| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // We have an implementation in amd64 assembly so this code is only run on |
| // non-amd64 platforms. The amd64 assembly does not support gccgo. |
| // +build !amd64 gccgo appengine |
| |
| package curve25519 |
| |
| import ( |
| "encoding/binary" |
| ) |
| |
| // This code is a port of the public domain, "ref10" implementation of |
| // curve25519 from SUPERCOP 20130419 by D. J. Bernstein. |
| |
| // fieldElement represents an element of the field GF(2^255 - 19). An element |
| // t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 |
| // t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on |
| // context. |
| type fieldElement [10]int32 |
| |
| func feZero(fe *fieldElement) { |
| for i := range fe { |
| fe[i] = 0 |
| } |
| } |
| |
| func feOne(fe *fieldElement) { |
| feZero(fe) |
| fe[0] = 1 |
| } |
| |
| func feAdd(dst, a, b *fieldElement) { |
| for i := range dst { |
| dst[i] = a[i] + b[i] |
| } |
| } |
| |
| func feSub(dst, a, b *fieldElement) { |
| for i := range dst { |
| dst[i] = a[i] - b[i] |
| } |
| } |
| |
| func feCopy(dst, src *fieldElement) { |
| for i := range dst { |
| dst[i] = src[i] |
| } |
| } |
| |
| // feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0. |
| // |
| // Preconditions: b in {0,1}. |
| func feCSwap(f, g *fieldElement, b int32) { |
| b = -b |
| for i := range f { |
| t := b & (f[i] ^ g[i]) |
| f[i] ^= t |
| g[i] ^= t |
| } |
| } |
| |
| // load3 reads a 24-bit, little-endian value from in. |
| func load3(in []byte) int64 { |
| var r int64 |
| r = int64(in[0]) |
| r |= int64(in[1]) << 8 |
| r |= int64(in[2]) << 16 |
| return r |
| } |
| |
| // load4 reads a 32-bit, little-endian value from in. |
| func load4(in []byte) int64 { |
| return int64(binary.LittleEndian.Uint32(in)) |
| } |
| |
| func feFromBytes(dst *fieldElement, src *[32]byte) { |
| h0 := load4(src[:]) |
| h1 := load3(src[4:]) << 6 |
| h2 := load3(src[7:]) << 5 |
| h3 := load3(src[10:]) << 3 |
| h4 := load3(src[13:]) << 2 |
| h5 := load4(src[16:]) |
| h6 := load3(src[20:]) << 7 |
| h7 := load3(src[23:]) << 5 |
| h8 := load3(src[26:]) << 4 |
| h9 := load3(src[29:]) << 2 |
| |
| var carry [10]int64 |
| carry[9] = (h9 + 1<<24) >> 25 |
| h0 += carry[9] * 19 |
| h9 -= carry[9] << 25 |
| carry[1] = (h1 + 1<<24) >> 25 |
| h2 += carry[1] |
| h1 -= carry[1] << 25 |
| carry[3] = (h3 + 1<<24) >> 25 |
| h4 += carry[3] |
| h3 -= carry[3] << 25 |
| carry[5] = (h5 + 1<<24) >> 25 |
| h6 += carry[5] |
| h5 -= carry[5] << 25 |
| carry[7] = (h7 + 1<<24) >> 25 |
| h8 += carry[7] |
| h7 -= carry[7] << 25 |
| |
| carry[0] = (h0 + 1<<25) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| carry[2] = (h2 + 1<<25) >> 26 |
| h3 += carry[2] |
| h2 -= carry[2] << 26 |
| carry[4] = (h4 + 1<<25) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| carry[6] = (h6 + 1<<25) >> 26 |
| h7 += carry[6] |
| h6 -= carry[6] << 26 |
| carry[8] = (h8 + 1<<25) >> 26 |
| h9 += carry[8] |
| h8 -= carry[8] << 26 |
| |
