|  | // Copyright 2011 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | /* | 
|  | Floating-point sine and cosine. | 
|  | */ | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, | 
|  | // available from http://www.netlib.org/cephes/cmath.tgz. | 
|  | // The go code is a simplified version of the original C. | 
|  | // | 
|  | //      sin.c | 
|  | // | 
|  | //      Circular sine | 
|  | // | 
|  | // SYNOPSIS: | 
|  | // | 
|  | // double x, y, sin(); | 
|  | // y = sin( x ); | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // Range reduction is into intervals of pi/4.  The reduction error is nearly | 
|  | // eliminated by contriving an extended precision modular arithmetic. | 
|  | // | 
|  | // Two polynomial approximating functions are employed. | 
|  | // Between 0 and pi/4 the sine is approximated by | 
|  | //      x  +  x**3 P(x**2). | 
|  | // Between pi/4 and pi/2 the cosine is represented as | 
|  | //      1  -  x**2 Q(x**2). | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain      # trials      peak         rms | 
|  | //    DEC       0, 10       150000       3.0e-17     7.8e-18 | 
|  | //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 | 
|  | // | 
|  | // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss | 
|  | // is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may | 
|  | // be meaningless for x > 2**49 = 5.6e14. | 
|  | // | 
|  | //      cos.c | 
|  | // | 
|  | //      Circular cosine | 
|  | // | 
|  | // SYNOPSIS: | 
|  | // | 
|  | // double x, y, cos(); | 
|  | // y = cos( x ); | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // Range reduction is into intervals of pi/4.  The reduction error is nearly | 
|  | // eliminated by contriving an extended precision modular arithmetic. | 
|  | // | 
|  | // Two polynomial approximating functions are employed. | 
|  | // Between 0 and pi/4 the cosine is approximated by | 
|  | //      1  -  x**2 Q(x**2). | 
|  | // Between pi/4 and pi/2 the sine is represented as | 
|  | //      x  +  x**3 P(x**2). | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain      # trials      peak         rms | 
|  | //    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 | 
|  | //    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18 | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  |  | 
|  | // sin coefficients | 
|  | var _sin = [...]float64{ | 
|  | 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd | 
|  | -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d | 
|  | 2.75573136213857245213E-6,  // 0x3ec71de3567d48a1 | 
|  | -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03 | 
|  | 8.33333333332211858878E-3,  // 0x3f8111111110f7d0 | 
|  | -1.66666666666666307295E-1, // 0xbfc5555555555548 | 
|  | } | 
|  |  | 
|  | // cos coefficients | 
|  | var _cos = [...]float64{ | 
|  | -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b | 
|  | 2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05 | 
|  | -2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6 | 
|  | 2.48015872888517045348E-5,   // 0x3efa01a019c844f5 | 
|  | -1.38888888888730564116E-3,  // 0xbf56c16c16c14f91 | 
|  | 4.16666666666665929218E-2,   // 0x3fa555555555554b | 
|  | } | 
|  |  | 
|  | // Cos returns the cosine of the radian argument x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Cos(±Inf) = NaN | 
|  | //	Cos(NaN) = NaN | 
|  |  | 
|  | //extern cos | 
|  | func libc_cos(float64) float64 | 
|  |  | 
|  | func Cos(x float64) float64 { | 
|  | return libc_cos(x) | 
|  | } | 
|  |  | 
|  | func cos(x float64) float64 { | 
|  | const ( | 
|  | PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts | 
|  | PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000, | 
|  | PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170, | 
|  | M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi | 
|  | ) | 
|  | // special cases | 
|  | switch { | 
|  | case IsNaN(x) || IsInf(x, 0): | 
|  | return NaN() | 
|  | } | 
|  |  | 
|  | // make argument positive | 
|  | sign := false | 
|  | x = Abs(x) | 
|  |  | 
|  | j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle | 
|  | y := float64(j)      // integer part of x/(Pi/4), as float | 
|  |  | 
|  | // map zeros to origin | 
|  | if j&1 == 1 { | 
|  | j++ | 
|  | y++ | 
|  | } | 
|  | j &= 7 // octant modulo 2Pi radians (360 degrees) | 
|  | if j > 3 { | 
|  | j -= 4 | 
|  | sign = !sign | 
|  | } | 
|  | if j > 1 { | 
|  | sign = !sign | 
|  | } | 
|  |  | 
|  | z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic | 
|  | zz := z * z | 
|  | if j == 1 || j == 2 { | 
|  | y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) | 
|  | } else { | 
|  | y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) | 
|  | } | 
|  | if sign { | 
|  | y = -y | 
|  | } | 
|  | return y | 
|  | } | 
|  |  | 
|  | // Sin returns the sine of the radian argument x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Sin(±0) = ±0 | 
|  | //	Sin(±Inf) = NaN | 
|  | //	Sin(NaN) = NaN | 
|  |  | 
|  | //extern sin | 
|  | func libc_sin(float64) float64 | 
|  |  | 
|  | func Sin(x float64) float64 { | 
|  | return libc_sin(x) | 
|  | } | 
|  |  | 
|  | func sin(x float64) float64 { | 
|  | const ( | 
|  | PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts | 
|  | PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000, | 
|  | PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170, | 
|  | M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi | 
|  | ) | 
|  | // special cases | 
|  | switch { | 
|  | case x == 0 || IsNaN(x): | 
|  | return x // return ±0 || NaN() | 
|  | case IsInf(x, 0): | 
|  | return NaN() | 
|  | } | 
|  |  | 
|  | // make argument positive but save the sign | 
|  | sign := false | 
|  | if x < 0 { | 
|  | x = -x | 
|  | sign = true | 
|  | } | 
|  |  | 
|  | j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle | 
|  | y := float64(j)      // integer part of x/(Pi/4), as float | 
|  |  | 
|  | // map zeros to origin | 
|  | if j&1 == 1 { | 
|  | j++ | 
|  | y++ | 
|  | } | 
|  | j &= 7 // octant modulo 2Pi radians (360 degrees) | 
|  | // reflect in x axis | 
|  | if j > 3 { | 
|  | sign = !sign | 
|  | j -= 4 | 
|  | } | 
|  |  | 
|  | z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic | 
|  | zz := z * z | 
|  | if j == 1 || j == 2 { | 
|  | y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) | 
|  | } else { | 
|  | y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) | 
|  | } | 
|  | if sign { | 
|  | y = -y | 
|  | } | 
|  | return y | 
|  | } |