| // Copyright 2010 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package draw | 
 |  | 
 | import ( | 
 | 	"image" | 
 | 	"image/color" | 
 | 	"image/png" | 
 | 	"os" | 
 | 	"testing" | 
 | ) | 
 |  | 
 | func eq(c0, c1 color.Color) bool { | 
 | 	r0, g0, b0, a0 := c0.RGBA() | 
 | 	r1, g1, b1, a1 := c1.RGBA() | 
 | 	return r0 == r1 && g0 == g1 && b0 == b1 && a0 == a1 | 
 | } | 
 |  | 
 | func fillBlue(alpha int) image.Image { | 
 | 	return image.NewUniform(color.RGBA{0, 0, uint8(alpha), uint8(alpha)}) | 
 | } | 
 |  | 
 | func fillAlpha(alpha int) image.Image { | 
 | 	return image.NewUniform(color.Alpha{uint8(alpha)}) | 
 | } | 
 |  | 
 | func vgradGreen(alpha int) image.Image { | 
 | 	m := image.NewRGBA(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.RGBA{0, uint8(y * alpha / 15), 0, uint8(alpha)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func vgradAlpha(alpha int) image.Image { | 
 | 	m := image.NewAlpha(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.Alpha{uint8(y * alpha / 15)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func vgradGreenNRGBA(alpha int) image.Image { | 
 | 	m := image.NewNRGBA(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.RGBA{0, uint8(y * 0x11), 0, uint8(alpha)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func vgradCr() image.Image { | 
 | 	m := &image.YCbCr{ | 
 | 		Y:              make([]byte, 16*16), | 
 | 		Cb:             make([]byte, 16*16), | 
 | 		Cr:             make([]byte, 16*16), | 
 | 		YStride:        16, | 
 | 		CStride:        16, | 
 | 		SubsampleRatio: image.YCbCrSubsampleRatio444, | 
 | 		Rect:           image.Rect(0, 0, 16, 16), | 
 | 	} | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Cr[y*m.CStride+x] = uint8(y * 0x11) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func vgradGray() image.Image { | 
 | 	m := image.NewGray(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.Gray{uint8(y * 0x11)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func vgradMagenta() image.Image { | 
 | 	m := image.NewCMYK(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.CMYK{0, uint8(y * 0x11), 0, 0x3f}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func hgradRed(alpha int) Image { | 
 | 	m := image.NewRGBA(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.RGBA{uint8(x * alpha / 15), 0, 0, uint8(alpha)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | func gradYellow(alpha int) Image { | 
 | 	m := image.NewRGBA(image.Rect(0, 0, 16, 16)) | 
 | 	for y := 0; y < 16; y++ { | 
 | 		for x := 0; x < 16; x++ { | 
 | 			m.Set(x, y, color.RGBA{uint8(x * alpha / 15), uint8(y * alpha / 15), 0, uint8(alpha)}) | 
 | 		} | 
 | 	} | 
 | 	return m | 
 | } | 
 |  | 
 | type drawTest struct { | 
 | 	desc     string | 
 | 	src      image.Image | 
 | 	mask     image.Image | 
 | 	op       Op | 
 | 	expected color.Color | 
 | } | 
 |  | 
 | var drawTests = []drawTest{ | 
 | 	// Uniform mask (0% opaque). | 