| dst[0] = int32(h0) |
| dst[1] = int32(h1) |
| dst[2] = int32(h2) |
| dst[3] = int32(h3) |
| dst[4] = int32(h4) |
| dst[5] = int32(h5) |
| dst[6] = int32(h6) |
| dst[7] = int32(h7) |
| dst[8] = int32(h8) |
| dst[9] = int32(h9) |
| } |
| |
| // feToBytes marshals h to s. |
| // Preconditions: |
| // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |
| // |
| // Write p=2^255-19; q=floor(h/p). |
| // Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). |
| // |
| // Proof: |
| // Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. |
| // Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4. |
| // |
| // Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). |
| // Then 0<y<1. |
| // |
| // Write r=h-pq. |
| // Have 0<=r<=p-1=2^255-20. |
| // Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1. |
| // |
| // Write x=r+19(2^-255)r+y. |
| // Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q. |
| // |
| // Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1)) |
| // so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. |
| func feToBytes(s *[32]byte, h *fieldElement) { |
| var carry [10]int32 |
| |
| q := (19*h[9] + (1 << 24)) >> 25 |
| q = (h[0] + q) >> 26 |
| q = (h[1] + q) >> 25 |
| q = (h[2] + q) >> 26 |
| q = (h[3] + q) >> 25 |
| q = (h[4] + q) >> 26 |
| q = (h[5] + q) >> 25 |
| q = (h[6] + q) >> 26 |
| q = (h[7] + q) >> 25 |
| q = (h[8] + q) >> 26 |
| q = (h[9] + q) >> 25 |
| |
| // Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. |
| h[0] += 19 * q |
| // Goal: Output h-2^255 q, which is between 0 and 2^255-20. |
| |
| carry[0] = h[0] >> 26 |
| h[1] += carry[0] |
| h[0] -= carry[0] << 26 |
| carry[1] = h[1] >> 25 |
| h[2] += carry[1] |
| h[1] -= carry[1] << 25 |
| carry[2] = h[2] >> 26 |
| h[3] += carry[2] |
| h[2] -= carry[2] << 26 |
| carry[3] = h[3] >> 25 |
| h[4] += carry[3] |
| h[3] -= carry[3] << 25 |
| carry[4] = h[4] >> 26 |
| h[5] += carry[4] |
| h[4] -= carry[4] << 26 |
| carry[5] = h[5] >> 25 |
| h[6] += carry[5] |
| h[5] -= carry[5] << 25 |
| carry[6] = h[6] >> 26 |
| h[7] += carry[6] |
| h[6] -= carry[6] << 26 |
| carry[7] = h[7] >> 25 |
| h[8] += carry[7] |
| h[7] -= carry[7] << 25 |
| carry[8] = h[8] >> 26 |
| h[9] += carry[8] |
| h[8] -= carry[8] << 26 |
| carry[9] = h[9] >> 25 |
| h[9] -= carry[9] << 25 |
| // h10 = carry9 |
| |
| // Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. |
| // Have h[0]+...+2^230 h[9] between 0 and 2^255-1; |
| // evidently 2^255 h10-2^255 q = 0. |
| // Goal: Output h[0]+...+2^230 h[9]. |
| |
| s[0] = byte(h[0] >> 0) |
| s[1] = byte(h[0] >> 8) |
| s[2] = byte(h[0] >> 16) |
| s[3] = byte((h[0] >> 24) | (h[1] << 2)) |
| s[4] = byte(h[1] >> 6) |
| s[5] = byte(h[1] >> 14) |
| s[6] = byte((h[1] >> 22) | (h[2] << 3)) |
| s[7] = byte(h[2] >> 5) |
| s[8] = byte(h[2] >> 13) |
| s[9] = byte((h[2] >> 21) | (h[3] << 5)) |
| s[10] = byte(h[3] >> 3) |
| s[11] = byte(h[3] >> 11) |
| s[12] = byte((h[3] >> 19) | (h[4] << 6)) |
| s[13] = byte(h[4] >> 2) |
| s[14] = byte(h[4] >> 10) |
