| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector. |
| |
| #include <unistd.h> |
| |
| #include "runtime.h" |
| #include "arch.h" |
| #include "malloc.h" |
| #include "race.h" |
| |
| #ifdef USING_SPLIT_STACK |
| |
| extern void * __splitstack_find (void *, void *, size_t *, void **, void **, |
| void **); |
| |
| extern void * __splitstack_find_context (void *context[10], size_t *, void **, |
| void **, void **); |
| |
| #endif |
| |
| enum { |
| Debug = 0, |
| DebugMark = 0, // run second pass to check mark |
| DataBlock = 8*1024, |
| |
| // Four bits per word (see #defines below). |
| wordsPerBitmapWord = sizeof(void*)*8/4, |
| bitShift = sizeof(void*)*8/4, |
| }; |
| |
| // Bits in per-word bitmap. |
| // #defines because enum might not be able to hold the values. |
| // |
| // Each word in the bitmap describes wordsPerBitmapWord words |
| // of heap memory. There are 4 bitmap bits dedicated to each heap word, |
| // so on a 64-bit system there is one bitmap word per 16 heap words. |
| // The bits in the word are packed together by type first, then by |
| // heap location, so each 64-bit bitmap word consists of, from top to bottom, |
| // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, |
| // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. |
| // This layout makes it easier to iterate over the bits of a given type. |
| // |
| // The bitmap starts at mheap.arena_start and extends *backward* from |
| // there. On a 64-bit system the off'th word in the arena is tracked by |
| // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, |
| // the only difference is that the divisor is 8.) |
| // |
| // To pull out the bits corresponding to a given pointer p, we use: |
| // |
| // off = p - (uintptr*)mheap.arena_start; // word offset |
| // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; |
| // shift = off % wordsPerBitmapWord |
| // bits = *b >> shift; |
| // /* then test bits & bitAllocated, bits & bitMarked, etc. */ |
| // |
| #define bitAllocated ((uintptr)1<<(bitShift*0)) |
| #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ |
| #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ |
| #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ |
| #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ |
| |
| #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) |
| |
| // Holding worldsema grants an M the right to try to stop the world. |
| // The procedure is: |
| // |
| // runtime_semacquire(&runtime_worldsema); |
| // m->gcing = 1; |
| // runtime_stoptheworld(); |
| // |
| // ... do stuff ... |
| // |
| // m->gcing = 0; |
| // runtime_semrelease(&runtime_worldsema); |
| // runtime_starttheworld(); |
| // |
| uint32 runtime_worldsema = 1; |
| |
| static int32 gctrace; |
| |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| LFNode node; // must be first |
| uintptr nobj; |
| byte *obj[512-(sizeof(LFNode)+sizeof(uintptr))/sizeof(byte*)]; |
| }; |
| |
| typedef struct Finalizer Finalizer; |
| struct Finalizer |
| { |
| void (*fn)(void*); |
| void *arg; |
| const struct __go_func_type *ft; |
| }; |
| |
| typedef struct FinBlock FinBlock; |
| struct FinBlock |
| { |
| FinBlock *alllink; |
| FinBlock *next; |
| int32 cnt; |
| int32 cap; |
| Finalizer fin[1]; |
| }; |
| |
| static G *fing; |
| static FinBlock *finq; // list of finalizers that are to be executed |
| static FinBlock *finc; // cache of free blocks |
| static FinBlock *allfin; // list of all blocks |
| static Lock finlock; |
| static int32 fingwait; |
| |
| static void runfinq(void*); |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| static void putempty(Workbuf*); |
| static Workbuf* handoff(Workbuf*); |
| |
| typedef struct GcRoot GcRoot; |
| struct GcRoot |
| { |
| byte *p; |
| uintptr n; |
| }; |
| |
| static struct { |
| uint64 full; // lock-free list of full blocks |
| uint64 empty; // lock-free list of empty blocks |
| byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait |
| uint32 nproc; |
| volatile uint32 nwait; |
| volatile uint32 ndone; |
| volatile uint32 debugmarkdone; |
| Note alldone; |
| ParFor *markfor; |
| ParFor *sweepfor; |
| |
| Lock; |
| byte *chunk; |
| uintptr nchunk; |
| |
| GcRoot *roots; |
| uint32 nroot; |
| uint32 rootcap; |
| } work; |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| static void |
| scanblock(byte *b, uintptr n) |
