.
if (type->points_to() != NULL
|| type->is_open_array_type()
|| type->function_type() != NULL
|| type->map_type() != NULL
|| type->channel_type() != NULL)
return TRAVERSE_SKIP_COMPONENTS;
// For an interface, a reference to the type in a method type should
// be ignored, but we have to consider direct inheritance. When
// this is called, there may be cases of direct inheritance
// represented as a method with no name.
if (type->interface_type() != NULL)
{
const Typed_identifier_list* methods = type->interface_type()->methods();
if (methods != NULL)
{
for (Typed_identifier_list::const_iterator p = methods->begin();
p != methods->end();
++p)
{
if (p->name().empty())
{
if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
}
}
}
return TRAVERSE_SKIP_COMPONENTS;
}
return TRAVERSE_CONTINUE;
}
// Verify that a named type does not refer to itself.
bool
Named_type::do_verify()
{
Find_type_use find(this);
Type::traverse(this->type_, &find);
if (find.found())
{
error_at(this->location_, "invalid recursive type %qs",
this->name().c_str());
this->is_error_ = true;
return false;
}
// Check whether any of the local methods overloads an existing
// struct field or interface method. We don't need to check the
// list of methods against itself: that is handled by the Bindings
// code.
if (this->local_methods_ != NULL)
{
Struct_type* st = this->type_->struct_type();
Interface_type* it = this->type_->interface_type();
bool found_dup = false;
if (st != NULL || it != NULL)
{
for (Bindings::const_declarations_iterator p =
this->local_methods_->begin_declarations();
p != this->local_methods_->end_declarations();
++p)
{
const std::string& name(p->first);
if (st != NULL && st->find_local_field(name, NULL) != NULL)
{
error_at(p->second->location(),
"method %qs redeclares struct field name",
Gogo::unpack_hidden_name(name).c_str());
found_dup = true;
}
if (it != NULL && it->find_method(name) != NULL)
{
error_at(p->second->location(),
"method %qs redeclares interface method name",
Gogo::unpack_hidden_name(name).c_str());
found_dup = true;
}
}
}
if (found_dup)
return false;
}
return true;
}
// The number of reference count queue entries required.
void
Named_type::do_add_refcount_queue_entries(Refcounts* refcounts,
Refcount_entry* entry)
{
// If this is not a struct or an array, just use the type itself.
if (this->struct_type() == NULL && this->array_type() == NULL)
this->Type::do_add_refcount_queue_entries(refcounts, entry);
else
this->type_->add_refcount_queue_entries(refcounts, entry);
}
// Return a hash code. This is used for method lookup. We simply
// hash on the name itself.
unsigned int
Named_type::do_hash_for_method(Gogo* gogo) const
{
const std::string& name(this->named_object()->name());
unsigned int ret = Type::hash_string(name, 0);
// GOGO will be NULL here when called from Type_hash_identical.
// That is OK because that is only used for internal hash tables
// where we are going to be comparing named types for equality. In
// other cases, which are cases where the runtime is going to
// compare hash codes to see if the types are the same, we need to
// include the package prefix and name in the hash.
if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
{
const Package* package = this->named_object()->package();
if (package == NULL)
{
ret = Type::hash_string(gogo->unique_prefix(), ret);
ret = Type::hash_string(gogo->package_name(), ret);
}
else
{
ret = Type::hash_string(package->unique_prefix(), ret);
ret = Type::hash_string(package->name(), ret);
}
}
return ret;
}
// Get a tree for a named type.
tree
Named_type::do_get_tree(Gogo* gogo)
{
if (this->is_error_)
return error_mark_node;
tree type_tree = this->type_->get_tree(gogo);
// If an interface refers to itself recursively, then we may have an
// incomplete type here. It should get filled in somewhere higher
// on the call stack.
if (type_tree != error_mark_node
&& (!POINTER_TYPE_P (type_tree) || TREE_TYPE(type_tree) != NULL_TREE))
{
tree id = this->named_object_->get_id(gogo);
// If we are looking at a struct or an interface, we don't need
// to make a copy to hold the type. Doing this makes it easier
// for the middle-end to notice when the types refer to
// themselves.