| s[15] = byte(h[4] >> 18) |
| s[16] = byte(h[5] >> 0) |
| s[17] = byte(h[5] >> 8) |
| s[18] = byte(h[5] >> 16) |
| s[19] = byte((h[5] >> 24) | (h[6] << 1)) |
| s[20] = byte(h[6] >> 7) |
| s[21] = byte(h[6] >> 15) |
| s[22] = byte((h[6] >> 23) | (h[7] << 3)) |
| s[23] = byte(h[7] >> 5) |
| s[24] = byte(h[7] >> 13) |
| s[25] = byte((h[7] >> 21) | (h[8] << 4)) |
| s[26] = byte(h[8] >> 4) |
| s[27] = byte(h[8] >> 12) |
| s[28] = byte((h[8] >> 20) | (h[9] << 6)) |
| s[29] = byte(h[9] >> 2) |
| s[30] = byte(h[9] >> 10) |
| s[31] = byte(h[9] >> 18) |
| } |
| |
| // feMul calculates h = f * g |
| // Can overlap h with f or g. |
| // |
| // Preconditions: |
| // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. |
| // |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. |
| // |
| // Postconditions: |
| // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |
| // |
| // Notes on implementation strategy: |
| // |
| // Using schoolbook multiplication. |
| // Karatsuba would save a little in some cost models. |
| // |
| // Most multiplications by 2 and 19 are 32-bit precomputations; |
| // cheaper than 64-bit postcomputations. |
| // |
| // There is one remaining multiplication by 19 in the carry chain; |
| // one *19 precomputation can be merged into this, |
| // but the resulting data flow is considerably less clean. |
| // |
| // There are 12 carries below. |
| // 10 of them are 2-way parallelizable and vectorizable. |
| // Can get away with 11 carries, but then data flow is much deeper. |
| // |
| // With tighter constraints on inputs can squeeze carries into int32. |
| func feMul(h, f, g *fieldElement) { |
| f0 := f[0] |
| f1 := f[1] |
| f2 := f[2] |
| f3 := f[3] |
| f4 := f[4] |
| f5 := f[5] |
| f6 := f[6] |
| f7 := f[7] |
| f8 := f[8] |
| f9 := f[9] |
| g0 := g[0] |
| g1 := g[1] |
| g2 := g[2] |
| g3 := g[3] |
| g4 := g[4] |
| g5 := g[5] |
| g6 := g[6] |
| g7 := g[7] |
| g8 := g[8] |
| g9 := g[9] |
| g1_19 := 19 * g1 // 1.4*2^29 |
| g2_19 := 19 * g2 // 1.4*2^30; still ok |
| g3_19 := 19 * g3 |
| g4_19 := 19 * g4 |
| g5_19 := 19 * g5 |
| g6_19 := 19 * g6 |
| g7_19 := 19 * g7 |
| g8_19 := 19 * g8 |
| g9_19 := 19 * g9 |
| f1_2 := 2 * f1 |
| f3_2 := 2 * f3 |
| f5_2 := 2 * f5 |
| f7_2 := 2 * f7 |
| f9_2 := 2 * f9 |
| f0g0 := int64(f0) * int64(g0) |
| f0g1 := int64(f0) * int64(g1) |
| f0g2 := int64(f0) * int64(g2) |
| f0g3 := int64(f0) * int64(g3) |
| f0g4 := int64(f0) * int64(g4) |
| f0g5 := int64(f0) * int64(g5) |
| f0g6 := int64(f0) * int64(g6) |
| f0g7 := int64(f0) * int64(g7) |
| f0g8 := int64(f0) * int64(g8) |
| f0g9 := int64(f0) * int64(g9) |
| f1g0 := int64(f1) * int64(g0) |
| f1g1_2 := int64(f1_2) * int64(g1) |
| f1g2 := int64(f1) * int64(g2) |
| f1g3_2 := int64(f1_2) * int64(g3) |
| f1g4 := int64(f1) * int64(g4) |
| f1g5_2 := int64(f1_2) * int64(g5) |
| f1g6 := int64(f1) * int64(g6) |
| f1g7_2 := int64(f1_2) * int64(g7) |
| f1g8 := int64(f1) * int64(g8) |
| f1g9_38 := int64(f1_2) * int64(g9_19) |
| f2g0 := int64(f2) * int64(g0) |