 | 	{"nop", vgradGreen(255), fillAlpha(0), Over, color.RGBA{136, 0, 0, 255}}, | 
 | 	{"clear", vgradGreen(255), fillAlpha(0), Src, color.RGBA{0, 0, 0, 0}}, | 
 | 	// Uniform mask (100%, 75%, nil) and uniform source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 0, 90, 90}. | 
 | 	{"fill", fillBlue(90), fillAlpha(255), Over, color.RGBA{88, 0, 90, 255}}, | 
 | 	{"fillSrc", fillBlue(90), fillAlpha(255), Src, color.RGBA{0, 0, 90, 90}}, | 
 | 	{"fillAlpha", fillBlue(90), fillAlpha(192), Over, color.RGBA{100, 0, 68, 255}}, | 
 | 	{"fillAlphaSrc", fillBlue(90), fillAlpha(192), Src, color.RGBA{0, 0, 68, 68}}, | 
 | 	{"fillNil", fillBlue(90), nil, Over, color.RGBA{88, 0, 90, 255}}, | 
 | 	{"fillNilSrc", fillBlue(90), nil, Src, color.RGBA{0, 0, 90, 90}}, | 
 | 	// Uniform mask (100%, 75%, nil) and variable source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 48, 0, 90}. | 
 | 	{"copy", vgradGreen(90), fillAlpha(255), Over, color.RGBA{88, 48, 0, 255}}, | 
 | 	{"copySrc", vgradGreen(90), fillAlpha(255), Src, color.RGBA{0, 48, 0, 90}}, | 
 | 	{"copyAlpha", vgradGreen(90), fillAlpha(192), Over, color.RGBA{100, 36, 0, 255}}, | 
 | 	{"copyAlphaSrc", vgradGreen(90), fillAlpha(192), Src, color.RGBA{0, 36, 0, 68}}, | 
 | 	{"copyNil", vgradGreen(90), nil, Over, color.RGBA{88, 48, 0, 255}}, | 
 | 	{"copyNilSrc", vgradGreen(90), nil, Src, color.RGBA{0, 48, 0, 90}}, | 
 | 	// Uniform mask (100%, 75%, nil) and variable NRGBA source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 136, 0, 90} in NRGBA-space, which is {0, 48, 0, 90} in RGBA-space. | 
 | 	// The result pixel is different than in the "copy*" test cases because of rounding errors. | 
 | 	{"nrgba", vgradGreenNRGBA(90), fillAlpha(255), Over, color.RGBA{88, 46, 0, 255}}, | 
 | 	{"nrgbaSrc", vgradGreenNRGBA(90), fillAlpha(255), Src, color.RGBA{0, 46, 0, 90}}, | 
 | 	{"nrgbaAlpha", vgradGreenNRGBA(90), fillAlpha(192), Over, color.RGBA{100, 34, 0, 255}}, | 
 | 	{"nrgbaAlphaSrc", vgradGreenNRGBA(90), fillAlpha(192), Src, color.RGBA{0, 34, 0, 68}}, | 
 | 	{"nrgbaNil", vgradGreenNRGBA(90), nil, Over, color.RGBA{88, 46, 0, 255}}, | 
 | 	{"nrgbaNilSrc", vgradGreenNRGBA(90), nil, Src, color.RGBA{0, 46, 0, 90}}, | 
 | 	// Uniform mask (100%, 75%, nil) and variable YCbCr source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 0, 136} in YCbCr-space, which is {11, 38, 0, 255} in RGB-space. | 
 | 	{"ycbcr", vgradCr(), fillAlpha(255), Over, color.RGBA{11, 38, 0, 255}}, | 
 | 	{"ycbcrSrc", vgradCr(), fillAlpha(255), Src, color.RGBA{11, 38, 0, 255}}, | 
 | 	{"ycbcrAlpha", vgradCr(), fillAlpha(192), Over, color.RGBA{42, 28, 0, 255}}, | 
 | 	{"ycbcrAlphaSrc", vgradCr(), fillAlpha(192), Src, color.RGBA{8, 28, 0, 192}}, | 
 | 	{"ycbcrNil", vgradCr(), nil, Over, color.RGBA{11, 38, 0, 255}}, | 
 | 	{"ycbcrNilSrc", vgradCr(), nil, Src, color.RGBA{11, 38, 0, 255}}, | 
 | 	// Uniform mask (100%, 75%, nil) and variable Gray source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space. | 