if (TYPE_NAME(type_tree) == NULL
&& (this->type_->struct_type() != NULL
|| this->type_->interface_type() != NULL))
;
else
{
// Make a copy so that we can set TYPE_NAME.
type_tree = build_variant_type_copy(type_tree);
}
tree decl = build_decl(this->location_, TYPE_DECL, id, type_tree);
TYPE_NAME(type_tree) = decl;
// Interfaces are pointers to structs; give the struct a name so
// that the debugging information will be more useful.
if (this->type_->interface_type() != NULL)
{
gcc_assert(TREE_CODE(type_tree) == POINTER_TYPE);
tree stree = TREE_TYPE(type_tree);
gcc_assert(TREE_CODE(stree) == RECORD_TYPE);
if (TYPE_NAME(stree) != NULL)
stree = build_variant_type_copy(stree);
TYPE_NAME(stree) = decl;
}
}
return type_tree;
}
// Type descriptor decl.
void
Named_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name, tree* pdecl)
{
// If NAME is not NULL, then we don't really want the type
// descriptor for this type; we want the descriptor for the
// underlying type, given the name NAME.
this->named_type_descriptor(gogo, this->type_,
name == NULL ? this : name,
pdecl);
}
// Add to the reflection string. This is used mostly for the name of
// the type used in a type descriptor, not for actual reflection
// strings.
void
Named_type::do_reflection(Gogo* gogo, std::string* ret) const
{
if (this->location() != BUILTINS_LOCATION)
{
const Package* package = this->named_object_->package();
if (package != NULL)
ret->append(package->name());
else
ret->append(gogo->package_name());
ret->push_back('.');
}
if (this->in_function_ != NULL)
{
ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
ret->push_back('$');
}
ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
}
// Get the mangled name.
void
Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
Named_object* no = this->named_object_;
std::string name;
if (this->location() == BUILTINS_LOCATION)
gcc_assert(this->in_function_ == NULL);
else
{
const std::string& unique_prefix(no->package() == NULL
? gogo->unique_prefix()
: no->package()->unique_prefix());
const std::string& package_name(no->package() == NULL
? gogo->package_name()
: no->package()->name());
name = unique_prefix;
name.append(1, '.');
name.append(package_name);
name.append(1, '.');
if (this->in_function_ != NULL)
{
name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
name.append(1, '$');
}
}
name.append(Gogo::unpack_hidden_name(no->name()));
char buf[20];
snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
ret->append(buf);
ret->append(name);
}
// Export the type. This is called to export a global type.
void
Named_type::export_named_type(Export* exp, const std::string&) const
{
// We don't need to write the name of the type here, because it will
// be written by Export::write_type anyhow.
exp->write_c_string("type ");
exp->write_type(this);
exp->write_c_string(";\n");
}
// Import a named type.
void
Named_type::import_named_type(Import* imp, Named_type** ptype)
{
imp->require_c_string("type ");
Type *type = imp->read_type();
*ptype = type->named_type();
gcc_assert(*ptype != NULL);
imp->require_c_string(";\n");
}
// Export the type when it is referenced by another type. In this
// case Export::export_type will already have issued the name.
void
Named_type::do_export(Export* exp) const
{
exp->write_type(this->type_);
// To save space, we only export the methods directly attached to
// this type.
Bindings* methods = this->local_methods_;
if (methods == NULL)
return;
exp->write_c_string("\n");
for (Bindings::const_definitions_iterator p = methods->begin_definitions();
p != methods->end_definitions();
++p)
{
exp->write_c_string(" ");
(*p)->export_named_object(exp);
}
for (Bindings::const_declarations_iterator p = methods->begin_declarations();
p != methods->end_declarations();
++p)
{
if (p->second->is_function_declaration())
{
exp->write_c_string(" ");
p->second->export_named_object(exp);
}
}
}
// Make a named type.