| { |
| byte *obj, *arena_start, *arena_used, *p; |
| void **vp; |
| uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc; |
| MSpan *s; |
| PageID k; |
| void **wp; |
| Workbuf *wbuf; |
| bool keepworking; |
| |
| if((intptr)n < 0) { |
| runtime_printf("scanblock %p %D\n", b, (int64)n); |
| runtime_throw("scanblock"); |
| } |
| |
| // Memory arena parameters. |
| arena_start = runtime_mheap.arena_start; |
| arena_used = runtime_mheap.arena_used; |
| nproc = work.nproc; |
| |
| wbuf = nil; // current work buffer |
| wp = nil; // storage for next queued pointer (write pointer) |
| nobj = 0; // number of queued objects |
| |
| // Scanblock helpers pass b==nil. |
| // Procs needs to return to make more |
| // calls to scanblock. But if work.nproc==1 then |
| // might as well process blocks as soon as we |
| // have them. |
| keepworking = b == nil || work.nproc == 1; |
| |
| // Align b to a word boundary. |
| off = (uintptr)b & (PtrSize-1); |
| if(off != 0) { |
| b += PtrSize - off; |
| n -= PtrSize - off; |
| } |
| |
| for(;;) { |
| // Each iteration scans the block b of length n, queueing pointers in |
| // the work buffer. |
| if(Debug > 1) |
| runtime_printf("scanblock %p %D\n", b, (int64)n); |
| |
| vp = (void**)b; |
| n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */ |
| for(i=0; i<(uintptr)n; i++) { |
| obj = (byte*)vp[i]; |
| |
| // Words outside the arena cannot be pointers. |
| if((byte*)obj < arena_start || (byte*)obj >= arena_used) |
| continue; |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) |
| goto found; |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| obj = (byte*)obj - (shift-j)*PtrSize; |
| shift = j; |
| bits = xbits>>shift; |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime_mheap.map[x]; |
| if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) |
| continue; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| continue; |
| size = runtime_class_to_size[s->sizeclass]; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| found: |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > 4 && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = (void**)(wbuf->obj + nobj); |
| } |
| |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| continue; |
| if(nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| goto continue_obj; |
| if(runtime_casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitNoPointers) != 0) |
| continue; |
| |
| PREFETCH(obj); |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = (void**)(wbuf->obj); |
| nobj = 0; |
| } |
| *wp++ = obj; |
| nobj++; |
| continue_obj:; |
| } |
| |
| // Done scanning [b, b+n). Prepare for the next iteration of |
| // the loop by setting b and n to the parameters for the next block. |
| |
| // Fetch b from the work buffer. |
| if(nobj == 0) { |
| if(!keepworking) { |
| if(wbuf) |
| putempty(wbuf); |
| return; |
| } |
| // Emptied our buffer: refill. |
| wbuf = getfull(wbuf); |
| if(wbuf == nil) |
| return; |
| nobj = wbuf->nobj; |
| wp = (void**)(wbuf->obj + wbuf->nobj); |
| } |
| b = *--wp; |
| nobj--; |
| |
| // Ask span about size class. |
| // (Manually inlined copy of MHeap_Lookup.) |
| x = (uintptr)b>>PageShift; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime_mheap.map[x]; |
| if(s->sizeclass == 0) |
| n = s->npages<<PageShift; |
| else |
| n = runtime_class_to_size[s->sizeclass]; |
| } |
| } |
| |
| // debug_scanblock is the debug copy of scanblock. |
| // it is simpler, slower, single-threaded, recursive, |
| // and uses bitSpecial as the mark bit. |
| static void |
| debug_scanblock(byte *b, uintptr n) |
| { |
| byte *obj, *p; |
| void **vp; |
| uintptr size, *bitp, bits, shift, i, xbits, off; |
| MSpan *s; |
| |
| if(!DebugMark) |
| runtime_throw("debug_scanblock without DebugMark"); |
| |
| if((intptr)n < 0) { |
| runtime_printf("debug_scanblock %p %D\n", b, (int64)n); |
| runtime_throw("debug_scanblock"); |
| } |
| |
| // Align b to a word boundary. |
| off = (uintptr)b & (PtrSize-1); |
| if(off != 0) { |
| b += PtrSize - off; |
| n -= PtrSize - off; |
| } |
| |
| vp = (void**)b; |
| n /= PtrSize; |
| for(i=0; i<(uintptr)n; i++) { |
| obj = (byte*)vp[i]; |
| |
| // Words outside the arena cannot be pointers. |
| if((byte*)obj < runtime_mheap.arena_start || (byte*)obj >= runtime_mheap.arena_used) |