 | 	{"gray", vgradGray(), fillAlpha(255), Over, color.RGBA{136, 136, 136, 255}}, | 
 | 	{"graySrc", vgradGray(), fillAlpha(255), Src, color.RGBA{136, 136, 136, 255}}, | 
 | 	{"grayAlpha", vgradGray(), fillAlpha(192), Over, color.RGBA{136, 102, 102, 255}}, | 
 | 	{"grayAlphaSrc", vgradGray(), fillAlpha(192), Src, color.RGBA{102, 102, 102, 192}}, | 
 | 	{"grayNil", vgradGray(), nil, Over, color.RGBA{136, 136, 136, 255}}, | 
 | 	{"grayNilSrc", vgradGray(), nil, Src, color.RGBA{136, 136, 136, 255}}, | 
 | 	// Uniform mask (100%, 75%, nil) and variable CMYK source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 136, 0, 63} in CMYK-space, which is {192, 89, 192} in RGB-space. | 
 | 	{"cmyk", vgradMagenta(), fillAlpha(255), Over, color.RGBA{192, 89, 192, 255}}, | 
 | 	{"cmykSrc", vgradMagenta(), fillAlpha(255), Src, color.RGBA{192, 89, 192, 255}}, | 
 | 	{"cmykAlpha", vgradMagenta(), fillAlpha(192), Over, color.RGBA{178, 67, 145, 255}}, | 
 | 	{"cmykAlphaSrc", vgradMagenta(), fillAlpha(192), Src, color.RGBA{145, 67, 145, 192}}, | 
 | 	{"cmykNil", vgradMagenta(), nil, Over, color.RGBA{192, 89, 192, 255}}, | 
 | 	{"cmykNilSrc", vgradMagenta(), nil, Src, color.RGBA{192, 89, 192, 255}}, | 
 | 	// Variable mask and variable source. | 
 | 	// At (x, y) == (8, 8): | 
 | 	// The destination pixel is {136, 0, 0, 255}. | 
 | 	// The source pixel is {0, 0, 255, 255}. | 
 | 	// The mask pixel's alpha is 102, or 40%. | 
 | 	{"generic", fillBlue(255), vgradAlpha(192), Over, color.RGBA{81, 0, 102, 255}}, | 
 | 	{"genericSrc", fillBlue(255), vgradAlpha(192), Src, color.RGBA{0, 0, 102, 102}}, | 
 | } | 
 |  | 
 | func makeGolden(dst image.Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) image.Image { | 
 | 	// Since golden is a newly allocated image, we don't have to check if the | 
 | 	// input source and mask images and the output golden image overlap. | 
 | 	b := dst.Bounds() | 
 | 	sb := src.Bounds() | 
 | 	mb := image.Rect(-1e9, -1e9, 1e9, 1e9) | 
 | 	if mask != nil { | 
 | 		mb = mask.Bounds() | 
 | 	} | 
 | 	golden := image.NewRGBA(image.Rect(0, 0, b.Max.X, b.Max.Y)) | 
 | 	for y := r.Min.Y; y < r.Max.Y; y++ { | 
 | 		sy := y + sp.Y - r.Min.Y | 
 | 		my := y + mp.Y - r.Min.Y | 
 | 		for x := r.Min.X; x < r.Max.X; x++ { | 
 | 			if !(image.Pt(x, y).In(b)) { | 
 | 				continue | 
 | 			} | 
 | 			sx := x + sp.X - r.Min.X | 
 | 			if !(image.Pt(sx, sy).In(sb)) { | 
 | 				continue | 
 | 			} | 
 | 			mx := x + mp.X - r.Min.X | 
 | 			if !(image.Pt(mx, my).In(mb)) { | 
 | 				continue | 
 | 			} | 
 |  | 
 | 			const M = 1<<16 - 1 | 
 | 			var dr, dg, db, da uint32 | 
 | 			if op == Over { | 
 | 				dr, dg, db, da = dst.At(x, y).RGBA() | 
 | 			} | 
 | 			sr, sg, sb, sa := src.At(sx, sy).RGBA() | 
 | 			ma := uint32(M) | 
 | 			if mask != nil { | 
 | 				_, _, _, ma = mask.At(mx, my).RGBA() | 
 | 			} | 
 | 			a := M - (sa * ma / M) | 
 | 			golden.Set(x, y, color.RGBA64{ | 