| f2g1 := int64(f2) * int64(g1) |
| f2g2 := int64(f2) * int64(g2) |
| f2g3 := int64(f2) * int64(g3) |
| f2g4 := int64(f2) * int64(g4) |
| f2g5 := int64(f2) * int64(g5) |
| f2g6 := int64(f2) * int64(g6) |
| f2g7 := int64(f2) * int64(g7) |
| f2g8_19 := int64(f2) * int64(g8_19) |
| f2g9_19 := int64(f2) * int64(g9_19) |
| f3g0 := int64(f3) * int64(g0) |
| f3g1_2 := int64(f3_2) * int64(g1) |
| f3g2 := int64(f3) * int64(g2) |
| f3g3_2 := int64(f3_2) * int64(g3) |
| f3g4 := int64(f3) * int64(g4) |
| f3g5_2 := int64(f3_2) * int64(g5) |
| f3g6 := int64(f3) * int64(g6) |
| f3g7_38 := int64(f3_2) * int64(g7_19) |
| f3g8_19 := int64(f3) * int64(g8_19) |
| f3g9_38 := int64(f3_2) * int64(g9_19) |
| f4g0 := int64(f4) * int64(g0) |
| f4g1 := int64(f4) * int64(g1) |
| f4g2 := int64(f4) * int64(g2) |
| f4g3 := int64(f4) * int64(g3) |
| f4g4 := int64(f4) * int64(g4) |
| f4g5 := int64(f4) * int64(g5) |
| f4g6_19 := int64(f4) * int64(g6_19) |
| f4g7_19 := int64(f4) * int64(g7_19) |
| f4g8_19 := int64(f4) * int64(g8_19) |
| f4g9_19 := int64(f4) * int64(g9_19) |
| f5g0 := int64(f5) * int64(g0) |
| f5g1_2 := int64(f5_2) * int64(g1) |
| f5g2 := int64(f5) * int64(g2) |
| f5g3_2 := int64(f5_2) * int64(g3) |
| f5g4 := int64(f5) * int64(g4) |
| f5g5_38 := int64(f5_2) * int64(g5_19) |
| f5g6_19 := int64(f5) * int64(g6_19) |
| f5g7_38 := int64(f5_2) * int64(g7_19) |
| f5g8_19 := int64(f5) * int64(g8_19) |
| f5g9_38 := int64(f5_2) * int64(g9_19) |
| f6g0 := int64(f6) * int64(g0) |
| f6g1 := int64(f6) * int64(g1) |
| f6g2 := int64(f6) * int64(g2) |
| f6g3 := int64(f6) * int64(g3) |
| f6g4_19 := int64(f6) * int64(g4_19) |
| f6g5_19 := int64(f6) * int64(g5_19) |
| f6g6_19 := int64(f6) * int64(g6_19) |
| f6g7_19 := int64(f6) * int64(g7_19) |
| f6g8_19 := int64(f6) * int64(g8_19) |
| f6g9_19 := int64(f6) * int64(g9_19) |
| f7g0 := int64(f7) * int64(g0) |
| f7g1_2 := int64(f7_2) * int64(g1) |
| f7g2 := int64(f7) * int64(g2) |
| f7g3_38 := int64(f7_2) * int64(g3_19) |
| f7g4_19 := int64(f7) * int64(g4_19) |
| f7g5_38 := int64(f7_2) * int64(g5_19) |
| f7g6_19 := int64(f7) * int64(g6_19) |
| f7g7_38 := int64(f7_2) * int64(g7_19) |
| f7g8_19 := int64(f7) * int64(g8_19) |
| f7g9_38 := int64(f7_2) * int64(g9_19) |
| f8g0 := int64(f8) * int64(g0) |
| f8g1 := int64(f8) * int64(g1) |
| f8g2_19 := int64(f8) * int64(g2_19) |
| f8g3_19 := int64(f8) * int64(g3_19) |
| f8g4_19 := int64(f8) * int64(g4_19) |
| f8g5_19 := int64(f8) * int64(g5_19) |
| f8g6_19 := int64(f8) * int64(g6_19) |
| f8g7_19 := int64(f8) * int64(g7_19) |
| f8g8_19 := int64(f8) * int64(g8_19) |
| f8g9_19 := int64(f8) * int64(g9_19) |
| f9g0 := int64(f9) * int64(g0) |
| f9g1_38 := int64(f9_2) * int64(g1_19) |
| f9g2_19 := int64(f9) * int64(g2_19) |
| f9g3_38 := int64(f9_2) * int64(g3_19) |
| f9g4_19 := int64(f9) * int64(g4_19) |
| f9g5_38 := int64(f9_2) * int64(g5_19) |
| f9g6_19 := int64(f9) * int64(g6_19) |
| f9g7_38 := int64(f9_2) * int64(g7_19) |
| f9g8_19 := int64(f9) * int64(g8_19) |
| f9g9_38 := int64(f9_2) * int64(g9_19) |