| continue; |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Consult span table to find beginning. |
| s = runtime_MHeap_LookupMaybe(&runtime_mheap, obj); |
| if(s == nil) |
| continue; |
| |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| size = (uintptr)s->npages<<PageShift; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| continue; |
| size = runtime_class_to_size[s->sizeclass]; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)runtime_mheap.arena_start; |
| bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // If not allocated or already marked, done. |
| if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked |
| continue; |
| *bitp |= bitSpecial<<shift; |
| if(!(bits & bitMarked)) |
| runtime_printf("found unmarked block %p in %p\n", obj, vp+i); |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitNoPointers) != 0) |
| continue; |
| |
| debug_scanblock(obj, size); |
| } |
| } |
| |
| static void |
| markroot(ParFor *desc, uint32 i) |
| { |
| USED(&desc); |
| scanblock(work.roots[i].p, work.roots[i].n); |
| } |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| if(b != nil) |
| runtime_lfstackpush(&work.full, &b->node); |
| b = (Workbuf*)runtime_lfstackpop(&work.empty); |
| if(b == nil) { |
| // Need to allocate. |
| runtime_lock(&work); |
| if(work.nchunk < sizeof *b) { |
| work.nchunk = 1<<20; |
| work.chunk = runtime_SysAlloc(work.nchunk); |
| } |
| b = (Workbuf*)work.chunk; |
| work.chunk += sizeof *b; |
| work.nchunk -= sizeof *b; |
| runtime_unlock(&work); |
| } |
| b->nobj = 0; |
| return b; |
| } |
| |
| static void |
| putempty(Workbuf *b) |
| { |
| runtime_lfstackpush(&work.empty, &b->node); |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| M *m; |
| int32 i; |
| |
| if(b != nil) |
| runtime_lfstackpush(&work.empty, &b->node); |
| b = (Workbuf*)runtime_lfstackpop(&work.full); |
| if(b != nil || work.nproc == 1) |
| return b; |
| |
| m = runtime_m(); |
| runtime_xadd(&work.nwait, +1); |
| for(i=0;; i++) { |
| if(work.full != 0) { |
| runtime_xadd(&work.nwait, -1); |
| b = (Workbuf*)runtime_lfstackpop(&work.full); |
| if(b != nil) |
| return b; |
| runtime_xadd(&work.nwait, +1); |
| } |
| if(work.nwait == work.nproc) |
| return nil; |
| if(i < 10) { |
| m->gcstats.nprocyield++; |
| runtime_procyield(20); |
| } else if(i < 20) { |
| m->gcstats.nosyield++; |
| runtime_osyield(); |
| } else { |
| m->gcstats.nsleep++; |
| runtime_usleep(100); |
| } |
| } |
| } |
| |
| static Workbuf* |
| handoff(Workbuf *b) |
| { |
| M *m; |
| int32 n; |
| Workbuf *b1; |
| |
| m = runtime_m(); |
| |
| // Make new buffer with half of b's pointers. |
| b1 = getempty(nil); |
| n = b->nobj/2; |
| b->nobj -= n; |
| b1->nobj = n; |
| runtime_memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); |
| m->gcstats.nhandoff++; |
| m->gcstats.nhandoffcnt += n; |
| |
| // Put b on full list - let first half of b get stolen. |
| runtime_lfstackpush(&work.full, &b->node); |
| return b1; |
| } |
| |
| static void |
| addroot(byte *p, uintptr n) |
| { |
| uint32 cap; |
| GcRoot *new; |
| |
| if(work.nroot >= work.rootcap) { |
| cap = PageSize/sizeof(GcRoot); |
| if(cap < 2*work.rootcap) |
| cap = 2*work.rootcap; |
| new = (GcRoot*)runtime_SysAlloc(cap*sizeof(GcRoot)); |
| if(work.roots != nil) { |
| runtime_memmove(new, work.roots, work.rootcap*sizeof(GcRoot)); |
| runtime_SysFree(work.roots, work.rootcap*sizeof(GcRoot)); |
| } |
| work.roots = new; |
| work.rootcap = cap; |
| } |
| work.roots[work.nroot].p = p; |
| work.roots[work.nroot].n = n; |
| work.nroot++; |
| } |
| |
| static void |
| addstackroots(G *gp) |
| { |
| #ifdef USING_SPLIT_STACK |
| M *mp; |
| void* sp; |
| size_t spsize; |
| void* next_segment; |
| void* next_sp; |
| void* initial_sp; |
| |
| if(gp == runtime_g()) { |
| // Scanning our own stack. |
| sp = __splitstack_find(nil, nil, &spsize, &next_segment, |
| &next_sp, &initial_sp); |
| } else if((mp = gp->m) != nil && mp->helpgc) { |
| // gchelper's stack is in active use and has no interesting pointers. |
| return; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| |
| // The exception is that if the goroutine is about to enter or might |
| // have just exited a system call, it may be executing code such |
| // as schedlock and may have needed to start a new stack segment. |
| // Use the stack segment and stack pointer at the time of |
