|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | /* | 
|  | Floating-point logarithm of the Gamma function. | 
|  | */ | 
|  |  | 
|  | // The original C code and the long comment below are | 
|  | // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and | 
|  | // came with this notice. The go code is a simplified | 
|  | // version of the original C. | 
|  | // | 
|  | // ==================================================== | 
|  | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | // | 
|  | // Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | // Permission to use, copy, modify, and distribute this | 
|  | // software is freely granted, provided that this notice | 
|  | // is preserved. | 
|  | // ==================================================== | 
|  | // | 
|  | // __ieee754_lgamma_r(x, signgamp) | 
|  | // Reentrant version of the logarithm of the Gamma function | 
|  | // with user provided pointer for the sign of Gamma(x). | 
|  | // | 
|  | // Method: | 
|  | //   1. Argument Reduction for 0 < x <= 8 | 
|  | //      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may | 
|  | //      reduce x to a number in [1.5,2.5] by | 
|  | //              lgamma(1+s) = log(s) + lgamma(s) | 
|  | //      for example, | 
|  | //              lgamma(7.3) = log(6.3) + lgamma(6.3) | 
|  | //                          = log(6.3*5.3) + lgamma(5.3) | 
|  | //                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) | 
|  | //   2. Polynomial approximation of lgamma around its | 
|  | //      minimum (ymin=1.461632144968362245) to maintain monotonicity. | 
|  | //      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use | 
|  | //              Let z = x-ymin; | 
|  | //              lgamma(x) = -1.214862905358496078218 + z**2*poly(z) | 
|  | //              poly(z) is a 14 degree polynomial. | 
|  | //   2. Rational approximation in the primary interval [2,3] | 
|  | //      We use the following approximation: | 
|  | //              s = x-2.0; | 
|  | //              lgamma(x) = 0.5*s + s*P(s)/Q(s) | 
|  | //      with accuracy | 
|  | //              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 | 
|  | //      Our algorithms are based on the following observation | 
|  | // | 
|  | //                             zeta(2)-1    2    zeta(3)-1    3 | 
|  | // lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ... | 
|  | //                                 2                 3 | 
|  | // | 
|  | //      where Euler = 0.5772156649... is the Euler constant, which | 
|  | //      is very close to 0.5. | 
|  | // | 
|  | //   3. For x>=8, we have | 
|  | //      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... | 
|  | //      (better formula: | 
|  | //         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) | 
|  | //      Let z = 1/x, then we approximation | 
|  | //              f(z) = lgamma(x) - (x-0.5)(log(x)-1) | 
|  | //      by | 
|  | //                                  3       5             11 | 
|  | //              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z | 
|  | //      where | 
|  | //              |w - f(z)| < 2**-58.74 | 
|  | // | 
|  | //   4. For negative x, since (G is gamma function) | 
|  | //              -x*G(-x)*G(x) = pi/sin(pi*x), | 
|  | //      we have | 
|  | //              G(x) = pi/(sin(pi*x)*(-x)*G(-x)) | 
|  | //      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 | 
|  | //      Hence, for x<0, signgam = sign(sin(pi*x)) and | 
|  | //              lgamma(x) = log(|Gamma(x)|) | 
|  | //                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); | 
|  | //      Note: one should avoid computing pi*(-x) directly in the | 
|  | //            computation of sin(pi*(-x)). | 
|  | // | 
|  | //   5. Special Cases | 
|  | //              lgamma(2+s) ~ s*(1-Euler) for tiny s | 
|  | //              lgamma(1)=lgamma(2)=0 | 
|  | //              lgamma(x) ~ -log(x) for tiny x | 
|  | //              lgamma(0) = lgamma(inf) = inf | 
|  | //              lgamma(-integer) = +-inf | 
|  | // | 
|  | // | 
|  |  | 
|  | var _lgamA = [...]float64{ | 
|  | 7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8 | 
|  | 3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD | 
|  | 6.73523010531292681824e-02, // 0x3FB13E001A5562A7 | 
|  | 2.05808084325167332806e-02, // 0x3F951322AC92547B | 
|  | 7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8 | 
|  | 2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B | 