| h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38 |
| h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19 |
| h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38 |
| h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19 |
| h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38 |
| h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19 |
| h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38 |
| h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19 |
| h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38 |
| h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0 |
| var carry [10]int64 |
| |
| // |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38)) |
| // i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8 |
| // |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19)) |
| // i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9 |
| |
| carry[0] = (h0 + (1 << 25)) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| carry[4] = (h4 + (1 << 25)) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| // |h0| <= 2^25 |
| // |h4| <= 2^25 |
| // |h1| <= 1.51*2^58 |
| // |h5| <= 1.51*2^58 |
| |
| carry[1] = (h1 + (1 << 24)) >> 25 |
| h2 += carry[1] |
| h1 -= carry[1] << 25 |
| carry[5] = (h5 + (1 << 24)) >> 25 |
| h6 += carry[5] |
| h5 -= carry[5] << 25 |
| // |h1| <= 2^24; from now on fits into int32 |
| // |h5| <= 2^24; from now on fits into int32 |
| // |h2| <= 1.21*2^59 |
| // |h6| <= 1.21*2^59 |
| |
| carry[2] = (h2 + (1 << 25)) >> 26 |
| h3 += carry[2] |
| h2 -= carry[2] << 26 |
| carry[6] = (h6 + (1 << 25)) >> 26 |
| h7 += carry[6] |
| h6 -= carry[6] << 26 |
| // |h2| <= 2^25; from now on fits into int32 unchanged |
| // |h6| <= 2^25; from now on fits into int32 unchanged |
| // |h3| <= 1.51*2^58 |
| // |h7| <= 1.51*2^58 |
| |
| carry[3] = (h3 + (1 << 24)) >> 25 |
| h4 += carry[3] |
| h3 -= carry[3] << 25 |
| carry[7] = (h7 + (1 << 24)) >> 25 |
| h8 += carry[7] |
| h7 -= carry[7] << 25 |
| // |h3| <= 2^24; from now on fits into int32 unchanged |
| // |h7| <= 2^24; from now on fits into int32 unchanged |
| // |h4| <= 1.52*2^33 |
| // |h8| <= 1.52*2^33 |
| |
| carry[4] = (h4 + (1 << 25)) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| carry[8] = (h8 + (1 << 25)) >> 26 |
| h9 += carry[8] |
| h8 -= carry[8] << 26 |
| // |h4| <= 2^25; from now on fits into int32 unchanged |
| // |h8| <= 2^25; from now on fits into int32 unchanged |
| // |h5| <= 1.01*2^24 |
| // |h9| <= 1.51*2^58 |
| |
| carry[9] = (h9 + (1 << 24)) >> 25 |
| h0 += carry[9] * 19 |
| h9 -= carry[9] << 25 |
| // |h9| <= 2^24; from now on fits into int32 unchanged |
| // |h0| <= 1.8*2^37 |
| |
| carry[0] = (h0 + (1 << 25)) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| // |h0| <= 2^25; from now on fits into int32 unchanged |
| // |h1| <= 1.01*2^24 |
| |
| h[0] = int32(h0) |
| h[1] = int32(h1) |
| h[2] = int32(h2) |
| h[3] = int32(h3) |
| h[4] = int32(h4) |
| h[5] = int32(h5) |
| h[6] = int32(h6) |
| h[7] = int32(h7) |