Named_type*
Type::make_named_type(Named_object* named_object, Type* type,
source_location location)
{
return new Named_type(named_object, type, location);
}
// Finalize the methods for TYPE. It will be a named type or a struct
// type. This sets *ALL_METHODS to the list of methods, and builds
// all required stubs.
void
Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
Methods** all_methods)
{
*all_methods = NULL;
Types_seen types_seen;
Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
all_methods);
Type::build_stub_methods(gogo, type, *all_methods, location);
}
// Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
// build up the struct field indexes as we go. DEPTH is the depth of
// the field within TYPE. IS_EMBEDDED_POINTER is true if we are
// adding these methods for an anonymous field with pointer type.
// NEEDS_STUB_METHOD is true if we need to use a stub method which
// calls the real method. TYPES_SEEN is used to avoid infinite
// recursion.
void
Type::add_methods_for_type(const Type* type,
const Method::Field_indexes* field_indexes,
unsigned int depth,
bool is_embedded_pointer,
bool needs_stub_method,
Types_seen* types_seen,
Methods** methods)
{
// Pointer types may not have methods.
if (type->points_to() != NULL)
return;
const Named_type* nt = type->named_type();
if (nt != NULL)
{
std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
if (!ins.second)
return;
}
if (nt != NULL)
Type::add_local_methods_for_type(nt, field_indexes, depth,
is_embedded_pointer, needs_stub_method,
methods);
Type::add_embedded_methods_for_type(type, field_indexes, depth,
is_embedded_pointer, needs_stub_method,
types_seen, methods);
// If we are called with depth > 0, then we are looking at an
// anonymous field of a struct. If such a field has interface type,
// then we need to add the interface methods. We don't want to add
// them when depth == 0, because we will already handle them
// following the usual rules for an interface type.
if (depth > 0)
Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
}
// Add the local methods for the named type NT to *METHODS. The
// parameters are as for add_methods_to_type.
void
Type::add_local_methods_for_type(const Named_type* nt,
const Method::Field_indexes* field_indexes,
unsigned int depth,
bool is_embedded_pointer,
bool needs_stub_method,
Methods** methods)
{
const Bindings* local_methods = nt->local_methods();
if (local_methods == NULL)
return;
if (*methods == NULL)
*methods = new Methods();
for (Bindings::const_declarations_iterator p =
local_methods->begin_declarations();
p != local_methods->end_declarations();
++p)
{
Named_object* no = p->second;
bool is_value_method = (is_embedded_pointer
|| !Type::method_expects_pointer(no));
Method* m = new Named_method(no, field_indexes, depth, is_value_method,
(needs_stub_method
|| (depth > 0 && is_value_method)));
if (!(*methods)->insert(no->name(), m))
delete m;
}
}
// Add the embedded methods for TYPE to *METHODS. These are the
// methods attached to anonymous fields. The parameters are as for
// add_methods_to_type.
void
Type::add_embedded_methods_for_type(const Type* type,
const Method::Field_indexes* field_indexes,
unsigned int depth,
bool is_embedded_pointer,
bool needs_stub_method,
Types_seen* types_seen,
Methods** methods)
{
// Look for anonymous fields in TYPE. TYPE has fields if it is a
// struct.
const Struct_type* st = type->struct_type();
if (st == NULL)
return;
const Struct_field_list* fields = st->fields();
if (fields == NULL)
return;
unsigned int i = 0;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf, ++i)
{
if (!pf->is_anonymous())
continue;
Type* ftype = pf->type();
bool is_pointer = false;
if (ftype->points_to() != NULL)
{
ftype = ftype->points_to();
is_pointer = true;
}
Named_type* fnt = ftype->named_type();
if (fnt == NULL)
{
// This is an error, but it will be diagnosed elsewhere.
continue;
}
Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
sub_field_indexes->next = field_indexes;
sub_field_indexes->field_index = i;
Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
(is_embedded_pointer || is_pointer),
(needs_stub_method
|| is_pointer
|| i > 0),
types_seen,
methods);
}
}
// If TYPE is an interface type, then add its method to *METHODS.