| // the system call instead, since that won't change underfoot. |
| if(gp->gcstack != nil) { |
| sp = gp->gcstack; |
| spsize = gp->gcstack_size; |
| next_segment = gp->gcnext_segment; |
| next_sp = gp->gcnext_sp; |
| initial_sp = gp->gcinitial_sp; |
| } else { |
| sp = __splitstack_find_context(&gp->stack_context[0], |
| &spsize, &next_segment, |
| &next_sp, &initial_sp); |
| } |
| } |
| if(sp != nil) { |
| addroot(sp, spsize); |
| while((sp = __splitstack_find(next_segment, next_sp, |
| &spsize, &next_segment, |
| &next_sp, &initial_sp)) != nil) |
| addroot(sp, spsize); |
| } |
| #else |
| M *mp; |
| byte* bottom; |
| byte* top; |
| |
| if(gp == runtime_g()) { |
| // Scanning our own stack. |
| bottom = (byte*)&gp; |
| } else if((mp = gp->m) != nil && mp->helpgc) { |
| // gchelper's stack is in active use and has no interesting pointers. |
| return; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| bottom = (byte*)gp->gcnext_sp; |
| if(bottom == nil) |
| return; |
| } |
| top = (byte*)gp->gcinitial_sp + gp->gcstack_size; |
| if(top > bottom) |
| addroot(bottom, top - bottom); |
| else |
| addroot(top, bottom - top); |
| #endif |
| } |
| |
| static void |
| addfinroots(void *v) |
| { |
| uintptr size; |
| |
| size = 0; |
| if(!runtime_mlookup(v, (byte**)&v, &size, nil) || !runtime_blockspecial(v)) |
| runtime_throw("mark - finalizer inconsistency"); |
| |
| // do not mark the finalizer block itself. just mark the things it points at. |
| addroot(v, size); |
| } |
| |
| static struct root_list* roots; |
| |
| void |
| __go_register_gc_roots (struct root_list* r) |
| { |
| // FIXME: This needs locking if multiple goroutines can call |
| // dlopen simultaneously. |
| r->next = roots; |
| roots = r; |
| } |
| |
| static void |
| addroots(void) |
| { |
| struct root_list *pl; |
| G *gp; |
| FinBlock *fb; |
| MSpan *s, **allspans; |
| uint32 spanidx; |
| |
| work.nroot = 0; |
| |
| // mark data+bss. |
| for(pl = roots; pl != nil; pl = pl->next) { |
| struct root* pr = &pl->roots[0]; |
| while(1) { |
| void *decl = pr->decl; |
| if(decl == nil) |
| break; |
| addroot(decl, pr->size); |
| pr++; |
| } |
| } |
| |
| addroot((byte*)&runtime_m0, sizeof runtime_m0); |
| addroot((byte*)&runtime_g0, sizeof runtime_g0); |
| addroot((byte*)&runtime_allg, sizeof runtime_allg); |
| addroot((byte*)&runtime_allm, sizeof runtime_allm); |
| runtime_MProf_Mark(addroot); |
| runtime_time_scan(addroot); |
| runtime_trampoline_scan(addroot); |
| |
| // MSpan.types |
| allspans = runtime_mheap.allspans; |
| for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) { |
| s = allspans[spanidx]; |
| if(s->state == MSpanInUse) { |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| case MTypes_Single: |
| break; |
| case MTypes_Words: |
| case MTypes_Bytes: |
| addroot((byte*)&s->types.data, sizeof(void*)); |
| break; |
| } |
| } |
| } |
| |
| for(gp=runtime_allg; gp!=nil; gp=gp->alllink) { |
| switch(gp->status){ |
| default: |
| runtime_printf("unexpected G.status %d\n", gp->status); |
| runtime_throw("mark - bad status"); |
| case Gdead: |
| break; |
| case Grunning: |
| if(gp != runtime_g()) |
| runtime_throw("mark - world not stopped"); |
| addstackroots(gp); |
| break; |
| case Grunnable: |
| case Gsyscall: |
| case Gwaiting: |
| addstackroots(gp); |
| break; |
| } |
| } |
| |
| runtime_walkfintab(addfinroots, addroot); |
| |
| for(fb=allfin; fb; fb=fb->alllink) |
| addroot((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0])); |
| |
| addroot((byte*)&work, sizeof work); |
| } |
| |
| static bool |
| handlespecial(byte *p, uintptr size) |
| { |
| void (*fn)(void*); |
| const struct __go_func_type *ft; |
| FinBlock *block; |
| Finalizer *f; |
| |
| if(!runtime_getfinalizer(p, true, &fn, &ft)) { |
| runtime_setblockspecial(p, false); |
| runtime_MProf_Free(p, size); |
| return false; |
| } |
| |
| runtime_lock(&finlock); |
| if(finq == nil || finq->cnt == finq->cap) { |
| if(finc == nil) { |
| finc = runtime_SysAlloc(PageSize); |
| finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; |
| finc->alllink = allfin; |
| allfin = finc; |
| } |
| block = finc; |
| finc = block->next; |
| block->next = finq; |
| finq = block; |
| } |
| f = &finq->fin[finq->cnt]; |
| finq->cnt++; |
| f->fn = fn; |
| f->ft = ft; |
| f->arg = p; |
| runtime_unlock(&finlock); |
| return true; |
| } |
| |