| h[8] = int32(h8) |
| h[9] = int32(h9) |
| } |
| |
| // feSquare calculates h = f*f. Can overlap h with f. |
| // |
| // Preconditions: |
| // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. |
| // |
| // Postconditions: |
| // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |
| func feSquare(h, f *fieldElement) { |
| f0 := f[0] |
| f1 := f[1] |
| f2 := f[2] |
| f3 := f[3] |
| f4 := f[4] |
| f5 := f[5] |
| f6 := f[6] |
| f7 := f[7] |
| f8 := f[8] |
| f9 := f[9] |
| f0_2 := 2 * f0 |
| f1_2 := 2 * f1 |
| f2_2 := 2 * f2 |
| f3_2 := 2 * f3 |
| f4_2 := 2 * f4 |
| f5_2 := 2 * f5 |
| f6_2 := 2 * f6 |
| f7_2 := 2 * f7 |
| f5_38 := 38 * f5 // 1.31*2^30 |
| f6_19 := 19 * f6 // 1.31*2^30 |
| f7_38 := 38 * f7 // 1.31*2^30 |
| f8_19 := 19 * f8 // 1.31*2^30 |
| f9_38 := 38 * f9 // 1.31*2^30 |
| f0f0 := int64(f0) * int64(f0) |
| f0f1_2 := int64(f0_2) * int64(f1) |
| f0f2_2 := int64(f0_2) * int64(f2) |
| f0f3_2 := int64(f0_2) * int64(f3) |
| f0f4_2 := int64(f0_2) * int64(f4) |
| f0f5_2 := int64(f0_2) * int64(f5) |
| f0f6_2 := int64(f0_2) * int64(f6) |
| f0f7_2 := int64(f0_2) * int64(f7) |
| f0f8_2 := int64(f0_2) * int64(f8) |
| f0f9_2 := int64(f0_2) * int64(f9) |
| f1f1_2 := int64(f1_2) * int64(f1) |
| f1f2_2 := int64(f1_2) * int64(f2) |
| f1f3_4 := int64(f1_2) * int64(f3_2) |
| f1f4_2 := int64(f1_2) * int64(f4) |
| f1f5_4 := int64(f1_2) * int64(f5_2) |
| f1f6_2 := int64(f1_2) * int64(f6) |
| f1f7_4 := int64(f1_2) * int64(f7_2) |
| f1f8_2 := int64(f1_2) * int64(f8) |
| f1f9_76 := int64(f1_2) * int64(f9_38) |
| f2f2 := int64(f2) * int64(f2) |
| f2f3_2 := int64(f2_2) * int64(f3) |
| f2f4_2 := int64(f2_2) * int64(f4) |
| f2f5_2 := int64(f2_2) * int64(f5) |
| f2f6_2 := int64(f2_2) * int64(f6) |
| f2f7_2 := int64(f2_2) * int64(f7) |
| f2f8_38 := int64(f2_2) * int64(f8_19) |
| f2f9_38 := int64(f2) * int64(f9_38) |
| f3f3_2 := int64(f3_2) * int64(f3) |
| f3f4_2 := int64(f3_2) * int64(f4) |
| f3f5_4 := int64(f3_2) * int64(f5_2) |
| f3f6_2 := int64(f3_2) * int64(f6) |
| f3f7_76 := int64(f3_2) * int64(f7_38) |
| f3f8_38 := int64(f3_2) * int64(f8_19) |
| f3f9_76 := int64(f3_2) * int64(f9_38) |
| f4f4 := int64(f4) * int64(f4) |
| f4f5_2 := int64(f4_2) * int64(f5) |
| f4f6_38 := int64(f4_2) * int64(f6_19) |
| f4f7_38 := int64(f4) * int64(f7_38) |
| f4f8_38 := int64(f4_2) * int64(f8_19) |
| f4f9_38 := int64(f4) * int64(f9_38) |
| f5f5_38 := int64(f5) * int64(f5_38) |
| f5f6_38 := int64(f5_2) * int64(f6_19) |
| f5f7_76 := int64(f5_2) * int64(f7_38) |
| f5f8_38 := int64(f5_2) * int64(f8_19) |
| f5f9_76 := int64(f5_2) * int64(f9_38) |
| f6f6_19 := int64(f6) * int64(f6_19) |
| f6f7_38 := int64(f6) * int64(f7_38) |
| f6f8_38 := int64(f6_2) * int64(f8_19) |
| f6f9_38 := int64(f6) * int64(f9_38) |
| f7f7_38 := int64(f7) * int64(f7_38) |
| f7f8_38 := int64(f7_2) * int64(f8_19) |
| f7f9_76 := int64(f7_2) * int64(f9_38) |
| f8f8_19 := int64(f8) * int64(f8_19) |
| f8f9_38 := int64(f8) * int64(f9_38) |
| f9f9_38 := int64(f9) * int64(f9_38) |