|  | 1.19270763183362067845e-03, // 0x3F538A94116F3F5D | 
|  | 5.10069792153511336608e-04, // 0x3F40B6C689B99C00 | 
|  | 2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D | 
|  | 1.08011567247583939954e-04, // 0x3F1C5088987DFB07 | 
|  | 2.52144565451257326939e-05, // 0x3EFA7074428CFA52 | 
|  | 4.48640949618915160150e-05, // 0x3F07858E90A45837 | 
|  | } | 
|  | var _lgamR = [...]float64{ | 
|  | 1.0,                        // placeholder | 
|  | 1.39200533467621045958e+00, // 0x3FF645A762C4AB74 | 
|  | 7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC | 
|  | 1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27 | 
|  | 1.86459191715652901344e-02, // 0x3F9317EA742ED475 | 
|  | 7.77942496381893596434e-04, // 0x3F497DDACA41A95B | 
|  | 7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140 | 
|  | } | 
|  | var _lgamS = [...]float64{ | 
|  | -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 | 
|  | 2.14982415960608852501e-01,  // 0x3FCB848B36E20878 | 
|  | 3.25778796408930981787e-01,  // 0x3FD4D98F4F139F59 | 
|  | 1.46350472652464452805e-01,  // 0x3FC2BB9CBEE5F2F7 | 
|  | 2.66422703033638609560e-02,  // 0x3F9B481C7E939961 | 
|  | 1.84028451407337715652e-03,  // 0x3F5E26B67368F239 | 
|  | 3.19475326584100867617e-05,  // 0x3F00BFECDD17E945 | 
|  | } | 
|  | var _lgamT = [...]float64{ | 
|  | 4.83836122723810047042e-01,  // 0x3FDEF72BC8EE38A2 | 
|  | -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509 | 
|  | 6.46249402391333854778e-02,  // 0x3FB08B4294D5419B | 
|  | -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713 | 
|  | 1.79706750811820387126e-02,  // 0x3F9266E7970AF9EC | 
|  | -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A | 
|  | 6.10053870246291332635e-03,  // 0x3F78FCE0E370E344 | 
|  | -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7 | 
|  | 2.25964780900612472250e-03,  // 0x3F6282D32E15C915 | 
|  | -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1 | 
|  | 8.81081882437654011382e-04,  // 0x3F4CDF0CEF61A8E9 | 
|  | -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC | 
|  | 3.15632070903625950361e-04,  // 0x3F34AF6D6C0EBBF7 | 
|  | -3.12754168375120860518e-04, // 0xBF347F24ECC38C38 | 
|  | 3.35529192635519073543e-04,  // 0x3F35FD3EE8C2D3F4 | 
|  | } | 
|  | var _lgamU = [...]float64{ | 
|  | -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 | 
|  | 6.32827064025093366517e-01,  // 0x3FE4401E8B005DFF | 
|  | 1.45492250137234768737e+00,  // 0x3FF7475CD119BD6F | 
|  | 9.77717527963372745603e-01,  // 0x3FEF497644EA8450 | 
|  | 2.28963728064692451092e-01,  // 0x3FCD4EAEF6010924 | 
|  | 1.33810918536787660377e-02,  // 0x3F8B678BBF2BAB09 | 
|  | } | 
|  | var _lgamV = [...]float64{ | 
|  | 1.0, | 
|  | 2.45597793713041134822e+00, // 0x4003A5D7C2BD619C | 
|  | 2.12848976379893395361e+00, // 0x40010725A42B18F5 | 
|  | 7.69285150456672783825e-01, // 0x3FE89DFBE45050AF | 
|  | 1.04222645593369134254e-01, // 0x3FBAAE55D6537C88 | 
|  | 3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61 | 
|  | } | 
|  | var _lgamW = [...]float64{ | 
|  | 4.18938533204672725052e-01,  // 0x3FDACFE390C97D69 | 
|  | 8.33333333333329678849e-02,  // 0x3FB555555555553B | 
|  | -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C | 
|  | 7.93650558643019558500e-04,  // 0x3F4A019F98CF38B6 | 
|  | -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741 | 
|  | 8.36339918996282139126e-04,  // 0x3F4B67BA4CDAD5D1 | 
|  | -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4 | 
|  | } | 
|  |  | 
|  | // Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). | 
|  | // | 
|  | // Special cases are: | 
|  | //	Lgamma(+Inf) = +Inf | 
|  | //	Lgamma(0) = +Inf | 
|  | //	Lgamma(-integer) = +Inf | 
|  | //	Lgamma(-Inf) = -Inf | 
|  | //	Lgamma(NaN) = NaN | 
|  | func Lgamma(x float64) (lgamma float64, sign int) { | 
|  | const ( | 
|  | Ymin  = 1.461632144968362245 | 
|  | Two52 = 1 << 52                     // 0x4330000000000000 ~4.5036e+15 | 
|  | Two53 = 1 << 53                     // 0x4340000000000000 ~9.0072e+15 | 
|  | Two58 = 1 << 58                     // 0x4390000000000000 ~2.8823e+17 | 
|  | Tiny  = 1.0 / (1 << 70)             // 0x3b90000000000000 ~8.47033e-22 | 
|  | Tc    = 1.46163214496836224576e+00  // 0x3FF762D86356BE3F | 
|  | Tf    = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42 | 
|  | // Tt = -(tail of Tf) | 
|  | Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F | 
|  | ) | 
|  | // special cases | 
|  | sign = 1 | 
|  | switch { | 