// This is for interface methods attached to an anonymous field. The
// parameters are as for add_methods_for_type.
void
Type::add_interface_methods_for_type(const Type* type,
const Method::Field_indexes* field_indexes,
unsigned int depth,
Methods** methods)
{
const Interface_type* it = type->interface_type();
if (it == NULL)
return;
const Typed_identifier_list* imethods = it->methods();
if (imethods == NULL)
return;
if (*methods == NULL)
*methods = new Methods();
for (Typed_identifier_list::const_iterator pm = imethods->begin();
pm != imethods->end();
++pm)
{
Function_type* fntype = pm->type()->function_type();
gcc_assert(fntype != NULL && !fntype->is_method());
fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
Method* m = new Interface_method(pm->name(), pm->location(), fntype,
field_indexes, depth);
if (!(*methods)->insert(pm->name(), m))
delete m;
}
}
// Build stub methods for TYPE as needed. METHODS is the set of
// methods for the type. A stub method may be needed when a type
// inherits a method from an anonymous field. When we need the
// address of the method, as in a type descriptor, we need to build a
// little stub which does the required field dereferences and jumps to
// the real method. LOCATION is the location of the type definition.
void
Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
source_location location)
{
if (methods == NULL)
return;
for (Methods::const_iterator p = methods->begin();
p != methods->end();
++p)
{
Method* m = p->second;
if (m->is_ambiguous() || !m->needs_stub_method())
continue;
const std::string& name(p->first);
// Build a stub method.
const Function_type* fntype = m->type();
static unsigned int counter;
char buf[100];
snprintf(buf, sizeof buf, "$this%u", counter);
++counter;
Type* receiver_type = const_cast<Type*>(type);
if (!m->is_value_method())
receiver_type = Type::make_pointer_type(receiver_type);
source_location receiver_location = m->receiver_location();
Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
receiver_location);
const Typed_identifier_list* fnparams = fntype->parameters();
Typed_identifier_list* stub_params;
if (fnparams == NULL || fnparams->empty())
stub_params = NULL;
else
{
// We give each stub parameter a unique name.
stub_params = new Typed_identifier_list();
for (Typed_identifier_list::const_iterator pp = fnparams->begin();
pp != fnparams->end();
++pp)
{
char pbuf[100];
snprintf(pbuf, sizeof pbuf, "$p%u", counter);
stub_params->push_back(Typed_identifier(pbuf, pp->type(),
pp->location()));
++counter;
}
}
const Typed_identifier_list* fnresults = fntype->results();
Typed_identifier_list* stub_results;
if (fnresults == NULL || fnresults->empty())
stub_results = NULL;
else
{
// We create the result parameters without any names, since
// we won't refer to them.
stub_results = new Typed_identifier_list();
for (Typed_identifier_list::const_iterator pr = fnresults->begin();
pr != fnresults->end();
++pr)
stub_results->push_back(Typed_identifier("", pr->type(),
pr->location()));
}
Function_type* stub_type = Type::make_function_type(receiver,
stub_params,
stub_results,
fntype->location());
if (fntype->is_varargs())
stub_type->set_is_varargs();
// We only create the function in the package which creates the
// type.
const Package* package;
if (type->named_type() == NULL)
package = NULL;
else
package = type->named_type()->named_object()->package();
Named_object* stub;
if (package != NULL)
stub = Named_object::make_function_declaration(name, package,
stub_type, location);
else
{
stub = gogo->start_function(name, stub_type, false,
fntype->location());
Type::build_one_stub_method(gogo, m, buf, stub_params, location);
gogo->finish_function(fntype->location());
}
m->set_stub_object(stub);
}
}
// Build a stub method which adjusts the receiver as required to call
// METHOD. RECEIVER_NAME is the name we used for the receiver.
