| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package image implements a basic 2-D image library. | 
 | // | 
 | // The fundamental interface is called Image. An Image contains colors, which | 
 | // are described in the image/color package. | 
 | // | 
 | // Values of the Image interface are created either by calling functions such | 
 | // as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing | 
 | // image data in a format such as GIF, JPEG or PNG. Decoding any particular | 
 | // image format requires the prior registration of a decoder function. | 
 | // Registration is typically automatic as a side effect of initializing that | 
 | // format's package so that, to decode a PNG image, it suffices to have | 
 | //	import _ "image/png" | 
 | // in a program's main package. The _ means to import a package purely for its | 
 | // initialization side effects. | 
 | // | 
 | // See "The Go image package" for more details: | 
 | // https://golang.org/doc/articles/image_package.html | 
 | package image | 
 |  | 
 | import ( | 
 | 	"image/color" | 
 | ) | 
 |  | 
 | // Config holds an image's color model and dimensions. | 
 | type Config struct { | 
 | 	ColorModel    color.Model | 
 | 	Width, Height int | 
 | } | 
 |  | 
 | // Image is a finite rectangular grid of color.Color values taken from a color | 
 | // model. | 
 | type Image interface { | 
 | 	// ColorModel returns the Image's color model. | 
 | 	ColorModel() color.Model | 
 | 	// Bounds returns the domain for which At can return non-zero color. | 
 | 	// The bounds do not necessarily contain the point (0, 0). | 
 | 	Bounds() Rectangle | 
 | 	// At returns the color of the pixel at (x, y). | 
 | 	// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. | 
 | 	// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. | 
 | 	At(x, y int) color.Color | 
 | } | 
 |  | 
 | // PalettedImage is an image whose colors may come from a limited palette. | 
 | // If m is a PalettedImage and m.ColorModel() returns a color.Palette p, | 
 | // then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's | 
 | // color model is not a color.Palette, then ColorIndexAt's behavior is | 
 | // undefined. | 
 | type PalettedImage interface { | 
 | 	// ColorIndexAt returns the palette index of the pixel at (x, y). | 
 | 	ColorIndexAt(x, y int) uint8 | 
 | 	Image | 
 | } | 
 |  | 
 | // RGBA is an in-memory image whose At method returns color.RGBA values. | 
 | type RGBA struct { | 
 | 	// Pix holds the image's pixels, in R, G, B, A order. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *RGBA) ColorModel() color.Model { return color.RGBAModel } | 
 |  | 
 | func (p *RGBA) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *RGBA) At(x, y int) color.Color { | 
 | 	return p.RGBAAt(x, y) | 
 | } | 
 |  | 
 | func (p *RGBA) RGBAAt(x, y int) color.RGBA { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.RGBA{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	return color.RGBA{s[0], s[1], s[2], s[3]} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *RGBA) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 | 
 | } | 
 |  | 
 | func (p *RGBA) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.RGBAModel.Convert(c).(color.RGBA) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c1.R | 
 | 	s[1] = c1.G | 
 | 	s[2] = c1.B | 
 | 	s[3] = c1.A | 
 | } | 
 |  | 
 | func (p *RGBA) SetRGBA(x, y int, c color.RGBA) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c.R | 
 | 	s[1] = c.G | 
 | 	s[2] = c.B | 
 | 	s[3] = c.A | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *RGBA) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &RGBA{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &RGBA{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *RGBA) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 3, p.Rect.Dx()*4 | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i += 4 { | 
 | 			if p.Pix[i] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewRGBA returns a new RGBA image with the given bounds. | 
 | func NewRGBA(r Rectangle) *RGBA { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	buf := make([]uint8, 4*w*h) | 
 | 	return &RGBA{buf, 4 * w, r} | 
 | } | 
 |  | 
 | // RGBA64 is an in-memory image whose At method returns color.RGBA64 values. | 
 | type RGBA64 struct { | 