|  | case IsNaN(x): | 
|  | lgamma = x | 
|  | return | 
|  | case IsInf(x, 0): | 
|  | lgamma = x | 
|  | return | 
|  | case x == 0: | 
|  | lgamma = Inf(1) | 
|  | return | 
|  | } | 
|  |  | 
|  | neg := false | 
|  | if x < 0 { | 
|  | x = -x | 
|  | neg = true | 
|  | } | 
|  |  | 
|  | if x < Tiny { // if |x| < 2**-70, return -log(|x|) | 
|  | if neg { | 
|  | sign = -1 | 
|  | } | 
|  | lgamma = -Log(x) | 
|  | return | 
|  | } | 
|  | var nadj float64 | 
|  | if neg { | 
|  | if x >= Two52 { // |x| >= 2**52, must be -integer | 
|  | lgamma = Inf(1) | 
|  | return | 
|  | } | 
|  | t := sinPi(x) | 
|  | if t == 0 { | 
|  | lgamma = Inf(1) // -integer | 
|  | return | 
|  | } | 
|  | nadj = Log(Pi / Abs(t*x)) | 
|  | if t < 0 { | 
|  | sign = -1 | 
|  | } | 
|  | } | 
|  |  | 
|  | switch { | 
|  | case x == 1 || x == 2: // purge off 1 and 2 | 
|  | lgamma = 0 | 
|  | return | 
|  | case x < 2: // use lgamma(x) = lgamma(x+1) - log(x) | 
|  | var y float64 | 
|  | var i int | 
|  | if x <= 0.9 { | 
|  | lgamma = -Log(x) | 
|  | switch { | 
|  | case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <=  0.9 | 
|  | y = 1 - x | 
|  | i = 0 | 
|  | case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316 | 
|  | y = x - (Tc - 1) | 
|  | i = 1 | 
|  | default: // 0 < x < 0.2316 | 
|  | y = x | 
|  | i = 2 | 
|  | } | 
|  | } else { | 
|  | lgamma = 0 | 
|  | switch { | 
|  | case x >= (Ymin + 0.27): // 1.7316 <= x < 2 | 
|  | y = 2 - x | 
|  | i = 0 | 
|  | case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316 | 
|  | y = x - Tc | 
|  | i = 1 | 
|  | default: // 0.9 < x < 1.2316 | 
|  | y = x - 1 | 
|  | i = 2 | 
|  | } | 
|  | } | 
|  | switch i { | 
|  | case 0: | 
|  | z := y * y | 
|  | p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10])))) | 
|  | p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11]))))) | 
|  | p := y*p1 + p2 | 
|  | lgamma += (p - 0.5*y) | 
|  | case 1: | 
|  | z := y * y | 
|  | w := z * y | 
|  | p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp | 
|  | p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13]))) | 
|  | p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14]))) | 
|  | p := z*p1 - (Tt - w*(p2+y*p3)) | 
|  | lgamma += (Tf + p) | 
|  | case 2: | 
|  | p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5]))))) | 
|  | p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5])))) | 
|  | lgamma += (-0.5*y + p1/p2) | 
|  | } | 
|  | case x < 8: // 2 <= x < 8 | 
|  | i := int(x) | 
|  | y := x - float64(i) | 
|  | p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6])))))) | 
|  | q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6]))))) | 
|  | lgamma = 0.5*y + p/q | 
|  | z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s) | 
|  | switch i { | 
|  | case 7: | 
|  | z *= (y + 6) | 
|  | fallthrough | 
|  | case 6: | 
|  | z *= (y + 5) | 
|  | fallthrough | 
|  | case 5: | 
|  | z *= (y + 4) | 
|  | fallthrough | 
|  | case 4: | 
|  | z *= (y + 3) | 
|  | fallthrough | 
|  | case 3: | 
|  | z *= (y + 2) | 
|  | lgamma += Log(z) | 
|  | } | 
|  | case x < Two58: // 8 <= x < 2**58 | 
|  | t := Log(x) | 
|  | z := 1 / x | 
|  | y := z * z | 
|  | w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6]))))) | 
|  | lgamma = (x-0.5)*(t-1) + w | 
|  | default: // 2**58 <= x <= Inf | 
|  | lgamma = x * (Log(x) - 1) | 
|  | } | 
|  | if neg { | 
|  | lgamma = nadj - lgamma | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // sinPi(x) is a helper function for negative x | 
|  | func sinPi(x float64) float64 { | 
|  | const ( | 
|  | Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15 | 
|  | Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 | 
|  | ) | 
|  | if x < 0.25 { | 
|  | return -Sin(Pi * x) | 
|  | } | 
|  |  | 
|  | // argument reduction | 
|  | z := Floor(x) | 
|  | var n int | 
|  | if z != x { // inexact | 
|  | x = Mod(x, 2) | 
|  | n = int(x * 4) | 
|  | } else { | 
|  | if x >= Two53 { // x must be even | 
|  | x = 0 | 
|  | n = 0 | 
|  | } else { | 
|  | if x < Two52 { | 
|  | z = x + Two52 // exact | 
|  | } | 
|  | n = int(1 & Float64bits(z)) | 
|  | x = float64(n) | 
|  | n <<= 2 | 
|  | } | 
|  | } | 
|  | switch n { | 
|  | case 0: | 
|  | x = Sin(Pi * x) | 
|  | case 1, 2: | 
|  | x = Cos(Pi * (0.5 - x)) | 
|  | case 3, 4: | 
|  | x = Sin(Pi * (1 - x)) | 
|  | case 5, 6: | 
|  | x = -Cos(Pi * (x - 1.5)) | 
|  | default: | 
|  | x = Sin(Pi * (x - 2)) | 
|  | } | 
|  | return -x | 
|  | } |