| h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38 |
| h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38 |
| h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19 |
| h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38 |
| h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38 |
| h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38 |
| h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19 |
| h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38 |
| h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38 |
| h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2 |
| var carry [10]int64 |
| |
| carry[0] = (h0 + (1 << 25)) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| carry[4] = (h4 + (1 << 25)) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| |
| carry[1] = (h1 + (1 << 24)) >> 25 |
| h2 += carry[1] |
| h1 -= carry[1] << 25 |
| carry[5] = (h5 + (1 << 24)) >> 25 |
| h6 += carry[5] |
| h5 -= carry[5] << 25 |
| |
| carry[2] = (h2 + (1 << 25)) >> 26 |
| h3 += carry[2] |
| h2 -= carry[2] << 26 |
| carry[6] = (h6 + (1 << 25)) >> 26 |
| h7 += carry[6] |
| h6 -= carry[6] << 26 |
| |
| carry[3] = (h3 + (1 << 24)) >> 25 |
| h4 += carry[3] |
| h3 -= carry[3] << 25 |
| carry[7] = (h7 + (1 << 24)) >> 25 |
| h8 += carry[7] |
| h7 -= carry[7] << 25 |
| |
| carry[4] = (h4 + (1 << 25)) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| carry[8] = (h8 + (1 << 25)) >> 26 |
| h9 += carry[8] |
| h8 -= carry[8] << 26 |
| |
| carry[9] = (h9 + (1 << 24)) >> 25 |
| h0 += carry[9] * 19 |
| h9 -= carry[9] << 25 |
| |
| carry[0] = (h0 + (1 << 25)) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| |
| h[0] = int32(h0) |
| h[1] = int32(h1) |
| h[2] = int32(h2) |
| h[3] = int32(h3) |
| h[4] = int32(h4) |
| h[5] = int32(h5) |
| h[6] = int32(h6) |
| h[7] = int32(h7) |
| h[8] = int32(h8) |
| h[9] = int32(h9) |
| } |
| |
| // feMul121666 calculates h = f * 121666. Can overlap h with f. |
| // |
| // Preconditions: |
| // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. |
| // |
| // Postconditions: |
| // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |
| func feMul121666(h, f *fieldElement) { |
| h0 := int64(f[0]) * 121666 |
| h1 := int64(f[1]) * 121666 |
| h2 := int64(f[2]) * 121666 |
| h3 := int64(f[3]) * 121666 |
| h4 := int64(f[4]) * 121666 |
| h5 := int64(f[5]) * 121666 |
| h6 := int64(f[6]) * 121666 |
| h7 := int64(f[7]) * 121666 |
| h8 := int64(f[8]) * 121666 |
| h9 := int64(f[9]) * 121666 |
| var carry [10]int64 |
| |
| carry[9] = (h9 + (1 << 24)) >> 25 |
| h0 += carry[9] * 19 |
| h9 -= carry[9] << 25 |
| carry[1] = (h1 + (1 << 24)) >> 25 |
| h2 += carry[1] |
| h1 -= carry[1] << 25 |
| carry[3] = (h3 + (1 << 24)) >> 25 |
| h4 += carry[3] |
| h3 -= carry[3] << 25 |
| carry[5] = (h5 + (1 << 24)) >> 25 |
| h6 += carry[5] |
| h5 -= carry[5] << 25 |
| carry[7] = (h7 + (1 << 24)) >> 25 |
| h8 += carry[7] |
| h7 -= carry[7] << 25 |
| |
| carry[0] = (h0 + (1 << 25)) >> 26 |
| h1 += carry[0] |
| h0 -= carry[0] << 26 |