 | 	// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model } | 
 |  | 
 | func (p *RGBA64) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *RGBA64) At(x, y int) color.Color { | 
 | 	return p.RGBA64At(x, y) | 
 | } | 
 |  | 
 | func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.RGBA64{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	return color.RGBA64{ | 
 | 		uint16(s[0])<<8 | uint16(s[1]), | 
 | 		uint16(s[2])<<8 | uint16(s[3]), | 
 | 		uint16(s[4])<<8 | uint16(s[5]), | 
 | 		uint16(s[6])<<8 | uint16(s[7]), | 
 | 	} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *RGBA64) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 | 
 | } | 
 |  | 
 | func (p *RGBA64) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.RGBA64Model.Convert(c).(color.RGBA64) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = uint8(c1.R >> 8) | 
 | 	s[1] = uint8(c1.R) | 
 | 	s[2] = uint8(c1.G >> 8) | 
 | 	s[3] = uint8(c1.G) | 
 | 	s[4] = uint8(c1.B >> 8) | 
 | 	s[5] = uint8(c1.B) | 
 | 	s[6] = uint8(c1.A >> 8) | 
 | 	s[7] = uint8(c1.A) | 
 | } | 
 |  | 
 | func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = uint8(c.R >> 8) | 
 | 	s[1] = uint8(c.R) | 
 | 	s[2] = uint8(c.G >> 8) | 
 | 	s[3] = uint8(c.G) | 
 | 	s[4] = uint8(c.B >> 8) | 
 | 	s[5] = uint8(c.B) | 
 | 	s[6] = uint8(c.A >> 8) | 
 | 	s[7] = uint8(c.A) | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *RGBA64) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &RGBA64{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &RGBA64{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *RGBA64) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 6, p.Rect.Dx()*8 | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i += 8 { | 
 | 			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewRGBA64 returns a new RGBA64 image with the given bounds. | 
 | func NewRGBA64(r Rectangle) *RGBA64 { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 8*w*h) | 
 | 	return &RGBA64{pix, 8 * w, r} | 
 | } | 
 |  | 
 | // NRGBA is an in-memory image whose At method returns color.NRGBA values. | 
 | type NRGBA struct { | 
 | 	// Pix holds the image's pixels, in R, G, B, A order. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel } | 
 |  | 
 | func (p *NRGBA) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *NRGBA) At(x, y int) color.Color { | 
 | 	return p.NRGBAAt(x, y) | 
 | } | 
 |  | 
 | func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.NRGBA{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	return color.NRGBA{s[0], s[1], s[2], s[3]} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *NRGBA) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 | 
 | } | 
 |  | 
 | func (p *NRGBA) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.NRGBAModel.Convert(c).(color.NRGBA) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c1.R | 
 | 	s[1] = c1.G | 
 | 	s[2] = c1.B | 
 | 	s[3] = c1.A | 
 | } | 
 |  | 
 | func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c.R | 
 | 	s[1] = c.G | 
 | 	s[2] = c.B | 
 | 	s[3] = c.A | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *NRGBA) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &NRGBA{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &NRGBA{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *NRGBA) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 3, p.Rect.Dx()*4 | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i += 4 { | 
 | 			if p.Pix[i] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewNRGBA returns a new NRGBA image with the given bounds. | 
 | func NewNRGBA(r Rectangle) *NRGBA { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 4*w*h) | 
 | 	return &NRGBA{pix, 4 * w, r} | 
 | } | 
 |  | 
 | // NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values. | 
 | type NRGBA64 struct { | 
 | 	// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model } | 
 |  | 
 | func (p *NRGBA64) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *NRGBA64) At(x, y int) color.Color { | 
 | 	return p.NRGBA64At(x, y) | 
 | } | 
 |  | 
 | func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.NRGBA64{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	return color.NRGBA64{ | 
 | 		uint16(s[0])<<8 | uint16(s[1]), | 
 | 		uint16(s[2])<<8 | uint16(s[3]), | 
 | 		uint16(s[4])<<8 | uint16(s[5]), | 