// PARAMS is the list of function parameters.
void
Type::build_one_stub_method(Gogo* gogo, Method* method,
const char* receiver_name,
const Typed_identifier_list* params,
source_location location)
{
Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
gcc_assert(receiver_object != NULL);
Expression* expr = Expression::make_var_reference(receiver_object, location);
expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
if (expr->type()->points_to() == NULL)
expr = Expression::make_unary(OPERATOR_AND, expr, location);
Expression_list* arguments;
if (params == NULL || params->empty())
arguments = NULL;
else
{
arguments = new Expression_list();
for (Typed_identifier_list::const_iterator p = params->begin();
p != params->end();
++p)
{
Named_object* param = gogo->lookup(p->name(), NULL);
gcc_assert(param != NULL);
Expression* param_ref = Expression::make_var_reference(param,
location);
arguments->push_back(param_ref);
}
}
Expression* func = method->bind_method(expr, location);
gcc_assert(func != NULL);
Call_expression* call = Expression::make_call(func, arguments, location);
size_t count = call->result_count();
if (count == 0)
gogo->add_statement(Statement::make_statement(call));
else
{
Expression_list* retvals = new Expression_list();
if (count <= 1)
retvals->push_back(call);
else
{
for (size_t i = 0; i < count; ++i)
retvals->push_back(Expression::make_call_result(call, i));
}
const Function* function = gogo->current_function()->func_value();
const Typed_identifier_list* results = function->type()->results();
Statement* retstat = Statement::make_return_statement(results, retvals,
location);
gogo->add_statement(retstat);
}
}
// Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
// in reverse order.
Expression*
Type::apply_field_indexes(Expression* expr,
const Method::Field_indexes* field_indexes,
source_location location)
{
if (field_indexes == NULL)
return expr;
expr = Type::apply_field_indexes(expr, field_indexes->next, location);
Struct_type* stype = expr->type()->deref()->struct_type();
gcc_assert(stype != NULL
&& field_indexes->field_index < stype->field_count());
return Expression::make_field_reference(expr, field_indexes->field_index,
location);
}
// Return whether NO is a method for which the receiver is a pointer.
bool
Type::method_expects_pointer(const Named_object* no)
{
const Function_type *fntype;
if (no->is_function())
fntype = no->func_value()->type();
else if (no->is_function_declaration())
fntype = no->func_declaration_value()->type();
else
gcc_unreachable();
return fntype->receiver()->type()->points_to() != NULL;
}
// Given a set of methods for a type, METHODS, return the method NAME,
// or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
// is not NULL, then set *IS_AMBIGUOUS to true if the method exists
// but is ambiguous (and return NULL).
Method*
Type::method_function(const Methods* methods, const std::string& name,
bool* is_ambiguous)
{
if (is_ambiguous != NULL)
*is_ambiguous = false;
if (methods == NULL)
return NULL;
Methods::const_iterator p = methods->find(name);
if (p == methods->end())
return NULL;
Method* m = p->second;
if (m->is_ambiguous())
{
if (is_ambiguous != NULL)
*is_ambiguous = true;
return NULL;
}
return m;
}
// Look for field or method NAME for TYPE. Return an Expression for
// the field or method bound to EXPR. If there is no such field or
// method, give an appropriate error and return an error expression.
Expression*
Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
const std::string& name,
source_location location)
{
if (type->is_error_type())
return Expression::make_error(location);
const Named_type* nt = type->named_type();
if (nt == NULL)
nt = type->deref()->named_type();
const Struct_type* st = type->deref()->struct_type();
const Interface_type* it = type->deref()->interface_type();
bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
|| expr->is_lvalue());
bool is_method = false;
bool found_pointer_method = false;
std::string ambig1;
std::string ambig2;
if (Type::find_field_or_method(type, name, receiver_can_be_pointer, NULL,
&is_method, &found_pointer_method,
&ambig1, &ambig2))
{
Expression* ret;
if (!is_method)
{
gcc_assert(st != NULL);
ret = st->field_reference(expr, name, location);
}
else if (it != NULL && it->find_method(name) != NULL)
ret = Expression::make_interface_field_reference(expr, name,