| // Sweep frees or collects finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| static void |
| sweepspan(ParFor *desc, uint32 idx) |
| { |
| M *m; |
| int32 cl, n, npages; |
| uintptr size; |
| byte *p; |
| MCache *c; |
| byte *arena_start; |
| MLink head, *end; |
| int32 nfree; |
| byte *type_data; |
| byte compression; |
| uintptr type_data_inc; |
| MSpan *s; |
| |
| m = runtime_m(); |
| |
| USED(&desc); |
| s = runtime_mheap.allspans[idx]; |
| // Stamp newly unused spans. The scavenger will use that |
| // info to potentially give back some pages to the OS. |
| if(s->state == MSpanFree && s->unusedsince == 0) |
| s->unusedsince = runtime_nanotime(); |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime_mheap.arena_start; |
| p = (byte*)(s->start << PageShift); |
| cl = s->sizeclass; |
| size = s->elemsize; |
| if(cl == 0) { |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| npages = runtime_class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| nfree = 0; |
| end = &head; |
| c = m->mcache; |
| |
| type_data = (byte*)s->types.data; |
| type_data_inc = sizeof(uintptr); |
| compression = s->types.compression; |
| switch(compression) { |
| case MTypes_Bytes: |
| type_data += 8*sizeof(uintptr); |
| type_data_inc = 1; |
| break; |
| } |
| |
| // Sweep through n objects of given size starting at p. |
| // This thread owns the span now, so it can manipulate |
| // the block bitmap without atomic operations. |
| for(; n > 0; n--, p += size, type_data+=type_data_inc) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| if((bits & bitAllocated) == 0) |
| continue; |
| |
| if((bits & bitMarked) != 0) { |
| if(DebugMark) { |
| if(!(bits & bitSpecial)) |
| runtime_printf("found spurious mark on %p\n", p); |
| *bitp &= ~(bitSpecial<<shift); |
| } |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| |
| // Special means it has a finalizer or is being profiled. |
| // In DebugMark mode, the bit has been coopted so |
| // we have to assume all blocks are special. |
| if(DebugMark || (bits & bitSpecial) != 0) { |
| if(handlespecial(p, size)) |
| continue; |
| } |
| |
| // Mark freed; restore block boundary bit. |
| *bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| |
| if(cl == 0) { |
| // Free large span. |
| runtime_unmarkspan(p, 1<<PageShift); |
| *(uintptr*)p = 1; // needs zeroing |
| runtime_MHeap_Free(&runtime_mheap, s, 1); |
| c->local_alloc -= size; |
| c->local_nfree++; |
| } else { |
| // Free small object. |
| switch(compression) { |
| case MTypes_Words: |
| *(uintptr*)type_data = 0; |
| break; |
| case MTypes_Bytes: |
| *(byte*)type_data = 0; |
| break; |
| } |
| if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" |
| |
| end->next = (MLink*)p; |
| end = (MLink*)p; |
| nfree++; |
| } |
| } |
| |
| if(nfree) { |
| c->local_by_size[cl].nfree += nfree; |
| c->local_alloc -= size * nfree; |
| c->local_nfree += nfree; |
| c->local_cachealloc -= nfree * size; |
| c->local_objects -= nfree; |
| runtime_MCentral_FreeSpan(&runtime_mheap.central[cl], s, nfree, head.next, end); |
| } |
| } |
| |
| static void |
| dumpspan(uint32 idx) |
| { |
| int32 sizeclass, n, npages, i, column; |
| uintptr size; |
| byte *p; |
| byte *arena_start; |
| MSpan *s; |
| bool allocated, special; |
| |
| s = runtime_mheap.allspans[idx]; |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime_mheap.arena_start; |
| p = (byte*)(s->start << PageShift); |
| sizeclass = s->sizeclass; |
| size = s->elemsize; |
| if(sizeclass == 0) { |
| n = 1; |
| } else { |
| npages = runtime_class_to_allocnpages[sizeclass]; |
| n = (npages << PageShift) / size; |
| } |
| |
| runtime_printf("%p .. %p:\n", p, p+n*size); |
| column = 0; |
| for(; n>0; n--, p+=size) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| allocated = ((bits & bitAllocated) != 0); |
| special = ((bits & bitSpecial) != 0); |
| |
| for(i=0; (uint32)i<size; i+=sizeof(void*)) { |
| if(column == 0) { |
| runtime_printf("\t"); |
| } |
| if(i == 0) { |
| runtime_printf(allocated ? "(" : "["); |
| runtime_printf(special ? "@" : ""); |
| runtime_printf("%p: ", p+i); |
| } else { |
| runtime_printf(" "); |
| } |
| |
| runtime_printf("%p", *(void**)(p+i)); |
| |
| if(i+sizeof(void*) >= size) { |
| runtime_printf(allocated ? ") " : "] "); |
| } |
| |
| column++; |
| if(column == 8) { |
| runtime_printf("\n"); |
| column = 0; |