 | 		uint16(s[6])<<8 | uint16(s[7]), | 
 | 	} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *NRGBA64) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 | 
 | } | 
 |  | 
 | func (p *NRGBA64) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = uint8(c1.R >> 8) | 
 | 	s[1] = uint8(c1.R) | 
 | 	s[2] = uint8(c1.G >> 8) | 
 | 	s[3] = uint8(c1.G) | 
 | 	s[4] = uint8(c1.B >> 8) | 
 | 	s[5] = uint8(c1.B) | 
 | 	s[6] = uint8(c1.A >> 8) | 
 | 	s[7] = uint8(c1.A) | 
 | } | 
 |  | 
 | func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = uint8(c.R >> 8) | 
 | 	s[1] = uint8(c.R) | 
 | 	s[2] = uint8(c.G >> 8) | 
 | 	s[3] = uint8(c.G) | 
 | 	s[4] = uint8(c.B >> 8) | 
 | 	s[5] = uint8(c.B) | 
 | 	s[6] = uint8(c.A >> 8) | 
 | 	s[7] = uint8(c.A) | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *NRGBA64) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &NRGBA64{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &NRGBA64{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *NRGBA64) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 6, p.Rect.Dx()*8 | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i += 8 { | 
 | 			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewNRGBA64 returns a new NRGBA64 image with the given bounds. | 
 | func NewNRGBA64(r Rectangle) *NRGBA64 { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 8*w*h) | 
 | 	return &NRGBA64{pix, 8 * w, r} | 
 | } | 
 |  | 
 | // Alpha is an in-memory image whose At method returns color.Alpha values. | 
 | type Alpha struct { | 
 | 	// Pix holds the image's pixels, as alpha values. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *Alpha) ColorModel() color.Model { return color.AlphaModel } | 
 |  | 
 | func (p *Alpha) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *Alpha) At(x, y int) color.Color { | 
 | 	return p.AlphaAt(x, y) | 
 | } | 
 |  | 
 | func (p *Alpha) AlphaAt(x, y int) color.Alpha { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.Alpha{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return color.Alpha{p.Pix[i]} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *Alpha) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 | 
 | } | 
 |  | 
 | func (p *Alpha) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A | 
 | } | 
 |  | 
 | func (p *Alpha) SetAlpha(x, y int, c color.Alpha) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = c.A | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *Alpha) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &Alpha{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &Alpha{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *Alpha) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 0, p.Rect.Dx() | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i++ { | 
 | 			if p.Pix[i] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewAlpha returns a new Alpha image with the given bounds. | 
 | func NewAlpha(r Rectangle) *Alpha { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 1*w*h) | 
 | 	return &Alpha{pix, 1 * w, r} | 
 | } | 
 |  | 
 | // Alpha16 is an in-memory image whose At method returns color.Alpha16 values. | 
 | type Alpha16 struct { | 
 | 	// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model } | 
 |  | 
 | func (p *Alpha16) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *Alpha16) At(x, y int) color.Color { | 
 | 	return p.Alpha16At(x, y) | 
 | } | 
 |  | 
 | func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.Alpha16{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *Alpha16) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 | 
 | } | 
 |  | 
 | func (p *Alpha16) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.Alpha16Model.Convert(c).(color.Alpha16) | 
 | 	p.Pix[i+0] = uint8(c1.A >> 8) | 
 | 	p.Pix[i+1] = uint8(c1.A) | 
 | } | 
 |  | 
 | func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i+0] = uint8(c.A >> 8) | 
 | 	p.Pix[i+1] = uint8(c.A) | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *Alpha16) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &Alpha16{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &Alpha16{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *Alpha16) Opaque() bool { | 
 | 	if p.Rect.Empty() { | 
 | 		return true | 
 | 	} | 
 | 	i0, i1 := 0, p.Rect.Dx()*2 | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for i := i0; i < i1; i += 2 { | 