 | 				uint16((dr*a + sr*ma) / M), | 
 | 				uint16((dg*a + sg*ma) / M), | 
 | 				uint16((db*a + sb*ma) / M), | 
 | 				uint16((da*a + sa*ma) / M), | 
 | 			}) | 
 | 		} | 
 | 	} | 
 | 	return golden.SubImage(b) | 
 | } | 
 |  | 
 | func TestDraw(t *testing.T) { | 
 | 	rr := []image.Rectangle{ | 
 | 		image.Rect(0, 0, 0, 0), | 
 | 		image.Rect(0, 0, 16, 16), | 
 | 		image.Rect(3, 5, 12, 10), | 
 | 		image.Rect(0, 0, 9, 9), | 
 | 		image.Rect(8, 8, 16, 16), | 
 | 		image.Rect(8, 0, 9, 16), | 
 | 		image.Rect(0, 8, 16, 9), | 
 | 		image.Rect(8, 8, 9, 9), | 
 | 		image.Rect(8, 8, 8, 8), | 
 | 	} | 
 | 	for _, r := range rr { | 
 | 	loop: | 
 | 		for _, test := range drawTests { | 
 | 			dst := hgradRed(255).(*image.RGBA).SubImage(r).(Image) | 
 | 			// Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. | 
 | 			golden := makeGolden(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) | 
 | 			b := dst.Bounds() | 
 | 			if !b.Eq(golden.Bounds()) { | 
 | 				t.Errorf("draw %v %s: bounds %v versus %v", r, test.desc, dst.Bounds(), golden.Bounds()) | 
 | 				continue | 
 | 			} | 
 | 			// Draw the same combination onto the actual dst using the optimized DrawMask implementation. | 
 | 			DrawMask(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) | 
 | 			if image.Pt(8, 8).In(r) { | 
 | 				// Check that the resultant pixel at (8, 8) matches what we expect | 
 | 				// (the expected value can be verified by hand). | 
 | 				if !eq(dst.At(8, 8), test.expected) { | 
 | 					t.Errorf("draw %v %s: at (8, 8) %v versus %v", r, test.desc, dst.At(8, 8), test.expected) | 
 | 					continue | 
 | 				} | 
 | 			} | 
 | 			// Check that the resultant dst image matches the golden output. | 
 | 			for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 				for x := b.Min.X; x < b.Max.X; x++ { | 
 | 					if !eq(dst.At(x, y), golden.At(x, y)) { | 
 | 						t.Errorf("draw %v %s: at (%d, %d), %v versus golden %v", r, test.desc, x, y, dst.At(x, y), golden.At(x, y)) | 
 | 						continue loop | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | func TestDrawOverlap(t *testing.T) { | 
 | 	for _, op := range []Op{Over, Src} { | 
 | 		for yoff := -2; yoff <= 2; yoff++ { | 
 | 		loop: | 
 | 			for xoff := -2; xoff <= 2; xoff++ { | 
 | 				m := gradYellow(127).(*image.RGBA) | 
 | 				dst := m.SubImage(image.Rect(5, 5, 10, 10)).(*image.RGBA) | 
 | 				src := m.SubImage(image.Rect(5+xoff, 5+yoff, 10+xoff, 10+yoff)).(*image.RGBA) | 
 | 				b := dst.Bounds() | 
 | 				// Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. | 
 | 				golden := makeGolden(dst, b, src, src.Bounds().Min, nil, image.ZP, op) | 
 | 				if !b.Eq(golden.Bounds()) { | 
 | 					t.Errorf("drawOverlap xoff=%d,yoff=%d: bounds %v versus %v", xoff, yoff, dst.Bounds(), golden.Bounds()) | 
 | 					continue | 
 | 				} | 
 | 				// Draw the same combination onto the actual dst using the optimized DrawMask implementation. | 