| carry[2] = (h2 + (1 << 25)) >> 26 |
| h3 += carry[2] |
| h2 -= carry[2] << 26 |
| carry[4] = (h4 + (1 << 25)) >> 26 |
| h5 += carry[4] |
| h4 -= carry[4] << 26 |
| carry[6] = (h6 + (1 << 25)) >> 26 |
| h7 += carry[6] |
| h6 -= carry[6] << 26 |
| carry[8] = (h8 + (1 << 25)) >> 26 |
| h9 += carry[8] |
| h8 -= carry[8] << 26 |
| |
| h[0] = int32(h0) |
| h[1] = int32(h1) |
| h[2] = int32(h2) |
| h[3] = int32(h3) |
| h[4] = int32(h4) |
| h[5] = int32(h5) |
| h[6] = int32(h6) |
| h[7] = int32(h7) |
| h[8] = int32(h8) |
| h[9] = int32(h9) |
| } |
| |
| // feInvert sets out = z^-1. |
| func feInvert(out, z *fieldElement) { |
| var t0, t1, t2, t3 fieldElement |
| var i int |
| |
| feSquare(&t0, z) |
| for i = 1; i < 1; i++ { |
| feSquare(&t0, &t0) |
| } |
| feSquare(&t1, &t0) |
| for i = 1; i < 2; i++ { |
| feSquare(&t1, &t1) |
| } |
| feMul(&t1, z, &t1) |
| feMul(&t0, &t0, &t1) |
| feSquare(&t2, &t0) |
| for i = 1; i < 1; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t1, &t1, &t2) |
| feSquare(&t2, &t1) |
| for i = 1; i < 5; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t1, &t2, &t1) |
| feSquare(&t2, &t1) |
| for i = 1; i < 10; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t2, &t2, &t1) |
| feSquare(&t3, &t2) |
| for i = 1; i < 20; i++ { |
| feSquare(&t3, &t3) |
| } |
| feMul(&t2, &t3, &t2) |
| feSquare(&t2, &t2) |
| for i = 1; i < 10; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t1, &t2, &t1) |
| feSquare(&t2, &t1) |
| for i = 1; i < 50; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t2, &t2, &t1) |
| feSquare(&t3, &t2) |
| for i = 1; i < 100; i++ { |
| feSquare(&t3, &t3) |
| } |
| feMul(&t2, &t3, &t2) |
| feSquare(&t2, &t2) |
| for i = 1; i < 50; i++ { |
| feSquare(&t2, &t2) |
| } |
| feMul(&t1, &t2, &t1) |
| feSquare(&t1, &t1) |
| for i = 1; i < 5; i++ { |
| feSquare(&t1, &t1) |
| } |
| feMul(out, &t1, &t0) |
| } |
| |
| func scalarMult(out, in, base *[32]byte) { |
| var e [32]byte |
| |
| copy(e[:], in[:]) |
| e[0] &= 248 |
| e[31] &= 127 |
| e[31] |= 64 |
| |
| var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement |
| feFromBytes(&x1, base) |
| feOne(&x2) |
| feCopy(&x3, &x1) |
| feOne(&z3) |
| |
| swap := int32(0) |
| for pos := 254; pos >= 0; pos-- { |
| b := e[pos/8] >> uint(pos&7) |
| b &= 1 |
| swap ^= int32(b) |
| feCSwap(&x2, &x3, swap) |
| feCSwap(&z2, &z3, swap) |
| swap = int32(b) |
| |
| feSub(&tmp0, &x3, &z3) |
| feSub(&tmp1, &x2, &z2) |
| feAdd(&x2, &x2, &z2) |
| feAdd(&z2, &x3, &z3) |
| feMul(&z3, &tmp0, &x2) |
| feMul(&z2, &z2, &tmp1) |
| feSquare(&tmp0, &tmp1) |
| feSquare(&tmp1, &x2) |
| feAdd(&x3, &z3, &z2) |
| feSub(&z2, &z3, &z2) |
| feMul(&x2, &tmp1, &tmp0) |
| feSub(&tmp1, &tmp1, &tmp0) |
| feSquare(&z2, &z2) |
| feMul121666(&z3, &tmp1) |
| feSquare(&x3, &x3) |
| feAdd(&tmp0, &tmp0, &z3) |
| feMul(&z3, &x1, &z2) |
| feMul(&z2, &tmp1, &tmp0) |
| } |
| |
| feCSwap(&x2, &x3, swap) |
| feCSwap(&z2, &z3, swap) |
| |
| feInvert(&z2, &z2) |
| feMul(&x2, &x2, &z2) |
| feToBytes(out, &x2) |
| } |