 | 			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { | 
 | 				return false | 
 | 			} | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewAlpha16 returns a new Alpha16 image with the given bounds. | 
 | func NewAlpha16(r Rectangle) *Alpha16 { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 2*w*h) | 
 | 	return &Alpha16{pix, 2 * w, r} | 
 | } | 
 |  | 
 | // Gray is an in-memory image whose At method returns color.Gray values. | 
 | type Gray struct { | 
 | 	// Pix holds the image's pixels, as gray values. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *Gray) ColorModel() color.Model { return color.GrayModel } | 
 |  | 
 | func (p *Gray) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *Gray) At(x, y int) color.Color { | 
 | 	return p.GrayAt(x, y) | 
 | } | 
 |  | 
 | func (p *Gray) GrayAt(x, y int) color.Gray { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.Gray{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return color.Gray{p.Pix[i]} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *Gray) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 | 
 | } | 
 |  | 
 | func (p *Gray) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y | 
 | } | 
 |  | 
 | func (p *Gray) SetGray(x, y int, c color.Gray) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = c.Y | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *Gray) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &Gray{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &Gray{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *Gray) Opaque() bool { | 
 | 	return true | 
 | } | 
 |  | 
 | // NewGray returns a new Gray image with the given bounds. | 
 | func NewGray(r Rectangle) *Gray { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 1*w*h) | 
 | 	return &Gray{pix, 1 * w, r} | 
 | } | 
 |  | 
 | // Gray16 is an in-memory image whose At method returns color.Gray16 values. | 
 | type Gray16 struct { | 
 | 	// Pix holds the image's pixels, as gray values in big-endian format. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *Gray16) ColorModel() color.Model { return color.Gray16Model } | 
 |  | 
 | func (p *Gray16) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *Gray16) At(x, y int) color.Color { | 
 | 	return p.Gray16At(x, y) | 
 | } | 
 |  | 
 | func (p *Gray16) Gray16At(x, y int) color.Gray16 { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.Gray16{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *Gray16) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 | 
 | } | 
 |  | 
 | func (p *Gray16) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.Gray16Model.Convert(c).(color.Gray16) | 
 | 	p.Pix[i+0] = uint8(c1.Y >> 8) | 
 | 	p.Pix[i+1] = uint8(c1.Y) | 
 | } | 
 |  | 
 | func (p *Gray16) SetGray16(x, y int, c color.Gray16) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i+0] = uint8(c.Y >> 8) | 
 | 	p.Pix[i+1] = uint8(c.Y) | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *Gray16) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &Gray16{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &Gray16{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *Gray16) Opaque() bool { | 
 | 	return true | 
 | } | 
 |  | 
 | // NewGray16 returns a new Gray16 image with the given bounds. | 
 | func NewGray16(r Rectangle) *Gray16 { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 2*w*h) | 
 | 	return &Gray16{pix, 2 * w, r} | 
 | } | 
 |  | 
 | // CMYK is an in-memory image whose At method returns color.CMYK values. | 
 | type CMYK struct { | 
 | 	// Pix holds the image's pixels, in C, M, Y, K order. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | } | 
 |  | 
 | func (p *CMYK) ColorModel() color.Model { return color.CMYKModel } | 
 |  | 
 | func (p *CMYK) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *CMYK) At(x, y int) color.Color { | 
 | 	return p.CMYKAt(x, y) | 
 | } | 
 |  | 
 | func (p *CMYK) CMYKAt(x, y int) color.CMYK { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return color.CMYK{} | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	return color.CMYK{s[0], s[1], s[2], s[3]} | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *CMYK) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 | 
 | } | 
 |  | 
