| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package math | 
 |  | 
 | // Exp returns e**x, the base-e exponential of x. | 
 | // | 
 | // Special cases are: | 
 | //	Exp(+Inf) = +Inf | 
 | //	Exp(NaN) = NaN | 
 | // Very large values overflow to 0 or +Inf. | 
 | // Very small values underflow to 1. | 
 |  | 
 | //extern exp | 
 | func libc_exp(float64) float64 | 
 |  | 
 | func Exp(x float64) float64 { | 
 | 	return libc_exp(x) | 
 | } | 
 |  | 
 | // The original C code, the long comment, and the constants | 
 | // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c | 
 | // and came with this notice. The go code is a simplified | 
 | // version of the original C. | 
 | // | 
 | // ==================================================== | 
 | // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. | 
 | // | 
 | // Permission to use, copy, modify, and distribute this | 
 | // software is freely granted, provided that this notice | 
 | // is preserved. | 
 | // ==================================================== | 
 | // | 
 | // | 
 | // exp(x) | 
 | // Returns the exponential of x. | 
 | // | 
 | // Method | 
 | //   1. Argument reduction: | 
 | //      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. | 
 | //      Given x, find r and integer k such that | 
 | // | 
 | //               x = k*ln2 + r,  |r| <= 0.5*ln2. | 
 | // | 
 | //      Here r will be represented as r = hi-lo for better | 
 | //      accuracy. | 
 | // | 
 | //   2. Approximation of exp(r) by a special rational function on | 
 | //      the interval [0,0.34658]: | 
 | //      Write | 
 | //          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... | 
 | //      We use a special Remes algorithm on [0,0.34658] to generate | 
 | //      a polynomial of degree 5 to approximate R. The maximum error | 
 | //      of this polynomial approximation is bounded by 2**-59. In | 
 | //      other words, | 
 | //          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 | 
 | //      (where z=r*r, and the values of P1 to P5 are listed below) | 
 | //      and | 
 | //          |                  5          |     -59 | 
 | //          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 | 
 | //          |                             | | 
 | //      The computation of exp(r) thus becomes | 
 | //                             2*r | 
 | //              exp(r) = 1 + ------- | 
 | //                            R - r | 
 | //                                 r*R1(r) | 
 | //                     = 1 + r + ----------- (for better accuracy) | 
 | //                                2 - R1(r) | 
 | //      where | 
 | //                               2       4             10 | 
 | //              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). | 
 | // | 
 | //   3. Scale back to obtain exp(x): | 
 | //      From step 1, we have | 
 | //         exp(x) = 2**k * exp(r) | 
 | // | 
 | // Special cases: | 
 | //      exp(INF) is INF, exp(NaN) is NaN; | 
 | //      exp(-INF) is 0, and | 
 | //      for finite argument, only exp(0)=1 is exact. | 
 | // | 
 | // Accuracy: | 
 | //      according to an error analysis, the error is always less than | 
 | //      1 ulp (unit in the last place). | 
 | // | 
 | // Misc. info. | 
 | //      For IEEE double | 
 | //          if x >  7.09782712893383973096e+02 then exp(x) overflow | 
 | //          if x < -7.45133219101941108420e+02 then exp(x) underflow | 
 | // | 
 | // Constants: | 
 | // The hexadecimal values are the intended ones for the following | 
 | // constants. The decimal values may be used, provided that the | 
 | // compiler will convert from decimal to binary accurately enough | 
 | // to produce the hexadecimal values shown. | 
 |  | 
 | func exp(x float64) float64 { | 
 | 	const ( | 
 | 		Ln2Hi = 6.93147180369123816490e-01 | 
 | 		Ln2Lo = 1.90821492927058770002e-10 | 
 | 		Log2e = 1.44269504088896338700e+00 | 
 |  | 
 | 		Overflow  = 7.09782712893383973096e+02 | 
 | 		Underflow = -7.45133219101941108420e+02 | 
 | 		NearZero  = 1.0 / (1 << 28) // 2**-28 | 
 | 	) | 
 |  | 
 | 	// special cases | 
 | 	switch { | 
 | 	case IsNaN(x) || IsInf(x, 1): | 
 | 		return x | 
 | 	case IsInf(x, -1): | 
 | 		return 0 | 
 | 	case x > Overflow: | 
 | 		return Inf(1) | 
 | 	case x < Underflow: | 
 | 		return 0 | 
 | 	case -NearZero < x && x < NearZero: | 
 | 		return 1 + x | 
 | 	} | 
 |  | 
 | 	// reduce; computed as r = hi - lo for extra precision. | 
 | 	var k int | 
 | 	switch { | 
 | 	case x < 0: | 
 | 		k = int(Log2e*x - 0.5) | 
 | 	case x > 0: | 
 | 		k = int(Log2e*x + 0.5) | 
 | 	} | 
 | 	hi := x - float64(k)*Ln2Hi | 
 | 	lo := float64(k) * Ln2Lo | 
 |  | 
 | 	// compute | 
 | 	return expmulti(hi, lo, k) | 
 | } | 
 |  | 
 | // Exp2 returns 2**x, the base-2 exponential of x. | 
 | // | 
 | // Special cases are the same as Exp. | 
 | func Exp2(x float64) float64 { | 
 | 	return exp2(x) | 
 | } | 
 |  | 
 | func exp2(x float64) float64 { | 
 | 	const ( | 
 | 		Ln2Hi = 6.93147180369123816490e-01 | 
 | 		Ln2Lo = 1.90821492927058770002e-10 | 
 |  | 
 | 		Overflow  = 1.0239999999999999e+03 | 
 | 		Underflow = -1.0740e+03 | 
 | 	) | 
 |  | 
 | 	// special cases | 
 | 	switch { | 
 | 	case IsNaN(x) || IsInf(x, 1): | 
 | 		return x | 
 | 	case IsInf(x, -1): | 
 | 		return 0 | 
 | 	case x > Overflow: | 
 | 		return Inf(1) | 
 | 	case x < Underflow: | 
 | 		return 0 | 
 | 	} | 
 |  | 
 | 	// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2. | 
 | 	// computed as r = hi - lo for extra precision. | 
 | 	var k int | 
 | 	switch { | 
 | 	case x > 0: | 
 | 		k = int(x + 0.5) | 
 | 	case x < 0: | 
 | 		k = int(x - 0.5) | 
 | 	} | 
 | 	t := x - float64(k) | 
 | 	hi := t * Ln2Hi | 
 | 	lo := -t * Ln2Lo | 
 |  | 
 | 	// compute | 
 | 	return expmulti(hi, lo, k) | 
 | } | 
 |  | 
 | // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2. | 
 | func expmulti(hi, lo float64, k int) float64 { | 
 | 	const ( | 
 | 		P1 = 1.66666666666666019037e-01  /* 0x3FC55555; 0x5555553E */ | 
 | 		P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ | 
 | 		P3 = 6.61375632143793436117e-05  /* 0x3F11566A; 0xAF25DE2C */ | 
 | 		P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ | 
 | 		P5 = 4.13813679705723846039e-08  /* 0x3E663769; 0x72BEA4D0 */ | 
 | 	) | 
 |  | 
 | 	r := hi - lo | 
 | 	t := r * r | 
 | 	c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) | 
 | 	y := 1 - ((lo - (r*c)/(2-c)) - hi) | 
 | 	// TODO(rsc): make sure Ldexp can handle boundary k | 
 | 	return Ldexp(y, k) | 
 | } |