| } |
| } |
| } |
| runtime_printf("\n"); |
| } |
| |
| // A debugging function to dump the contents of memory |
| void |
| runtime_memorydump(void) |
| { |
| uint32 spanidx; |
| |
| for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) { |
| dumpspan(spanidx); |
| } |
| } |
| |
| void |
| runtime_gchelper(void) |
| { |
| // parallel mark for over gc roots |
| runtime_parfordo(work.markfor); |
| // help other threads scan secondary blocks |
| scanblock(nil, 0); |
| |
| if(DebugMark) { |
| // wait while the main thread executes mark(debug_scanblock) |
| while(runtime_atomicload(&work.debugmarkdone) == 0) |
| runtime_usleep(10); |
| } |
| |
| runtime_parfordo(work.sweepfor); |
| if(runtime_xadd(&work.ndone, +1) == work.nproc-1) |
| runtime_notewakeup(&work.alldone); |
| } |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| // |
| // Next gc is after we've allocated an extra amount of |
| // memory proportional to the amount already in use. |
| // If gcpercent=100 and we're using 4M, we'll gc again |
| // when we get to 8M. This keeps the gc cost in linear |
| // proportion to the allocation cost. Adjusting gcpercent |
| // just changes the linear constant (and also the amount of |
| // extra memory used). |
| static int32 gcpercent = -2; |
| |
| static void |
| stealcache(void) |
| { |
| M *m; |
| |
| for(m=runtime_allm; m; m=m->alllink) |
| runtime_MCache_ReleaseAll(m->mcache); |
| } |
| |
| static void |
| cachestats(GCStats *stats) |
| { |
| M *m; |
| MCache *c; |
| uint32 i; |
| uint64 stacks_inuse; |
| uint64 stacks_sys; |
| uint64 *src, *dst; |
| |
| if(stats) |
| runtime_memclr((byte*)stats, sizeof(*stats)); |
| stacks_inuse = 0; |
| stacks_sys = runtime_stacks_sys; |
| for(m=runtime_allm; m; m=m->alllink) { |
| c = m->mcache; |
| runtime_purgecachedstats(c); |
| // stacks_inuse += m->stackalloc->inuse; |
| // stacks_sys += m->stackalloc->sys; |
| if(stats) { |
| src = (uint64*)&m->gcstats; |
| dst = (uint64*)stats; |
| for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) |
| dst[i] += src[i]; |
| runtime_memclr((byte*)&m->gcstats, sizeof(m->gcstats)); |
| } |
| for(i=0; i<nelem(c->local_by_size); i++) { |
| mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; |
| c->local_by_size[i].nmalloc = 0; |
| mstats.by_size[i].nfree += c->local_by_size[i].nfree; |
| c->local_by_size[i].nfree = 0; |
| } |
| } |
| mstats.stacks_inuse = stacks_inuse; |
| mstats.stacks_sys = stacks_sys; |
| } |
| |
| // Structure of arguments passed to function gc(). |
| // This allows the arguments to be passed via reflect_call. |
| struct gc_args |
| { |
| int32 force; |
| }; |
| |
| static void gc(struct gc_args *args); |
| |
| void |
| runtime_gc(int32 force) |
| { |
| M *m; |
| const byte *p; |
| struct gc_args a, *ap; |
| |
| // The atomic operations are not atomic if the uint64s |
| // are not aligned on uint64 boundaries. This has been |
| // a problem in the past. |
| if((((uintptr)&work.empty) & 7) != 0) |
| runtime_throw("runtime: gc work buffer is misaligned"); |
| |
| // Make sure all registers are saved on stack so that |
| // scanstack sees them. |
| __builtin_unwind_init(); |
| |
| // The gc is turned off (via enablegc) until |
| // the bootstrap has completed. |
| // Also, malloc gets called in the guts |
| // of a number of libraries that might be |
| // holding locks. To avoid priority inversion |
| // problems, don't bother trying to run gc |
| // while holding a lock. The next mallocgc |
| // without a lock will do the gc instead. |
| m = runtime_m(); |
| if(!mstats.enablegc || m->locks > 0 || runtime_panicking) |
| return; |
| |
| if(gcpercent == -2) { // first time through |
| p = runtime_getenv("GOGC"); |
| if(p == nil || p[0] == '\0') |
| gcpercent = 100; |
| else if(runtime_strcmp((const char*)p, "off") == 0) |
| gcpercent = -1; |
| else |
| gcpercent = runtime_atoi(p); |
| |
| p = runtime_getenv("GOGCTRACE"); |
| if(p != nil) |
| gctrace = runtime_atoi(p); |
| } |
| if(gcpercent < 0) |
| return; |
| |
| // Run gc on a bigger stack to eliminate |
| // a potentially large number of calls to runtime_morestack. |
| // But not when using gccgo. |
| a.force = force; |
| ap = &a; |
| gc(ap); |
| |
| if(gctrace > 1 && !force) { |
| a.force = 1; |
| gc(&a); |
| } |
| } |
| |
| static void |
| gc(struct gc_args *args) |
| { |
| M *m; |