location);
else
{
Method* m;
if (nt != NULL)
m = nt->method_function(name, NULL);
else if (st != NULL)
m = st->method_function(name, NULL);
else
gcc_unreachable();
gcc_assert(m != NULL);
if (!m->is_value_method() && expr->type()->points_to() == NULL)
expr = Expression::make_unary(OPERATOR_AND, expr, location);
ret = m->bind_method(expr, location);
}
gcc_assert(ret != NULL);
return ret;
}
else
{
if (!ambig1.empty())
error_at(location, "%qs is ambiguous via %qs and %qs",
Gogo::unpack_hidden_name(name).c_str(),
ambig1.c_str(), ambig2.c_str());
else if (found_pointer_method)
error_at(location, "method requires a pointer");
else if (nt == NULL && st == NULL && it == NULL)
error_at(location,
("reference to field %qs in object which "
"has no fields or methods"),
name.c_str());
else
{
bool is_unexported;
std::string unpacked = Gogo::unpack_hidden_name(name);
if (!Gogo::is_hidden_name(name))
is_unexported = false;
else
is_unexported = Type::is_unexported_field_or_method(gogo, type,
unpacked);
if (is_unexported)
error_at(location, "reference to unexported field or method %qs",
unpacked.c_str());
else
error_at(location, "reference to undefined field or method %qs",
unpacked.c_str());
}
return Expression::make_error(location);
}
}
// Look in TYPE for a field or method named NAME, return true if one
// is found. This looks through embedded anonymous fields and handles
// ambiguity. If a method is found, sets *IS_METHOD to true;
// otherwise, if a field is found, set it to false. If
// RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
// whose address can not be taken. When returning false, this sets
// *FOUND_POINTER_METHOD if we found a method we couldn't use because
// it requires a pointer. LEVEL is used for recursive calls, and can
// be NULL for a non-recursive call. When this function returns false
// because it finds that the name is ambiguous, it will store a path
// to the ambiguous names in *AMBIG1 and *AMBIG2. If the name is not
// found at all, *AMBIG1 and *AMBIG2 will be unchanged.
// This function just returns whether or not there is a field or
// method, and whether it is a field or method. It doesn't build an
// expression to refer to it. If it is a method, we then look in the
// list of all methods for the type. If it is a field, the search has
// to be done again, looking only for fields, and building up the
// expression as we go.
bool
Type::find_field_or_method(const Type* type,
const std::string& name,
bool receiver_can_be_pointer,
int* level,
bool* is_method,
bool* found_pointer_method,
std::string* ambig1,
std::string* ambig2)
{
// Named types can have locally defined methods.
const Named_type* nt = type->named_type();
if (nt == NULL && type->points_to() != NULL)
nt = type->points_to()->named_type();
if (nt != NULL)
{
Named_object* no = nt->find_local_method(name);
if (no != NULL)
{
if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
{
*is_method = true;
return true;
}
// Record that we have found a pointer method in order to
// give a better error message if we don't find anything
// else.
*found_pointer_method = true;
}
}
// Interface types can have methods.
const Interface_type* it = type->deref()->interface_type();
if (it != NULL && it->find_method(name) != NULL)
{
*is_method = true;
return true;
}
// Struct types can have fields. They can also inherit fields and
// methods from anonymous fields.
const Struct_type* st = type->deref()->struct_type();
if (st == NULL)
return false;
const Struct_field_list* fields = st->fields();
if (fields == NULL)
return false;
int found_level = 0;
bool found_is_method = false;
std::string found_ambig1;
std::string found_ambig2;
const Struct_field* found_parent = NULL;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf)
{
if (pf->field_name() == name)
{
*is_method = false;
return true;
}
if (!pf->is_anonymous())
continue;
Named_type* fnt = pf->type()->deref()->named_type();
gcc_assert(fnt != NULL);
int sublevel = level == NULL ? 1 : *level + 1;
bool sub_is_method;
std::string subambig1;
std::string subambig2;
bool subfound = Type::find_field_or_method(fnt,
name,
receiver_can_be_pointer,
&sublevel,
&sub_is_method,
found_pointer_method,
&subambig1,
&subambig2);
if (!subfound)
{
if (!subambig1.empty())
{
// The name was found via this field, but is ambiguous.
