| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package big |
| |
| import ( |
| "fmt" |
| "math" |
| "math/rand" |
| "runtime" |
| "testing" |
| ) |
| |
| // TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa |
| // behaves like float math.Sqrt. |
| func TestFloatSqrt64(t *testing.T) { |
| // This test fails for gccgo on 386 with a one ULP difference, |
| // presumably due to the use of extended precision floating |
| // point. |
| if runtime.Compiler == "gccgo" && runtime.GOARCH == "386" { |
| t.Skip("skipping on gccgo for 386; gets a one ULP difference") |
| } |
| |
| for i := 0; i < 1e5; i++ { |
| if i == 1e2 && testing.Short() { |
| break |
| } |
| r := rand.Float64() |
| |
| got := new(Float).SetPrec(53) |
| got.Sqrt(NewFloat(r)) |
| want := NewFloat(math.Sqrt(r)) |
| if got.Cmp(want) != 0 { |
| t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want) |
| } |
| } |
| } |
| |
| func TestFloatSqrt(t *testing.T) { |
| for _, test := range []struct { |
| x string |
| want string |
| }{ |
| // Test values were generated on Wolfram Alpha using query |
| // 'sqrt(N) to 350 digits' |
| // 350 decimal digits give up to 1000 binary digits. |
| {"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"}, |
| {"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"}, |
| {"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"}, |
| {"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"}, |
| {"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"}, |
| {"4.0", "2.0"}, |
| |
| {"1p512", "1p256"}, |
| {"4p1024", "2p512"}, |
| {"9p2048", "3p1024"}, |
| |
| {"1p-1024", "1p-512"}, |
| {"4p-2048", "2p-1024"}, |
| {"9p-4096", "3p-2048"}, |
| } { |
| for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} { |
| x := new(Float).SetPrec(prec) |
| x.Parse(test.x, 10) |
| |
| got := new(Float).SetPrec(prec).Sqrt(x) |
| want := new(Float).SetPrec(prec) |
| want.Parse(test.want, 10) |
| if got.Cmp(want) != 0 { |
| t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g", |
| prec, test.x, got, want) |
| } |
| |
| // Square test. |
| // If got holds the square root of x to precision p, then |
| // got = √x + k |
| // for some k such that |k| < 2**(-p). Thus, |
| // got² = (√x + k)² = x + 2k√n + k² |
| // and the error must satisfy |
| // err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n |
| // Ignoring the k² term for simplicity. |
| |
| // err = |got² - x| |
| // (but do intermediate steps with 32 guard digits to |
| // avoid introducing spurious rounding-related errors) |
| sq := new(Float).SetPrec(prec+32).Mul(got, got) |
| diff := new(Float).Sub(sq, x) |
| err := diff.Abs(diff).SetPrec(prec) |
| |
| // maxErr = 2**(-p+1)*√x |
| one := new(Float).SetPrec(prec).SetInt64(1) |
| maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got) |
| |
| if err.Cmp(maxErr) >= 0 { |
| t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g", |
| prec, test.x, err, maxErr) |
| } |
| } |
| } |
| } |
| |
| func TestFloatSqrtSpecial(t *testing.T) { |
| for _, test := range []struct { |
| x *Float |
| want *Float |
| }{ |
| {NewFloat(+0), NewFloat(+0)}, |
| {NewFloat(-0), NewFloat(-0)}, |
| {NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))}, |
| } { |
| got := new(Float).Sqrt(test.x) |
| if got.neg != test.want.neg || got.form != test.want.form { |
| t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)", |
| test.x, got, got.neg, test.want, test.want.neg) |
| } |
| } |
| |
| } |
| |
| // Benchmarks |
| |
| func BenchmarkFloatSqrt(b *testing.B) { |
| for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} { |
| x := NewFloat(2) |
| z := new(Float).SetPrec(prec) |
| b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) { |
| b.ReportAllocs() |
| for n := 0; n < b.N; n++ { |
| z.Sqrt(x) |
| } |
| }) |
| } |
| } |