| int64 t0, t1, t2, t3; |
| uint64 heap0, heap1, obj0, obj1; |
| GCStats stats; |
| M *m1; |
| uint32 i; |
| |
| runtime_semacquire(&runtime_worldsema); |
| if(!args->force && mstats.heap_alloc < mstats.next_gc) { |
| runtime_semrelease(&runtime_worldsema); |
| return; |
| } |
| |
| m = runtime_m(); |
| |
| t0 = runtime_nanotime(); |
| |
| m->gcing = 1; |
| runtime_stoptheworld(); |
| |
| for(m1=runtime_allm; m1; m1=m1->alllink) |
| runtime_settype_flush(m1, false); |
| |
| heap0 = 0; |
| obj0 = 0; |
| if(gctrace) { |
| cachestats(nil); |
| heap0 = mstats.heap_alloc; |
| obj0 = mstats.nmalloc - mstats.nfree; |
| } |
| |
| work.nwait = 0; |
| work.ndone = 0; |
| work.debugmarkdone = 0; |
| work.nproc = runtime_gcprocs(); |
| addroots(); |
| m->locks++; // disable gc during mallocs in parforalloc |
| if(work.markfor == nil) |
| work.markfor = runtime_parforalloc(MaxGcproc); |
| runtime_parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot); |
| if(work.sweepfor == nil) |
| work.sweepfor = runtime_parforalloc(MaxGcproc); |
| runtime_parforsetup(work.sweepfor, work.nproc, runtime_mheap.nspan, nil, true, sweepspan); |
| m->locks--; |
| if(work.nproc > 1) { |
| runtime_noteclear(&work.alldone); |
| runtime_helpgc(work.nproc); |
| } |
| |
| runtime_parfordo(work.markfor); |
| scanblock(nil, 0); |
| |
| if(DebugMark) { |
| for(i=0; i<work.nroot; i++) |
| debug_scanblock(work.roots[i].p, work.roots[i].n); |
| runtime_atomicstore(&work.debugmarkdone, 1); |
| } |
| t1 = runtime_nanotime(); |
| |
| runtime_parfordo(work.sweepfor); |
| t2 = runtime_nanotime(); |
| |
| stealcache(); |
| cachestats(&stats); |
| |
| if(work.nproc > 1) |
| runtime_notesleep(&work.alldone); |
| |
| stats.nprocyield += work.sweepfor->nprocyield; |
| stats.nosyield += work.sweepfor->nosyield; |
| stats.nsleep += work.sweepfor->nsleep; |
| |
| mstats.next_gc = mstats.heap_alloc+(mstats.heap_alloc-runtime_stacks_sys)*gcpercent/100; |
| m->gcing = 0; |
| |
| if(finq != nil) { |
| m->locks++; // disable gc during the mallocs in newproc |
| // kick off or wake up goroutine to run queued finalizers |
| if(fing == nil) |
| fing = __go_go(runfinq, nil); |
| else if(fingwait) { |
| fingwait = 0; |
| runtime_ready(fing); |
| } |
| m->locks--; |
| } |
| |
| heap1 = mstats.heap_alloc; |
| obj1 = mstats.nmalloc - mstats.nfree; |
| |
| t3 = runtime_nanotime(); |
| mstats.last_gc = t3; |
| mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; |
| mstats.pause_total_ns += t3 - t0; |
| mstats.numgc++; |
| if(mstats.debuggc) |
| runtime_printf("pause %D\n", t3-t0); |
| |
| if(gctrace) { |
| runtime_printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," |
| " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", |
| mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, |
| heap0>>20, heap1>>20, obj0, obj1, |
| mstats.nmalloc, mstats.nfree, |
| stats.nhandoff, stats.nhandoffcnt, |
| work.sweepfor->nsteal, work.sweepfor->nstealcnt, |
| stats.nprocyield, stats.nosyield, stats.nsleep); |
| } |
| |
| runtime_MProf_GC(); |
| runtime_semrelease(&runtime_worldsema); |
| runtime_starttheworld(); |
| |
| // give the queued finalizers, if any, a chance to run |
| if(finq != nil) |
| runtime_gosched(); |
| } |
| |
| void runtime_ReadMemStats(MStats *) |
| __asm__("runtime.ReadMemStats"); |
| |
| void |
| runtime_ReadMemStats(MStats *stats) |
| { |
| M *m; |
| |
| // Have to acquire worldsema to stop the world, |
| // because stoptheworld can only be used by |
| // one goroutine at a time, and there might be |
| // a pending garbage collection already calling it. |
| runtime_semacquire(&runtime_worldsema); |
| m = runtime_m(); |
| m->gcing = 1; |
| runtime_stoptheworld(); |
| cachestats(nil); |
| *stats = mstats; |
| m->gcing = 0; |
| runtime_semrelease(&runtime_worldsema); |
| runtime_starttheworld(); |
| } |
| |
| static void |
| runfinq(void* dummy __attribute__ ((unused))) |
| { |
| Finalizer *f; |
| FinBlock *fb, *next; |
| uint32 i; |
| |
| for(;;) { |
| // There's no need for a lock in this section |
| // because it only conflicts with the garbage |
| // collector, and the garbage collector only |
| // runs when everyone else is stopped, and |
| // runfinq only stops at the gosched() or |
| // during the calls in the for loop. |
| fb = finq; |
| finq = nil; |
| if(fb == nil) { |
| fingwait = 1; |