// if the ambiguity is lower or at the same level as
// anything else we have already found, then we want to
// pass the ambiguity back to the caller.
if (found_level == 0 || sublevel <= found_level)
{
found_ambig1 = pf->field_name() + '.' + subambig1;
found_ambig2 = pf->field_name() + '.' + subambig2;
found_level = sublevel;
}
}
}
else
{
// The name was found via this field. Use the level to see
// if we want to use this one, or whether it introduces an
// ambiguity.
if (found_level == 0 || sublevel < found_level)
{
found_level = sublevel;
found_is_method = sub_is_method;
found_ambig1.clear();
found_ambig2.clear();
found_parent = &*pf;
}
else if (sublevel > found_level)
;
else if (found_ambig1.empty())
{
// We found an ambiguity.
gcc_assert(found_parent != NULL);
found_ambig1 = found_parent->field_name();
found_ambig2 = pf->field_name();
}
else
{
// We found an ambiguity, but we already know of one.
// Just report the earlier one.
}
}
}
// Here if we didn't find anything FOUND_LEVEL is 0. If we found
// something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
// FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
// is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
if (found_level == 0)
return false;
else if (!found_ambig1.empty())
{
gcc_assert(!found_ambig1.empty());
ambig1->assign(found_ambig1);
ambig2->assign(found_ambig2);
if (level != NULL)
*level = found_level;
return false;
}
else
{
if (level != NULL)
*level = found_level;
*is_method = found_is_method;
return true;
}
}
// Return whether NAME is an unexported field or method for TYPE.
bool
Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
const std::string& name)
{
type = type->deref();
const Named_type* nt = type->named_type();
if (nt != NULL && nt->is_unexported_local_method(gogo, name))
return true;
const Interface_type* it = type->interface_type();
if (it != NULL && it->is_unexported_method(gogo, name))
return true;
const Struct_type* st = type->struct_type();
if (st != NULL && st->is_unexported_local_field(gogo, name))
return true;
if (st == NULL)
return false;
const Struct_field_list* fields = st->fields();
if (fields == NULL)
return false;
for (Struct_field_list::const_iterator pf = fields->begin();
pf != fields->end();
++pf)
{
if (pf->is_anonymous())
{
Named_type* subtype = pf->type()->deref()->named_type();
gcc_assert(subtype != NULL);
if (Type::is_unexported_field_or_method(gogo, subtype, name))
return true;
}
}
return false;
}
// Class Forward_declaration.
Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
: Type(TYPE_FORWARD),
named_object_(named_object->resolve()), warned_(false)
{
gcc_assert(this->named_object_->is_unknown()
|| this->named_object_->is_type_declaration());
}
// Return the named object.
Named_object*
Forward_declaration_type::named_object()
{
return this->named_object_->resolve();
}
const Named_object*
Forward_declaration_type::named_object() const
{
return this->named_object_->resolve();
}
// Return the name of the forward declared type.
const std::string&
Forward_declaration_type::name() const
{
return this->named_object()->name();
}
// Warn about a use of a type which has been declared but not defined.
void
Forward_declaration_type::warn() const
{
Named_object* no = this->named_object_->resolve();
if (no->is_unknown())
{
// The name was not defined anywhere.
if (!this->warned_)
{
error_at(this->named_object_->location(),
"use of undefined type %qs",
Gogo::unpack_hidden_name(no->name()).c_str());
this->warned_ = true;
}
}
else if (no->is_type_declaration())
{
// The name was seen as a type, but the type was never defined.
if (no->type_declaration_value()->using_type())
{
error_at(this->named_object_->location(),
"use of undefined type %qs",
Gogo::unpack_hidden_name(no->name()).c_str());
this->warned_ = true;
}
}
else
{
// The name was defined, but not as a type.
if (!this->warned_)
{
error_at(this->named_object_->location(), "expected type");
this->warned_ = true;
}
}
}
// Get the base type of a declaration. This gives an error if the
// type has not yet been defined.
Type*
Forward_declaration_type::real_type()
{
if (this->is_defined())
return this->named_object()->type_value();
else
{
this->warn();
return Type::make_error_type();
}
}
const Type*
Forward_declaration_type::real_type() const
{
if (this->is_defined())
return this->named_object()->type_value();
else
{
this->warn();
return Type::make_error_type();
}
}
// Return whether the base type is defined.
bool
Forward_declaration_type::is_defined() const
{
return this->named_object()->is_type();
}
// Add a method. This is used when methods are defined before the
// type.