 | func (p *CMYK) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	c1 := color.CMYKModel.Convert(c).(color.CMYK) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c1.C | 
 | 	s[1] = c1.M | 
 | 	s[2] = c1.Y | 
 | 	s[3] = c1.K | 
 | } | 
 |  | 
 | func (p *CMYK) SetCMYK(x, y int, c color.CMYK) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 | 
 | 	s[0] = c.C | 
 | 	s[1] = c.M | 
 | 	s[2] = c.Y | 
 | 	s[3] = c.K | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *CMYK) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &CMYK{} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &CMYK{ | 
 | 		Pix:    p.Pix[i:], | 
 | 		Stride: p.Stride, | 
 | 		Rect:   r, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *CMYK) Opaque() bool { | 
 | 	return true | 
 | } | 
 |  | 
 | // NewCMYK returns a new CMYK image with the given bounds. | 
 | func NewCMYK(r Rectangle) *CMYK { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	buf := make([]uint8, 4*w*h) | 
 | 	return &CMYK{buf, 4 * w, r} | 
 | } | 
 |  | 
 | // Paletted is an in-memory image of uint8 indices into a given palette. | 
 | type Paletted struct { | 
 | 	// Pix holds the image's pixels, as palette indices. The pixel at | 
 | 	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. | 
 | 	Pix []uint8 | 
 | 	// Stride is the Pix stride (in bytes) between vertically adjacent pixels. | 
 | 	Stride int | 
 | 	// Rect is the image's bounds. | 
 | 	Rect Rectangle | 
 | 	// Palette is the image's palette. | 
 | 	Palette color.Palette | 
 | } | 
 |  | 
 | func (p *Paletted) ColorModel() color.Model { return p.Palette } | 
 |  | 
 | func (p *Paletted) Bounds() Rectangle { return p.Rect } | 
 |  | 
 | func (p *Paletted) At(x, y int) color.Color { | 
 | 	if len(p.Palette) == 0 { | 
 | 		return nil | 
 | 	} | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return p.Palette[0] | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return p.Palette[p.Pix[i]] | 
 | } | 
 |  | 
 | // PixOffset returns the index of the first element of Pix that corresponds to | 
 | // the pixel at (x, y). | 
 | func (p *Paletted) PixOffset(x, y int) int { | 
 | 	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 | 
 | } | 
 |  | 
 | func (p *Paletted) Set(x, y int, c color.Color) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = uint8(p.Palette.Index(c)) | 
 | } | 
 |  | 
 | func (p *Paletted) ColorIndexAt(x, y int) uint8 { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return 0 | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	return p.Pix[i] | 
 | } | 
 |  | 
 | func (p *Paletted) SetColorIndex(x, y int, index uint8) { | 
 | 	if !(Point{x, y}.In(p.Rect)) { | 
 | 		return | 
 | 	} | 
 | 	i := p.PixOffset(x, y) | 
 | 	p.Pix[i] = index | 
 | } | 
 |  | 
 | // SubImage returns an image representing the portion of the image p visible | 
 | // through r. The returned value shares pixels with the original image. | 
 | func (p *Paletted) SubImage(r Rectangle) Image { | 
 | 	r = r.Intersect(p.Rect) | 
 | 	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside | 
 | 	// either r1 or r2 if the intersection is empty. Without explicitly checking for | 
 | 	// this, the Pix[i:] expression below can panic. | 
 | 	if r.Empty() { | 
 | 		return &Paletted{ | 
 | 			Palette: p.Palette, | 
 | 		} | 
 | 	} | 
 | 	i := p.PixOffset(r.Min.X, r.Min.Y) | 
 | 	return &Paletted{ | 
 | 		Pix:     p.Pix[i:], | 
 | 		Stride:  p.Stride, | 
 | 		Rect:    p.Rect.Intersect(r), | 
 | 		Palette: p.Palette, | 
 | 	} | 
 | } | 
 |  | 
 | // Opaque scans the entire image and reports whether it is fully opaque. | 
 | func (p *Paletted) Opaque() bool { | 
 | 	var present [256]bool | 
 | 	i0, i1 := 0, p.Rect.Dx() | 
 | 	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { | 
 | 		for _, c := range p.Pix[i0:i1] { | 
 | 			present[c] = true | 
 | 		} | 
 | 		i0 += p.Stride | 
 | 		i1 += p.Stride | 
 | 	} | 
 | 	for i, c := range p.Palette { | 
 | 		if !present[i] { | 
 | 			continue | 
 | 		} | 
 | 		_, _, _, a := c.RGBA() | 
 | 		if a != 0xffff { | 
 | 			return false | 
 | 		} | 
 | 	} | 
 | 	return true | 
 | } | 
 |  | 
 | // NewPaletted returns a new Paletted image with the given width, height and | 
 | // palette. | 
 | func NewPaletted(r Rectangle, p color.Palette) *Paletted { | 
 | 	w, h := r.Dx(), r.Dy() | 
 | 	pix := make([]uint8, 1*w*h) | 
 | 	return &Paletted{pix, 1 * w, r, p} | 
 | } |