 | 				DrawMask(dst, b, src, src.Bounds().Min, nil, image.ZP, op) | 
 | 				// Check that the resultant dst image matches the golden output. | 
 | 				for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 					for x := b.Min.X; x < b.Max.X; x++ { | 
 | 						if !eq(dst.At(x, y), golden.At(x, y)) { | 
 | 							t.Errorf("drawOverlap xoff=%d,yoff=%d: at (%d, %d), %v versus golden %v", xoff, yoff, x, y, dst.At(x, y), golden.At(x, y)) | 
 | 							continue loop | 
 | 						} | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // TestNonZeroSrcPt checks drawing with a non-zero src point parameter. | 
 | func TestNonZeroSrcPt(t *testing.T) { | 
 | 	a := image.NewRGBA(image.Rect(0, 0, 1, 1)) | 
 | 	b := image.NewRGBA(image.Rect(0, 0, 2, 2)) | 
 | 	b.Set(0, 0, color.RGBA{0, 0, 0, 5}) | 
 | 	b.Set(1, 0, color.RGBA{0, 0, 5, 5}) | 
 | 	b.Set(0, 1, color.RGBA{0, 5, 0, 5}) | 
 | 	b.Set(1, 1, color.RGBA{5, 0, 0, 5}) | 
 | 	Draw(a, image.Rect(0, 0, 1, 1), b, image.Pt(1, 1), Over) | 
 | 	if !eq(color.RGBA{5, 0, 0, 5}, a.At(0, 0)) { | 
 | 		t.Errorf("non-zero src pt: want %v got %v", color.RGBA{5, 0, 0, 5}, a.At(0, 0)) | 
 | 	} | 
 | } | 
 |  | 
 | func TestFill(t *testing.T) { | 
 | 	rr := []image.Rectangle{ | 
 | 		image.Rect(0, 0, 0, 0), | 
 | 		image.Rect(0, 0, 40, 30), | 
 | 		image.Rect(10, 0, 40, 30), | 
 | 		image.Rect(0, 20, 40, 30), | 
 | 		image.Rect(10, 20, 40, 30), | 
 | 		image.Rect(10, 20, 15, 25), | 
 | 		image.Rect(10, 0, 35, 30), | 
 | 		image.Rect(0, 15, 40, 16), | 
 | 		image.Rect(24, 24, 25, 25), | 
 | 		image.Rect(23, 23, 26, 26), | 
 | 		image.Rect(22, 22, 27, 27), | 
 | 		image.Rect(21, 21, 28, 28), | 
 | 		image.Rect(20, 20, 29, 29), | 
 | 	} | 
 | 	for _, r := range rr { | 
 | 		m := image.NewRGBA(image.Rect(0, 0, 40, 30)).SubImage(r).(*image.RGBA) | 
 | 		b := m.Bounds() | 
 | 		c := color.RGBA{11, 0, 0, 255} | 
 | 		src := &image.Uniform{C: c} | 
 | 		check := func(desc string) { | 
 | 			for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 				for x := b.Min.X; x < b.Max.X; x++ { | 
 | 					if !eq(c, m.At(x, y)) { | 
 | 						t.Errorf("%s fill: at (%d, %d), sub-image bounds=%v: want %v got %v", desc, x, y, r, c, m.At(x, y)) | 
 | 						return | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		// Draw 1 pixel at a time. | 
 | 		for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 			for x := b.Min.X; x < b.Max.X; x++ { | 
 | 				DrawMask(m, image.Rect(x, y, x+1, y+1), src, image.ZP, nil, image.ZP, Src) | 
 | 			} | 
 | 		} | 
 | 		check("pixel") | 
 | 		// Draw 1 row at a time. | 
 | 		c = color.RGBA{0, 22, 0, 255} | 
 | 		src = &image.Uniform{C: c} | 
 | 		for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 			DrawMask(m, image.Rect(b.Min.X, y, b.Max.X, y+1), src, image.ZP, nil, image.ZP, Src) | 
 | 		} | 
 | 		check("row") | 
 | 		// Draw 1 column at a time. | 
 | 		c = color.RGBA{0, 0, 33, 255} | 
 | 		src = &image.Uniform{C: c} | 