Named_object*
Forward_declaration_type::add_method(const std::string& name,
Function* function)
{
Named_object* no = this->named_object();
gcc_assert(no->is_type_declaration());
return no->type_declaration_value()->add_method(name, function);
}
// Add a method declaration. This is used when methods are declared
// before the type.
Named_object*
Forward_declaration_type::add_method_declaration(const std::string& name,
Function_type* type,
source_location location)
{
Named_object* no = this->named_object();
gcc_assert(no->is_type_declaration());
Type_declaration* td = no->type_declaration_value();
return td->add_method_declaration(name, type, location);
}
// Traversal.
int
Forward_declaration_type::do_traverse(Traverse* traverse)
{
if (this->is_defined()
&& Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
return TRAVERSE_CONTINUE;
}
// Get a tree for the type.
tree
Forward_declaration_type::do_get_tree(Gogo* gogo)
{
if (this->is_defined())
return this->real_type()->get_tree(gogo);
if (this->warned_)
return error_mark_node;
// We represent an undefined type as a struct with no fields. That
// should work fine for the middle-end, since the same case can
// arise in C.
Named_object* no = this->named_object();
tree type_tree = make_node(RECORD_TYPE);
tree id = no->get_id(gogo);
tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
TYPE_NAME(type_tree) = decl;
return type_tree;
}
// The type descriptor.
void
Forward_declaration_type::do_type_descriptor_decl(Gogo* gogo, Named_type* name,
tree* pdecl)
{
if (!this->is_defined())
gogo->undefined_type_descriptor_decl(this, name, pdecl);
else
{
Type* t = this->real_type();
if (name != NULL)
this->named_type_descriptor(gogo, t, name, pdecl);
else
{
tree descriptor = t->type_descriptor(gogo);
gcc_assert(TREE_CODE(descriptor) == ADDR_EXPR
&& DECL_P(TREE_OPERAND(descriptor, 0)));
*pdecl = TREE_OPERAND(descriptor, 0);
}
}
}
// The reflection string.
void
Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
{
this->append_reflection(this->real_type(), gogo, ret);
}
// The mangled name.
void
Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
{
if (this->is_defined())
this->append_mangled_name(this->real_type(), gogo, ret);
else
{
const Named_object* no = this->named_object();
std::string name;
if (no->package() == NULL)
name = gogo->package_name();
else
name = no->package()->name();
name += '.';
name += Gogo::unpack_hidden_name(no->name());
char buf[20];
snprintf(buf, sizeof buf, "N%u_",
static_cast<unsigned int>(name.length()));
ret->append(buf);
ret->append(name);
}
}
// Export a forward declaration. This can happen when a defined type
// refers to a type which is only declared (and is presumably defined
// in some other file in the same package).
void
Forward_declaration_type::do_export(Export*) const
{
// If there is a base type, that should be exported instead of this.
gcc_assert(!this->is_defined());
// We don't output anything.
}
// Make a forward declaration.
Type*
Type::make_forward_declaration(Named_object* named_object)
{
return new Forward_declaration_type(named_object);
}
// Class Typed_identifier_list.
// Sort the entries by name.
struct Typed_identifier_list_sort
{
public:
bool
operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
{ return t1.name() < t2.name(); }
};
void
Typed_identifier_list::sort_by_name()
{
std::sort(this->entries_.begin(), this->entries_.end(),
Typed_identifier_list_sort());
}
// Traverse types.
int
Typed_identifier_list::traverse(Traverse* traverse)
{
for (Typed_identifier_list::const_iterator p = this->begin();
p != this->end();
++p)
{
if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
return TRAVERSE_EXIT;
}
return TRAVERSE_CONTINUE;
}
// Copy the list.
Typed_identifier_list*
Typed_identifier_list::copy() const
{
Typed_identifier_list* ret = new Typed_identifier_list();
for (Typed_identifier_list::const_iterator p = this->begin();
p != this->end();
++p)
ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
return ret;
}