| runtime_park(nil, nil, "finalizer wait"); |
| continue; |
| } |
| if(raceenabled) |
| runtime_racefingo(); |
| for(; fb; fb=next) { |
| next = fb->next; |
| for(i=0; i<(uint32)fb->cnt; i++) { |
| void *params[1]; |
| |
| f = &fb->fin[i]; |
| params[0] = &f->arg; |
| reflect_call(f->ft, (void*)f->fn, 0, 0, params, nil); |
| f->fn = nil; |
| f->arg = nil; |
| } |
| fb->cnt = 0; |
| fb->next = finc; |
| finc = fb; |
| } |
| runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible |
| } |
| } |
| |
| // mark the block at v of size n as allocated. |
| // If noptr is true, mark it as having no pointers. |
| void |
| runtime_markallocated(void *v, uintptr n, bool noptr) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime_printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift); |
| if(noptr) |
| bits |= bitNoPointers<<shift; |
| if(runtime_singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime_casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // mark the block at v of size n as freed. |
| void |
| runtime_markfreed(void *v, uintptr n) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime_printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| if(runtime_singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime_casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // check that the block at v of size n is marked freed. |
| void |
| runtime_checkfreed(void *v, uintptr n) |
| { |
| uintptr *b, bits, off, shift; |
| |
| if(!runtime_checking) |
| return; |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| return; // not allocated, so okay |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| bits = *b>>shift; |
| if((bits & bitAllocated) != 0) { |
| runtime_printf("checkfreed %p+%p: off=%p have=%p\n", |
| v, n, off, bits & bitMask); |
| runtime_throw("checkfreed: not freed"); |
| } |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime_markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr *b, off, shift; |
| byte *p; |
| |
| if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markspan: bad pointer"); |
| |
| p = v; |
| if(leftover) // mark a boundary just past end of last block too |
| n++; |
| for(; n-- > 0; p += size) { |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| } |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime_unmarkspan(void *v, uintptr n) |
| { |
| uintptr *p, *b, off; |
| |
| if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) |
| runtime_throw("markspan: bad pointer"); |
| |
| p = v; |
| off = p - (uintptr*)runtime_mheap.arena_start; // word offset |
| if(off % wordsPerBitmapWord != 0) |
| runtime_throw("markspan: unaligned pointer"); |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| n /= PtrSize; |
| if(n%wordsPerBitmapWord != 0) |
| runtime_throw("unmarkspan: unaligned length"); |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| n /= wordsPerBitmapWord; |
| while(n-- > 0) |
| *b-- = 0; |
| } |
| |
| bool |
| runtime_blockspecial(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| if(DebugMark) |
| return true; |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| return (*b & (bitSpecial<<shift)) != 0; |
| } |
| |
| void |
| runtime_setblockspecial(void *v, bool s) |
| { |
| uintptr *b, off, shift, bits, obits; |
| |
| if(DebugMark) |
| return; |
| |
| off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; |
| b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| if(s) |
| bits = obits | (bitSpecial<<shift); |
| else |
| bits = obits & ~(bitSpecial<<shift); |
| if(runtime_singleproc) { |
| *b = bits; |
| break; |
| } else { |
| // more than one goroutine is potentially running: use atomic op |
| if(runtime_casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| void |
| runtime_MHeap_MapBits(MHeap *h) |
| { |
| size_t page_size; |
| |
| // Caller has added extra mappings to the arena. |
| // Add extra mappings of bitmap words as needed. |
| // We allocate extra bitmap pieces in chunks of bitmapChunk. |
| enum { |
| bitmapChunk = 8192 |
| }; |
| uintptr n; |
| |
| n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; |
| n = (n+bitmapChunk-1) & ~(bitmapChunk-1); |
| if(h->bitmap_mapped >= n) |
| return; |
| |
| page_size = getpagesize(); |
| n = (n+page_size-1) & ~(page_size-1); |
| |
| runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped); |
| h->bitmap_mapped = n; |
| } |