 | 		for x := b.Min.X; x < b.Max.X; x++ { | 
 | 			DrawMask(m, image.Rect(x, b.Min.Y, x+1, b.Max.Y), src, image.ZP, nil, image.ZP, Src) | 
 | 		} | 
 | 		check("column") | 
 | 		// Draw the whole image at once. | 
 | 		c = color.RGBA{44, 55, 66, 77} | 
 | 		src = &image.Uniform{C: c} | 
 | 		DrawMask(m, b, src, image.ZP, nil, image.ZP, Src) | 
 | 		check("whole") | 
 | 	} | 
 | } | 
 |  | 
 | // TestFloydSteinbergCheckerboard tests that the result of Floyd-Steinberg | 
 | // error diffusion of a uniform 50% gray source image with a black-and-white | 
 | // palette is a checkerboard pattern. | 
 | func TestFloydSteinbergCheckerboard(t *testing.T) { | 
 | 	b := image.Rect(0, 0, 640, 480) | 
 | 	// We can't represent 50% exactly, but 0x7fff / 0xffff is close enough. | 
 | 	src := &image.Uniform{color.Gray16{0x7fff}} | 
 | 	dst := image.NewPaletted(b, color.Palette{color.Black, color.White}) | 
 | 	FloydSteinberg.Draw(dst, b, src, image.Point{}) | 
 | 	nErr := 0 | 
 | 	for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 		for x := b.Min.X; x < b.Max.X; x++ { | 
 | 			got := dst.Pix[dst.PixOffset(x, y)] | 
 | 			want := uint8(x+y) % 2 | 
 | 			if got != want { | 
 | 				t.Errorf("at (%d, %d): got %d, want %d", x, y, got, want) | 
 | 				if nErr++; nErr == 10 { | 
 | 					t.Fatal("there may be more errors") | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // embeddedPaletted is an Image that behaves like an *image.Paletted but whose | 
 | // type is not *image.Paletted. | 
 | type embeddedPaletted struct { | 
 | 	*image.Paletted | 
 | } | 
 |  | 
 | // TestPaletted tests that the drawPaletted function behaves the same | 
 | // regardless of whether dst is an *image.Paletted. | 
 | func TestPaletted(t *testing.T) { | 
 | 	f, err := os.Open("../testdata/video-001.png") | 
 | 	if err != nil { | 
 | 		t.Fatalf("open: %v", err) | 
 | 	} | 
 | 	defer f.Close() | 
 | 	src, err := png.Decode(f) | 
 | 	if err != nil { | 
 | 		t.Fatalf("decode: %v", err) | 
 | 	} | 
 | 	b := src.Bounds() | 
 |  | 
 | 	cgaPalette := color.Palette{ | 
 | 		color.RGBA{0x00, 0x00, 0x00, 0xff}, | 
 | 		color.RGBA{0x55, 0xff, 0xff, 0xff}, | 
 | 		color.RGBA{0xff, 0x55, 0xff, 0xff}, | 
 | 		color.RGBA{0xff, 0xff, 0xff, 0xff}, | 
 | 	} | 
 | 	drawers := map[string]Drawer{ | 
 | 		"src":             Src, | 
 | 		"floyd-steinberg": FloydSteinberg, | 
 | 	} | 
 |  | 
 | loop: | 
 | 	for dName, d := range drawers { | 
 | 		dst0 := image.NewPaletted(b, cgaPalette) | 
 | 		dst1 := image.NewPaletted(b, cgaPalette) | 
 | 		d.Draw(dst0, b, src, image.Point{}) | 
 | 		d.Draw(embeddedPaletted{dst1}, b, src, image.Point{}) | 
 | 		for y := b.Min.Y; y < b.Max.Y; y++ { | 
 | 			for x := b.Min.X; x < b.Max.X; x++ { | 
 | 				if !eq(dst0.At(x, y), dst1.At(x, y)) { | 
 | 					t.Errorf("%s: at (%d, %d), %v versus %v", | 
 | 						dName, x, y, dst0.At(x, y), dst1.At(x, y)) | 
 | 					continue loop | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } |