| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <pthread.h> |
| #include <unistd.h> |
| |
| #include "config.h" |
| |
| #ifdef HAVE_DL_ITERATE_PHDR |
| #include <link.h> |
| #endif |
| |
| #include "runtime.h" |
| #include "arch.h" |
| #include "defs.h" |
| #include "malloc.h" |
| #include "race.h" |
| #include "go-type.h" |
| #include "go-defer.h" |
| |
| #ifdef USING_SPLIT_STACK |
| |
| /* FIXME: These are not declared anywhere. */ |
| |
| extern void __splitstack_getcontext(void *context[10]); |
| |
| extern void __splitstack_setcontext(void *context[10]); |
| |
| extern void *__splitstack_makecontext(size_t, void *context[10], size_t *); |
| |
| extern void * __splitstack_resetcontext(void *context[10], size_t *); |
| |
| extern void *__splitstack_find(void *, void *, size_t *, void **, void **, |
| void **); |
| |
| extern void __splitstack_block_signals (int *, int *); |
| |
| extern void __splitstack_block_signals_context (void *context[10], int *, |
| int *); |
| |
| #endif |
| |
| #ifndef PTHREAD_STACK_MIN |
| # define PTHREAD_STACK_MIN 8192 |
| #endif |
| |
| #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK) |
| # define StackMin PTHREAD_STACK_MIN |
| #else |
| # define StackMin 2 * 1024 * 1024 |
| #endif |
| |
| uintptr runtime_stacks_sys; |
| |
| static void schedule(G*); |
| |
| static void gtraceback(G*); |
| |
| typedef struct Sched Sched; |
| |
| M runtime_m0; |
| G runtime_g0; // idle goroutine for m0 |
| |
| #ifdef __rtems__ |
| #define __thread |
| #endif |
| |
| static __thread G *g; |
| static __thread M *m; |
| |
| #ifndef SETCONTEXT_CLOBBERS_TLS |
| |
| static inline void |
| initcontext(void) |
| { |
| } |
| |
| static inline void |
| fixcontext(ucontext_t *c __attribute__ ((unused))) |
| { |
| } |
| |
| #else |
| |
| # if defined(__x86_64__) && defined(__sun__) |
| |
| // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs |
| // register to that of the thread which called getcontext. The effect |
| // is that the address of all __thread variables changes. This bug |
| // also affects pthread_self() and pthread_getspecific. We work |
| // around it by clobbering the context field directly to keep %fs the |
| // same. |
| |
| static __thread greg_t fs; |
| |
| static inline void |
| initcontext(void) |
| { |
| ucontext_t c; |
| |
| getcontext(&c); |
| fs = c.uc_mcontext.gregs[REG_FSBASE]; |
| } |
| |
| static inline void |
| fixcontext(ucontext_t* c) |
| { |
| c->uc_mcontext.gregs[REG_FSBASE] = fs; |
| } |
| |
| # elif defined(__NetBSD__) |
| |
| // NetBSD has a bug: setcontext clobbers tlsbase, we need to save |
| // and restore it ourselves. |
| |
| static __thread __greg_t tlsbase; |
| |
| static inline void |
| initcontext(void) |
| { |
| ucontext_t c; |
| |
| getcontext(&c); |
| tlsbase = c.uc_mcontext._mc_tlsbase; |
| } |
| |
| static inline void |
| fixcontext(ucontext_t* c) |
| { |
| c->uc_mcontext._mc_tlsbase = tlsbase; |
| } |
| |
| # else |
| |
| # error unknown case for SETCONTEXT_CLOBBERS_TLS |
| |
| # endif |
| |
| #endif |
| |
| // We can not always refer to the TLS variables directly. The |
| // compiler will call tls_get_addr to get the address of the variable, |
| // and it may hold it in a register across a call to schedule. When |
| // we get back from the call we may be running in a different thread, |
| // in which case the register now points to the TLS variable for a |
| // different thread. We use non-inlinable functions to avoid this |
| // when necessary. |
| |
| G* runtime_g(void) __attribute__ ((noinline, no_split_stack)); |
| |
| G* |
| runtime_g(void) |
| { |
| return g; |
| } |
| |
| M* runtime_m(void) __attribute__ ((noinline, no_split_stack)); |
| |
| M* |
| runtime_m(void) |
| { |
| return m; |
| } |
| |
| int32 runtime_gcwaiting; |
| |
| G* runtime_allg; |
| G* runtime_lastg; |
| M* runtime_allm; |
| |
| int8* runtime_goos; |
| int32 runtime_ncpu; |
| |
| // The static TLS size. See runtime_newm. |
| static int tlssize; |
| |
| #ifdef HAVE_DL_ITERATE_PHDR |
| |
| // Called via dl_iterate_phdr. |
| |
| static int |
| addtls(struct dl_phdr_info* info, size_t size __attribute__ ((unused)), void *data) |
| { |
| size_t *total = (size_t *)data; |
| unsigned int i; |
| |
| for(i = 0; i < info->dlpi_phnum; ++i) { |
| if(info->dlpi_phdr[i].p_type == PT_TLS) |
| *total += info->dlpi_phdr[i].p_memsz; |
| } |
| return 0; |
| } |
| |
| // Set the total TLS size. |
| |
| static void |
| inittlssize() |
| { |
| size_t total = 0; |
| |
| dl_iterate_phdr(addtls, (void *)&total); |
| tlssize = total; |
| } |
| |
| #else |
| |
| static void |
| inittlssize() |
| { |
| } |
| |
| #endif |
| |
| // Go scheduler |
| // |
| // The go scheduler's job is to match ready-to-run goroutines (`g's) |
| // with waiting-for-work schedulers (`m's). If there are ready g's |
| // and no waiting m's, ready() will start a new m running in a new |
| // OS thread, so that all ready g's can run simultaneously, up to a limit. |
| // For now, m's never go away. |
| // |
| // By default, Go keeps only one kernel thread (m) running user code |
| // at a single time; other threads may be blocked in the operating system. |
| // Setting the environment variable $GOMAXPROCS or calling |
| // runtime.GOMAXPROCS() will change the number of user threads |
| // allowed to execute simultaneously. $GOMAXPROCS is thus an |
| // approximation of the maximum number of cores to use. |
| // |
| // Even a program that can run without deadlock in a single process |
| // might use more m's if given the chance. For example, the prime |
| // sieve will use as many m's as there are primes (up to runtime_sched.mmax), |
| // allowing different stages of the pipeline to execute in parallel. |
| // We could revisit this choice, only kicking off new m's for blocking |
| // system calls, but that would limit the amount of parallel computation |
| // that go would try to do. |
| // |
| // In general, one could imagine all sorts of refinements to the |
| // scheduler, but the goal now is just to get something working on |
| // Linux and OS X. |
| |
| struct Sched { |
| Lock; |
| |
| G *gfree; // available g's (status == Gdead) |
| int64 goidgen; |
| |
| G *ghead; // g's waiting to run |
| G *gtail; |
| int32 gwait; // number of g's waiting to run |
| int32 gcount; // number of g's that are alive |
| int32 grunning; // number of g's running on cpu or in syscall |
| |
| M *mhead; // m's waiting for work |
| int32 mwait; // number of m's waiting for work |
| int32 mcount; // number of m's that have been created |
| |
| volatile uint32 atomic; // atomic scheduling word (see below) |
| |
| int32 profilehz; // cpu profiling rate |
| |
| bool init; // running initialization |
| bool lockmain; // init called runtime.LockOSThread |
| |
| Note stopped; // one g can set waitstop and wait here for m's to stop |
| }; |
| |
| // The atomic word in sched is an atomic uint32 that |
| // holds these fields. |
| // |
| // [15 bits] mcpu number of m's executing on cpu |
| // [15 bits] mcpumax max number of m's allowed on cpu |
| // [1 bit] waitstop some g is waiting on stopped |
| // [1 bit] gwaiting gwait != 0 |
| // |
| // These fields are the information needed by entersyscall |
| // and exitsyscall to decide whether to coordinate with the |
| // scheduler. Packing them into a single machine word lets |
| // them use a fast path with a single atomic read/write and |
| // no lock/unlock. This greatly reduces contention in |
| // syscall- or cgo-heavy multithreaded programs. |
| // |
| // Except for entersyscall and exitsyscall, the manipulations |
| // to these fields only happen while holding the schedlock, |
| // so the routines holding schedlock only need to worry about |
| // what entersyscall and exitsyscall do, not the other routines |
| // (which also use the schedlock). |
| // |
| // In particular, entersyscall and exitsyscall only read mcpumax, |
| // waitstop, and gwaiting. They never write them. Thus, writes to those |
| // fields can be done (holding schedlock) without fear of write conflicts. |
| // There may still be logic conflicts: for example, the set of waitstop must |
| // be conditioned on mcpu >= mcpumax or else the wait may be a |
| // spurious sleep. The Promela model in proc.p verifies these accesses. |
| enum { |
| mcpuWidth = 15, |
| mcpuMask = (1<<mcpuWidth) - 1, |
| mcpuShift = 0, |
| mcpumaxShift = mcpuShift + mcpuWidth, |
| waitstopShift = mcpumaxShift + mcpuWidth, |
| gwaitingShift = waitstopShift+1, |
| |
| // The max value of GOMAXPROCS is constrained |
| // by the max value we can store in the bit fields |
| // of the atomic word. Reserve a few high values |
| // so that we can detect accidental decrement |
| // beyond zero. |
| maxgomaxprocs = mcpuMask - 10, |
| }; |
| |
| #define atomic_mcpu(v) (((v)>>mcpuShift)&mcpuMask) |
| #define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask) |
| #define atomic_waitstop(v) (((v)>>waitstopShift)&1) |
| #define atomic_gwaiting(v) (((v)>>gwaitingShift)&1) |
| |
| Sched runtime_sched; |
| int32 runtime_gomaxprocs; |
| bool runtime_singleproc; |
| |
| static bool canaddmcpu(void); |
| |
| // An m that is waiting for notewakeup(&m->havenextg). This may |
| // only be accessed while the scheduler lock is held. This is used to |
| // minimize the number of times we call notewakeup while the scheduler |
| // lock is held, since the m will normally move quickly to lock the |
| // scheduler itself, producing lock contention. |
| static M* mwakeup; |
| |
| // Scheduling helpers. Sched must be locked. |
| static void gput(G*); // put/get on ghead/gtail |
| static G* gget(void); |
| static void mput(M*); // put/get on mhead |
| static M* mget(G*); |
| static void gfput(G*); // put/get on gfree |
| static G* gfget(void); |
| static void matchmg(void); // match m's to g's |
| static void readylocked(G*); // ready, but sched is locked |
| static void mnextg(M*, G*); |
| static void mcommoninit(M*); |
| |
| void |
| setmcpumax(uint32 n) |
| { |
| uint32 v, w; |
| |
| for(;;) { |
| v = runtime_sched.atomic; |
| w = v; |
| w &= ~(mcpuMask<<mcpumaxShift); |
| w |= n<<mcpumaxShift; |
| if(runtime_cas(&runtime_sched.atomic, v, w)) |
| break; |
| } |
| } |
| |
| // First function run by a new goroutine. This replaces gogocall. |
| static void |
| kickoff(void) |
| { |
| void (*fn)(void*); |
| |
| if(g->traceback != nil) |
| gtraceback(g); |
| |
| fn = (void (*)(void*))(g->entry); |
| fn(g->param); |
| runtime_goexit(); |
| } |
| |
| // Switch context to a different goroutine. This is like longjmp. |
| static void runtime_gogo(G*) __attribute__ ((noinline)); |
| static void |
| runtime_gogo(G* newg) |
| { |
| #ifdef USING_SPLIT_STACK |
| __splitstack_setcontext(&newg->stack_context[0]); |
| #endif |
| g = newg; |
| newg->fromgogo = true; |
| fixcontext(&newg->context); |
| setcontext(&newg->context); |
| runtime_throw("gogo setcontext returned"); |
| } |
| |
| // Save context and call fn passing g as a parameter. This is like |
| // setjmp. Because getcontext always returns 0, unlike setjmp, we use |
| // g->fromgogo as a code. It will be true if we got here via |
| // setcontext. g == nil the first time this is called in a new m. |
| static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline)); |
| static void |
| runtime_mcall(void (*pfn)(G*)) |
| { |
| M *mp; |
| G *gp; |
| #ifndef USING_SPLIT_STACK |
| int i; |
| #endif |
| |
| // Ensure that all registers are on the stack for the garbage |
| // collector. |
| __builtin_unwind_init(); |
| |
| mp = m; |
| gp = g; |
| if(gp == mp->g0) |
| runtime_throw("runtime: mcall called on m->g0 stack"); |
| |
| if(gp != nil) { |
| |
| #ifdef USING_SPLIT_STACK |
| __splitstack_getcontext(&g->stack_context[0]); |
| #else |
| gp->gcnext_sp = &i; |
| #endif |
| gp->fromgogo = false; |
| getcontext(&gp->context); |
| |
| // When we return from getcontext, we may be running |
| // in a new thread. That means that m and g may have |
| // changed. They are global variables so we will |
| // reload them, but the addresses of m and g may be |
| // cached in our local stack frame, and those |
| // addresses may be wrong. Call functions to reload |
| // the values for this thread. |
| mp = runtime_m(); |
| gp = runtime_g(); |
| |
| if(gp->traceback != nil) |
| gtraceback(gp); |
| } |
| if (gp == nil || !gp->fromgogo) { |
| #ifdef USING_SPLIT_STACK |
| __splitstack_setcontext(&mp->g0->stack_context[0]); |
| #endif |
| mp->g0->entry = (byte*)pfn; |
| mp->g0->param = gp; |
| |
| // It's OK to set g directly here because this case |
| // can not occur if we got here via a setcontext to |
| // the getcontext call just above. |
| g = mp->g0; |
| |
| fixcontext(&mp->g0->context); |
| setcontext(&mp->g0->context); |
| runtime_throw("runtime: mcall function returned"); |
| } |
| } |
| |
| // Keep trace of scavenger's goroutine for deadlock detection. |
| static G *scvg; |
| |
| // The bootstrap sequence is: |
| // |
| // call osinit |
| // call schedinit |
| // make & queue new G |
| // call runtime_mstart |
| // |
| // The new G calls runtime_main. |
| void |
| runtime_schedinit(void) |
| { |
| int32 n; |
| const byte *p; |
| |
| m = &runtime_m0; |
| g = &runtime_g0; |
| m->g0 = g; |
| m->curg = g; |
| g->m = m; |
| |
| initcontext(); |
| inittlssize(); |
| |
| m->nomemprof++; |
| runtime_mallocinit(); |
| mcommoninit(m); |
| |
| runtime_goargs(); |
| runtime_goenvs(); |
| |
| // For debugging: |
| // Allocate internal symbol table representation now, |
| // so that we don't need to call malloc when we crash. |
| // runtime_findfunc(0); |
| |
| runtime_gomaxprocs = 1; |
| p = runtime_getenv("GOMAXPROCS"); |
| if(p != nil && (n = runtime_atoi(p)) != 0) { |
| if(n > maxgomaxprocs) |
| n = maxgomaxprocs; |
| runtime_gomaxprocs = n; |
| } |
| // wait for the main goroutine to start before taking |
| // GOMAXPROCS into account. |
| setmcpumax(1); |
| runtime_singleproc = runtime_gomaxprocs == 1; |
| |
| canaddmcpu(); // mcpu++ to account for bootstrap m |
| m->helpgc = 1; // flag to tell schedule() to mcpu-- |
| runtime_sched.grunning++; |
| |
| // Can not enable GC until all roots are registered. |
| // mstats.enablegc = 1; |
| m->nomemprof--; |
| |
| if(raceenabled) |
| runtime_raceinit(); |
| } |
| |
| extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main"); |
| extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main"); |
| |
| // The main goroutine. |
| void |
| runtime_main(void) |
| { |
| // Lock the main goroutine onto this, the main OS thread, |
| // during initialization. Most programs won't care, but a few |
| // do require certain calls to be made by the main thread. |
| // Those can arrange for main.main to run in the main thread |
| // by calling runtime.LockOSThread during initialization |
| // to preserve the lock. |
| runtime_LockOSThread(); |
| // From now on, newgoroutines may use non-main threads. |
| setmcpumax(runtime_gomaxprocs); |
| runtime_sched.init = true; |
| scvg = __go_go(runtime_MHeap_Scavenger, nil); |
| scvg->issystem = true; |
| main_init(); |
| runtime_sched.init = false; |
| if(!runtime_sched.lockmain) |
| runtime_UnlockOSThread(); |
| |
| // For gccgo we have to wait until after main is initialized |
| // to enable GC, because initializing main registers the GC |
| // roots. |
| mstats.enablegc = 1; |
| |
| // The deadlock detection has false negatives. |
| // Let scvg start up, to eliminate the false negative |
| // for the trivial program func main() { select{} }. |
| runtime_gosched(); |
| |
| main_main(); |
| if(raceenabled) |
| runtime_racefini(); |
| runtime_exit(0); |
| for(;;) |
| *(int32*)0 = 0; |
| } |
| |
| // Lock the scheduler. |
| static void |
| schedlock(void) |
| { |
| runtime_lock(&runtime_sched); |
| } |
| |
| // Unlock the scheduler. |
| static void |
| schedunlock(void) |
| { |
| M *mp; |
| |
| mp = mwakeup; |
| mwakeup = nil; |
| runtime_unlock(&runtime_sched); |
| if(mp != nil) |
| runtime_notewakeup(&mp->havenextg); |
| } |
| |
| void |
| runtime_goexit(void) |
| { |
| g->status = Gmoribund; |
| runtime_gosched(); |
| } |
| |
| void |
| runtime_goroutineheader(G *gp) |
| { |
| const char *status; |
| |
| switch(gp->status) { |
| case Gidle: |
| status = "idle"; |
| break; |
| case Grunnable: |
| status = "runnable"; |
| break; |
| case Grunning: |
| status = "running"; |
| break; |
| case Gsyscall: |
| status = "syscall"; |
| break; |
| case Gwaiting: |
| if(gp->waitreason) |
| status = gp->waitreason; |
| else |
| status = "waiting"; |
| break; |
| case Gmoribund: |
| status = "moribund"; |
| break; |
| default: |
| status = "???"; |
| break; |
| } |
| runtime_printf("goroutine %D [%s]:\n", gp->goid, status); |
| } |
| |
| void |
| runtime_goroutinetrailer(G *g) |
| { |
| if(g != nil && g->gopc != 0 && g->goid != 1) { |
| String fn; |
| String file; |
| intgo line; |
| |
| if(__go_file_line(g->gopc - 1, &fn, &file, &line)) { |
| runtime_printf("created by %S\n", fn); |
| runtime_printf("\t%S:%D\n", file, (int64) line); |
| } |
| } |
| } |
| |
| struct Traceback |
| { |
| G* gp; |
| Location locbuf[100]; |
| int32 c; |
| }; |
| |
| void |
| runtime_tracebackothers(G * volatile me) |
| { |
| G * volatile gp; |
| Traceback tb; |
| int32 traceback; |
| |
| tb.gp = me; |
| traceback = runtime_gotraceback(); |
| for(gp = runtime_allg; gp != nil; gp = gp->alllink) { |
| if(gp == me || gp->status == Gdead) |
| continue; |
| if(gp->issystem && traceback < 2) |
| continue; |
| runtime_printf("\n"); |
| runtime_goroutineheader(gp); |
| |
| // Our only mechanism for doing a stack trace is |
| // _Unwind_Backtrace. And that only works for the |
| // current thread, not for other random goroutines. |
| // So we need to switch context to the goroutine, get |
| // the backtrace, and then switch back. |
| |
| // This means that if g is running or in a syscall, we |
| // can't reliably print a stack trace. FIXME. |
| if(gp->status == Gsyscall || gp->status == Grunning) { |
| runtime_printf("no stack trace available\n"); |
| runtime_goroutinetrailer(gp); |
| continue; |
| } |
| |
| gp->traceback = &tb; |
| |
| #ifdef USING_SPLIT_STACK |
| __splitstack_getcontext(&me->stack_context[0]); |
| #endif |
| getcontext(&me->context); |
| |
| if(gp->traceback != nil) { |
| runtime_gogo(gp); |
| } |
| |
| runtime_printtrace(tb.locbuf, tb.c, false); |
| runtime_goroutinetrailer(gp); |
| } |
| } |
| |
| // Do a stack trace of gp, and then restore the context to |
| // gp->dotraceback. |
| |
| static void |
| gtraceback(G* gp) |
| { |
| Traceback* traceback; |
| |
| traceback = gp->traceback; |
| gp->traceback = nil; |
| traceback->c = runtime_callers(1, traceback->locbuf, |
| sizeof traceback->locbuf / sizeof traceback->locbuf[0]); |
| runtime_gogo(traceback->gp); |
| } |
| |
| // Mark this g as m's idle goroutine. |
| // This functionality might be used in environments where programs |
| // are limited to a single thread, to simulate a select-driven |
| // network server. It is not exposed via the standard runtime API. |
| void |
| runtime_idlegoroutine(void) |
| { |
| if(g->idlem != nil) |
| runtime_throw("g is already an idle goroutine"); |
| g->idlem = m; |
| } |
| |
| static void |
| mcommoninit(M *mp) |
| { |
| mp->id = runtime_sched.mcount++; |
| mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks(); |
| |
| if(mp->mcache == nil) |
| mp->mcache = runtime_allocmcache(); |
| |
| runtime_callers(1, mp->createstack, nelem(mp->createstack)); |
| |
| // Add to runtime_allm so garbage collector doesn't free m |
| // when it is just in a register or thread-local storage. |
| mp->alllink = runtime_allm; |
| // runtime_NumCgoCall() iterates over allm w/o schedlock, |
| // so we need to publish it safely. |
| runtime_atomicstorep(&runtime_allm, mp); |
| } |
| |
| // Try to increment mcpu. Report whether succeeded. |
| static bool |
| canaddmcpu(void) |
| { |
| uint32 v; |
| |
| for(;;) { |
| v = runtime_sched.atomic; |
| if(atomic_mcpu(v) >= atomic_mcpumax(v)) |
| return 0; |
| if(runtime_cas(&runtime_sched.atomic, v, v+(1<<mcpuShift))) |
| return 1; |
| } |
| } |
| |
| // Put on `g' queue. Sched must be locked. |
| static void |
| gput(G *gp) |
| { |
| M *mp; |
| |
| // If g is wired, hand it off directly. |
| if((mp = gp->lockedm) != nil && canaddmcpu()) { |
| mnextg(mp, gp); |
| return; |
| } |
| |
| // If g is the idle goroutine for an m, hand it off. |
| if(gp->idlem != nil) { |
| if(gp->idlem->idleg != nil) { |
| runtime_printf("m%d idle out of sync: g%D g%D\n", |
| gp->idlem->id, |
| gp->idlem->idleg->goid, gp->goid); |
| runtime_throw("runtime: double idle"); |
| } |
| gp->idlem->idleg = gp; |
| return; |
| } |
| |
| gp->schedlink = nil; |
| if(runtime_sched.ghead == nil) |
| runtime_sched.ghead = gp; |
| else |
| runtime_sched.gtail->schedlink = gp; |
| runtime_sched.gtail = gp; |
| |
| // increment gwait. |
| // if it transitions to nonzero, set atomic gwaiting bit. |
| if(runtime_sched.gwait++ == 0) |
| runtime_xadd(&runtime_sched.atomic, 1<<gwaitingShift); |
| } |
| |
| // Report whether gget would return something. |
| static bool |
| haveg(void) |
| { |
| return runtime_sched.ghead != nil || m->idleg != nil; |
| } |
| |
| // Get from `g' queue. Sched must be locked. |
| static G* |
| gget(void) |
| { |
| G *gp; |
| |
| gp = runtime_sched.ghead; |
| if(gp) { |
| runtime_sched.ghead = gp->schedlink; |
| if(runtime_sched.ghead == nil) |
| runtime_sched.gtail = nil; |
| // decrement gwait. |
| // if it transitions to zero, clear atomic gwaiting bit. |
| if(--runtime_sched.gwait == 0) |
| runtime_xadd(&runtime_sched.atomic, -1<<gwaitingShift); |
| } else if(m->idleg != nil) { |
| gp = m->idleg; |
| m->idleg = nil; |
| } |
| return gp; |
| } |
| |
| // Put on `m' list. Sched must be locked. |
| static void |
| mput(M *mp) |
| { |
| mp->schedlink = runtime_sched.mhead; |
| runtime_sched.mhead = mp; |
| runtime_sched.mwait++; |
| } |
| |
| // Get an `m' to run `g'. Sched must be locked. |
| static M* |
| mget(G *gp) |
| { |
| M *mp; |
| |
| // if g has its own m, use it. |
| if(gp && (mp = gp->lockedm) != nil) |
| return mp; |
| |
| // otherwise use general m pool. |
| if((mp = runtime_sched.mhead) != nil) { |
| runtime_sched.mhead = mp->schedlink; |
| runtime_sched.mwait--; |
| } |
| return mp; |
| } |
| |
| // Mark g ready to run. |
| void |
| runtime_ready(G *gp) |
| { |
| schedlock(); |
| readylocked(gp); |
| schedunlock(); |
| } |
| |
| // Mark g ready to run. Sched is already locked. |
| // G might be running already and about to stop. |
| // The sched lock protects g->status from changing underfoot. |
| static void |
| readylocked(G *gp) |
| { |
| if(gp->m) { |
| // Running on another machine. |
| // Ready it when it stops. |
| gp->readyonstop = 1; |
| return; |
| } |
| |
| // Mark runnable. |
| if(gp->status == Grunnable || gp->status == Grunning) { |
| runtime_printf("goroutine %D has status %d\n", gp->goid, gp->status); |
| runtime_throw("bad g->status in ready"); |
| } |
| gp->status = Grunnable; |
| |
| gput(gp); |
| matchmg(); |
| } |
| |
| // Same as readylocked but a different symbol so that |
| // debuggers can set a breakpoint here and catch all |
| // new goroutines. |
| static void |
| newprocreadylocked(G *gp) |
| { |
| readylocked(gp); |
| } |
| |
| // Pass g to m for running. |
| // Caller has already incremented mcpu. |
| static void |
| mnextg(M *mp, G *gp) |
| { |
| runtime_sched.grunning++; |
| mp->nextg = gp; |
| if(mp->waitnextg) { |
| mp->waitnextg = 0; |
| if(mwakeup != nil) |
| runtime_notewakeup(&mwakeup->havenextg); |
| mwakeup = mp; |
| } |
| } |
| |
| // Get the next goroutine that m should run. |
| // Sched must be locked on entry, is unlocked on exit. |
| // Makes sure that at most $GOMAXPROCS g's are |
| // running on cpus (not in system calls) at any given time. |
| static G* |
| nextgandunlock(void) |
| { |
| G *gp; |
| uint32 v; |
| |
| top: |
| if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs) |
| runtime_throw("negative mcpu"); |
| |
| // If there is a g waiting as m->nextg, the mcpu++ |
| // happened before it was passed to mnextg. |
| if(m->nextg != nil) { |
| gp = m->nextg; |
| m->nextg = nil; |
| schedunlock(); |
| return gp; |
| } |
| |
| if(m->lockedg != nil) { |
| // We can only run one g, and it's not available. |
| // Make sure some other cpu is running to handle |
| // the ordinary run queue. |
| if(runtime_sched.gwait != 0) { |
| matchmg(); |
| // m->lockedg might have been on the queue. |
| if(m->nextg != nil) { |
| gp = m->nextg; |
| m->nextg = nil; |
| schedunlock(); |
| return gp; |
| } |
| } |
| } else { |
| // Look for work on global queue. |
| while(haveg() && canaddmcpu()) { |
| gp = gget(); |
| if(gp == nil) |
| runtime_throw("gget inconsistency"); |
| |
| if(gp->lockedm) { |
| mnextg(gp->lockedm, gp); |
| continue; |
| } |
| runtime_sched.grunning++; |
| schedunlock(); |
| return gp; |
| } |
| |
| // The while loop ended either because the g queue is empty |
| // or because we have maxed out our m procs running go |
| // code (mcpu >= mcpumax). We need to check that |
| // concurrent actions by entersyscall/exitsyscall cannot |
| // invalidate the decision to end the loop. |
| // |
| // We hold the sched lock, so no one else is manipulating the |
| // g queue or changing mcpumax. Entersyscall can decrement |
| // mcpu, but if does so when there is something on the g queue, |
| // the gwait bit will be set, so entersyscall will take the slow path |
| // and use the sched lock. So it cannot invalidate our decision. |
| // |
| // Wait on global m queue. |
| mput(m); |
| } |
| |
| // Look for deadlock situation. |
| // There is a race with the scavenger that causes false negatives: |
| // if the scavenger is just starting, then we have |
| // scvg != nil && grunning == 0 && gwait == 0 |
| // and we do not detect a deadlock. It is possible that we should |
| // add that case to the if statement here, but it is too close to Go 1 |
| // to make such a subtle change. Instead, we work around the |
| // false negative in trivial programs by calling runtime.gosched |
| // from the main goroutine just before main.main. |
| // See runtime_main above. |
| // |
| // On a related note, it is also possible that the scvg == nil case is |
| // wrong and should include gwait, but that does not happen in |
| // standard Go programs, which all start the scavenger. |
| // |
| if((scvg == nil && runtime_sched.grunning == 0) || |
| (scvg != nil && runtime_sched.grunning == 1 && runtime_sched.gwait == 0 && |
| (scvg->status == Grunning || scvg->status == Gsyscall))) { |
| m->throwing = -1; // do not dump full stacks |
| runtime_throw("all goroutines are asleep - deadlock!"); |
| } |
| |
| m->nextg = nil; |
| m->waitnextg = 1; |
| runtime_noteclear(&m->havenextg); |
| |
| // Stoptheworld is waiting for all but its cpu to go to stop. |
| // Entersyscall might have decremented mcpu too, but if so |
| // it will see the waitstop and take the slow path. |
| // Exitsyscall never increments mcpu beyond mcpumax. |
| v = runtime_atomicload(&runtime_sched.atomic); |
| if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { |
| // set waitstop = 0 (known to be 1) |
| runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift); |
| runtime_notewakeup(&runtime_sched.stopped); |
| } |
| schedunlock(); |
| |
| runtime_notesleep(&m->havenextg); |
| if(m->helpgc) { |
| runtime_gchelper(); |
| m->helpgc = 0; |
| runtime_lock(&runtime_sched); |
| goto top; |
| } |
| if((gp = m->nextg) == nil) |
| runtime_throw("bad m->nextg in nextgoroutine"); |
| m->nextg = nil; |
| return gp; |
| } |
| |
| int32 |
| runtime_gcprocs(void) |
| { |
| int32 n; |
| |
| // Figure out how many CPUs to use during GC. |
| // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. |
| n = runtime_gomaxprocs; |
| if(n > runtime_ncpu) |
| n = runtime_ncpu > 0 ? runtime_ncpu : 1; |
| if(n > MaxGcproc) |
| n = MaxGcproc; |
| if(n > runtime_sched.mwait+1) // one M is currently running |
| n = runtime_sched.mwait+1; |
| return n; |
| } |
| |
| void |
| runtime_helpgc(int32 nproc) |
| { |
| M *mp; |
| int32 n; |
| |
| runtime_lock(&runtime_sched); |
| for(n = 1; n < nproc; n++) { // one M is currently running |
| mp = mget(nil); |
| if(mp == nil) |
| runtime_throw("runtime_gcprocs inconsistency"); |
| mp->helpgc = 1; |
| mp->waitnextg = 0; |
| runtime_notewakeup(&mp->havenextg); |
| } |
| runtime_unlock(&runtime_sched); |
| } |
| |
| void |
| runtime_stoptheworld(void) |
| { |
| uint32 v; |
| |
| schedlock(); |
| runtime_gcwaiting = 1; |
| |
| setmcpumax(1); |
| |
| // while mcpu > 1 |
| for(;;) { |
| v = runtime_sched.atomic; |
| if(atomic_mcpu(v) <= 1) |
| break; |
| |
| // It would be unsafe for multiple threads to be using |
| // the stopped note at once, but there is only |
| // ever one thread doing garbage collection. |
| runtime_noteclear(&runtime_sched.stopped); |
| if(atomic_waitstop(v)) |
| runtime_throw("invalid waitstop"); |
| |
| // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above |
| // still being true. |
| if(!runtime_cas(&runtime_sched.atomic, v, v+(1<<waitstopShift))) |
| continue; |
| |
| schedunlock(); |
| runtime_notesleep(&runtime_sched.stopped); |
| schedlock(); |
| } |
| runtime_singleproc = runtime_gomaxprocs == 1; |
| schedunlock(); |
| } |
| |
| void |
| runtime_starttheworld(void) |
| { |
| M *mp; |
| int32 max; |
| |
| // Figure out how many CPUs GC could possibly use. |
| max = runtime_gomaxprocs; |
| if(max > runtime_ncpu) |
| max = runtime_ncpu > 0 ? runtime_ncpu : 1; |
| if(max > MaxGcproc) |
| max = MaxGcproc; |
| |
| schedlock(); |
| runtime_gcwaiting = 0; |
| setmcpumax(runtime_gomaxprocs); |
| matchmg(); |
| if(runtime_gcprocs() < max && canaddmcpu()) { |
| // If GC could have used another helper proc, start one now, |
| // in the hope that it will be available next time. |
| // It would have been even better to start it before the collection, |
| // but doing so requires allocating memory, so it's tricky to |
| // coordinate. This lazy approach works out in practice: |
| // we don't mind if the first couple gc rounds don't have quite |
| // the maximum number of procs. |
| // canaddmcpu above did mcpu++ |
| // (necessary, because m will be doing various |
| // initialization work so is definitely running), |
| // but m is not running a specific goroutine, |
| // so set the helpgc flag as a signal to m's |
| // first schedule(nil) to mcpu-- and grunning--. |
| mp = runtime_newm(); |
| mp->helpgc = 1; |
| runtime_sched.grunning++; |
| } |
| schedunlock(); |
| } |
| |
| // Called to start an M. |
| void* |
| runtime_mstart(void* mp) |
| { |
| m = (M*)mp; |
| g = m->g0; |
| |
| initcontext(); |
| |
| g->entry = nil; |
| g->param = nil; |
| |
| // Record top of stack for use by mcall. |
| // Once we call schedule we're never coming back, |
| // so other calls can reuse this stack space. |
| #ifdef USING_SPLIT_STACK |
| __splitstack_getcontext(&g->stack_context[0]); |
| #else |
| g->gcinitial_sp = ∓ |
| // Setting gcstack_size to 0 is a marker meaning that gcinitial_sp |
| // is the top of the stack, not the bottom. |
| g->gcstack_size = 0; |
| g->gcnext_sp = ∓ |
| #endif |
| getcontext(&g->context); |
| |
| if(g->entry != nil) { |
| // Got here from mcall. |
| void (*pfn)(G*) = (void (*)(G*))g->entry; |
| G* gp = (G*)g->param; |
| pfn(gp); |
| *(int*)0x21 = 0x21; |
| } |
| runtime_minit(); |
| |
| #ifdef USING_SPLIT_STACK |
| { |
| int dont_block_signals = 0; |
| __splitstack_block_signals(&dont_block_signals, nil); |
| } |
| #endif |
| |
| // Install signal handlers; after minit so that minit can |
| // prepare the thread to be able to handle the signals. |
| if(m == &runtime_m0) |
| runtime_initsig(); |
| |
| schedule(nil); |
| |
| // TODO(brainman): This point is never reached, because scheduler |
| // does not release os threads at the moment. But once this path |
| // is enabled, we must remove our seh here. |
| |
| return nil; |
| } |
| |
| typedef struct CgoThreadStart CgoThreadStart; |
| struct CgoThreadStart |
| { |
| M *m; |
| G *g; |
| void (*fn)(void); |
| }; |
| |
| // Kick off new m's as needed (up to mcpumax). |
| // Sched is locked. |
| static void |
| matchmg(void) |
| { |
| G *gp; |
| M *mp; |
| |
| if(m->mallocing || m->gcing) |
| return; |
| |
| while(haveg() && canaddmcpu()) { |
| gp = gget(); |
| if(gp == nil) |
| runtime_throw("gget inconsistency"); |
| |
| // Find the m that will run gp. |
| if((mp = mget(gp)) == nil) |
| mp = runtime_newm(); |
| mnextg(mp, gp); |
| } |
| } |
| |
| // Create a new m. It will start off with a call to runtime_mstart. |
| M* |
| runtime_newm(void) |
| { |
| M *mp; |
| pthread_attr_t attr; |
| pthread_t tid; |
| size_t stacksize; |
| |
| #if 0 |
| static const Type *mtype; // The Go type M |
| if(mtype == nil) { |
| Eface e; |
| runtime_gc_m_ptr(&e); |
| mtype = ((const PtrType*)e.__type_descriptor)->__element_type; |
| } |
| #endif |
| |
| mp = runtime_mal(sizeof *mp); |
| mcommoninit(mp); |
| mp->g0 = runtime_malg(-1, nil, nil); |
| |
| if(pthread_attr_init(&attr) != 0) |
| runtime_throw("pthread_attr_init"); |
| if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) |
| runtime_throw("pthread_attr_setdetachstate"); |
| |
| stacksize = PTHREAD_STACK_MIN; |
| |
| // With glibc before version 2.16 the static TLS size is taken |
| // out of the stack size, and we get an error or a crash if |
| // there is not enough stack space left. Add it back in if we |
| // can, in case the program uses a lot of TLS space. FIXME: |
| // This can be disabled in glibc 2.16 and later, if the bug is |
| // indeed fixed then. |
| stacksize += tlssize; |
| |
| if(pthread_attr_setstacksize(&attr, stacksize) != 0) |
| runtime_throw("pthread_attr_setstacksize"); |
| |
| if(pthread_create(&tid, &attr, runtime_mstart, mp) != 0) |
| runtime_throw("pthread_create"); |
| |
| return mp; |
| } |
| |
| // One round of scheduler: find a goroutine and run it. |
| // The argument is the goroutine that was running before |
| // schedule was called, or nil if this is the first call. |
| // Never returns. |
| static void |
| schedule(G *gp) |
| { |
| int32 hz; |
| uint32 v; |
| |
| schedlock(); |
| if(gp != nil) { |
| // Just finished running gp. |
| gp->m = nil; |
| runtime_sched.grunning--; |
| |
| // atomic { mcpu-- } |
| v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift); |
| if(atomic_mcpu(v) > maxgomaxprocs) |
| runtime_throw("negative mcpu in scheduler"); |
| |
| switch(gp->status) { |
| case Grunnable: |
| case Gdead: |
| // Shouldn't have been running! |
| runtime_throw("bad gp->status in sched"); |
| case Grunning: |
| gp->status = Grunnable; |
| gput(gp); |
| break; |
| case Gmoribund: |
| if(raceenabled) |
| runtime_racegoend(gp->goid); |
| gp->status = Gdead; |
| if(gp->lockedm) { |
| gp->lockedm = nil; |
| m->lockedg = nil; |
| } |
| gp->idlem = nil; |
| runtime_memclr(&gp->context, sizeof gp->context); |
| gfput(gp); |
| if(--runtime_sched.gcount == 0) |
| runtime_exit(0); |
| break; |
| } |
| if(gp->readyonstop) { |
| gp->readyonstop = 0; |
| readylocked(gp); |
| } |
| } else if(m->helpgc) { |
| // Bootstrap m or new m started by starttheworld. |
| // atomic { mcpu-- } |
| v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift); |
| if(atomic_mcpu(v) > maxgomaxprocs) |
| runtime_throw("negative mcpu in scheduler"); |
| // Compensate for increment in starttheworld(). |
| runtime_sched.grunning--; |
| m->helpgc = 0; |
| } else if(m->nextg != nil) { |
| // New m started by matchmg. |
| } else { |
| runtime_throw("invalid m state in scheduler"); |
| } |
| |
| // Find (or wait for) g to run. Unlocks runtime_sched. |
| gp = nextgandunlock(); |
| gp->readyonstop = 0; |
| gp->status = Grunning; |
| m->curg = gp; |
| gp->m = m; |
| |
| // Check whether the profiler needs to be turned on or off. |
| hz = runtime_sched.profilehz; |
| if(m->profilehz != hz) |
| runtime_resetcpuprofiler(hz); |
| |
| runtime_gogo(gp); |
| } |
| |
| // Enter scheduler. If g->status is Grunning, |
| // re-queues g and runs everyone else who is waiting |
| // before running g again. If g->status is Gmoribund, |
| // kills off g. |
| void |
| runtime_gosched(void) |
| { |
| if(m->locks != 0) |
| runtime_throw("gosched holding locks"); |
| if(g == m->g0) |
| runtime_throw("gosched of g0"); |
| runtime_mcall(schedule); |
| } |
| |
| // Puts the current goroutine into a waiting state and unlocks the lock. |
| // The goroutine can be made runnable again by calling runtime_ready(gp). |
| void |
| runtime_park(void (*unlockf)(Lock*), Lock *lock, const char *reason) |
| { |
| g->status = Gwaiting; |
| g->waitreason = reason; |
| if(unlockf) |
| unlockf(lock); |
| runtime_gosched(); |
| } |
| |
| // The goroutine g is about to enter a system call. |
| // Record that it's not using the cpu anymore. |
| // This is called only from the go syscall library and cgocall, |
| // not from the low-level system calls used by the runtime. |
| // |
| // Entersyscall cannot split the stack: the runtime_gosave must |
| // make g->sched refer to the caller's stack segment, because |
| // entersyscall is going to return immediately after. |
| // It's okay to call matchmg and notewakeup even after |
| // decrementing mcpu, because we haven't released the |
| // sched lock yet, so the garbage collector cannot be running. |
| |
| void runtime_entersyscall(void) __attribute__ ((no_split_stack)); |
| |
| void |
| runtime_entersyscall(void) |
| { |
| uint32 v; |
| |
| if(m->profilehz > 0) |
| runtime_setprof(false); |
| |
| // Leave SP around for gc and traceback. |
| #ifdef USING_SPLIT_STACK |
| g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size, |
| &g->gcnext_segment, &g->gcnext_sp, |
| &g->gcinitial_sp); |
| #else |
| g->gcnext_sp = (byte *) &v; |
| #endif |
| |
| // Save the registers in the g structure so that any pointers |
| // held in registers will be seen by the garbage collector. |
| getcontext(&g->gcregs); |
| |
| g->status = Gsyscall; |
| |
| // Fast path. |
| // The slow path inside the schedlock/schedunlock will get |
| // through without stopping if it does: |
| // mcpu-- |
| // gwait not true |
| // waitstop && mcpu <= mcpumax not true |
| // If we can do the same with a single atomic add, |
| // then we can skip the locks. |
| v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift); |
| if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v))) |
| return; |
| |
| schedlock(); |
| v = runtime_atomicload(&runtime_sched.atomic); |
| if(atomic_gwaiting(v)) { |
| matchmg(); |
| v = runtime_atomicload(&runtime_sched.atomic); |
| } |
| if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) { |
| runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift); |
| runtime_notewakeup(&runtime_sched.stopped); |
| } |
| |
| schedunlock(); |
| } |
| |
| // The goroutine g exited its system call. |
| // Arrange for it to run on a cpu again. |
| // This is called only from the go syscall library, not |
| // from the low-level system calls used by the runtime. |
| void |
| runtime_exitsyscall(void) |
| { |
| G *gp; |
| uint32 v; |
| |
| // Fast path. |
| // If we can do the mcpu++ bookkeeping and |
| // find that we still have mcpu <= mcpumax, then we can |
| // start executing Go code immediately, without having to |
| // schedlock/schedunlock. |
| // Also do fast return if any locks are held, so that |
| // panic code can use syscalls to open a file. |
| gp = g; |
| v = runtime_xadd(&runtime_sched.atomic, (1<<mcpuShift)); |
| if((m->profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) || m->locks > 0) { |
| // There's a cpu for us, so we can run. |
| gp->status = Grunning; |
| // Garbage collector isn't running (since we are), |
| // so okay to clear gcstack. |
| #ifdef USING_SPLIT_STACK |
| gp->gcstack = nil; |
| #endif |
| gp->gcnext_sp = nil; |
| runtime_memclr(&gp->gcregs, sizeof gp->gcregs); |
| |
| if(m->profilehz > 0) |
| runtime_setprof(true); |
| return; |
| } |
| |
| // Tell scheduler to put g back on the run queue: |
| // mostly equivalent to g->status = Grunning, |
| // but keeps the garbage collector from thinking |
| // that g is running right now, which it's not. |
| gp->readyonstop = 1; |
| |
| // All the cpus are taken. |
| // The scheduler will ready g and put this m to sleep. |
| // When the scheduler takes g away from m, |
| // it will undo the runtime_sched.mcpu++ above. |
| runtime_gosched(); |
| |
| // Gosched returned, so we're allowed to run now. |
| // Delete the gcstack information that we left for |
| // the garbage collector during the system call. |
| // Must wait until now because until gosched returns |
| // we don't know for sure that the garbage collector |
| // is not running. |
| #ifdef USING_SPLIT_STACK |
| gp->gcstack = nil; |
| #endif |
| gp->gcnext_sp = nil; |
| runtime_memclr(&gp->gcregs, sizeof gp->gcregs); |
| } |
| |
| // Allocate a new g, with a stack big enough for stacksize bytes. |
| G* |
| runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize) |
| { |
| G *newg; |
| |
| newg = runtime_malloc(sizeof(G)); |
| if(stacksize >= 0) { |
| #if USING_SPLIT_STACK |
| int dont_block_signals = 0; |
| |
| *ret_stack = __splitstack_makecontext(stacksize, |
| &newg->stack_context[0], |
| ret_stacksize); |
| __splitstack_block_signals_context(&newg->stack_context[0], |
| &dont_block_signals, nil); |
| #else |
| *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0); |
| *ret_stacksize = stacksize; |
| newg->gcinitial_sp = *ret_stack; |
| newg->gcstack_size = stacksize; |
| runtime_xadd(&runtime_stacks_sys, stacksize); |
| #endif |
| } |
| return newg; |
| } |
| |
| /* For runtime package testing. */ |
| |
| void runtime_testing_entersyscall(void) |
| __asm__ (GOSYM_PREFIX "runtime.entersyscall"); |
| |
| void |
| runtime_testing_entersyscall() |
| { |
| runtime_entersyscall(); |
| } |
| |
| void runtime_testing_exitsyscall(void) |
| __asm__ (GOSYM_PREFIX "runtime.exitsyscall"); |
| |
| void |
| runtime_testing_exitsyscall() |
| { |
| runtime_exitsyscall(); |
| } |
| |
| G* |
| __go_go(void (*fn)(void*), void* arg) |
| { |
| byte *sp; |
| size_t spsize; |
| G *newg; |
| int64 goid; |
| |
| goid = runtime_xadd64((uint64*)&runtime_sched.goidgen, 1); |
| if(raceenabled) |
| runtime_racegostart(goid, runtime_getcallerpc(&fn)); |
| |
| schedlock(); |
| |
| if((newg = gfget()) != nil) { |
| #ifdef USING_SPLIT_STACK |
| int dont_block_signals = 0; |
| |
| sp = __splitstack_resetcontext(&newg->stack_context[0], |
| &spsize); |
| __splitstack_block_signals_context(&newg->stack_context[0], |
| &dont_block_signals, nil); |
| #else |
| sp = newg->gcinitial_sp; |
| spsize = newg->gcstack_size; |
| if(spsize == 0) |
| runtime_throw("bad spsize in __go_go"); |
| newg->gcnext_sp = sp; |
| #endif |
| } else { |
| newg = runtime_malg(StackMin, &sp, &spsize); |
| if(runtime_lastg == nil) |
| runtime_allg = newg; |
| else |
| runtime_lastg->alllink = newg; |
| runtime_lastg = newg; |
| } |
| newg->status = Gwaiting; |
| newg->waitreason = "new goroutine"; |
| |
| newg->entry = (byte*)fn; |
| newg->param = arg; |
| newg->gopc = (uintptr)__builtin_return_address(0); |
| |
| runtime_sched.gcount++; |
| newg->goid = goid; |
| |
| if(sp == nil) |
| runtime_throw("nil g->stack0"); |
| |
| { |
| // Avoid warnings about variables clobbered by |
| // longjmp. |
| byte * volatile vsp = sp; |
| size_t volatile vspsize = spsize; |
| G * volatile vnewg = newg; |
| |
| getcontext(&vnewg->context); |
| vnewg->context.uc_stack.ss_sp = vsp; |
| #ifdef MAKECONTEXT_STACK_TOP |
| vnewg->context.uc_stack.ss_sp += vspsize; |
| #endif |
| vnewg->context.uc_stack.ss_size = vspsize; |
| makecontext(&vnewg->context, kickoff, 0); |
| |
| newprocreadylocked(vnewg); |
| schedunlock(); |
| |
| return vnewg; |
| } |
| } |
| |
| // Put on gfree list. Sched must be locked. |
| static void |
| gfput(G *gp) |
| { |
| gp->schedlink = runtime_sched.gfree; |
| runtime_sched.gfree = gp; |
| } |
| |
| // Get from gfree list. Sched must be locked. |
| static G* |
| gfget(void) |
| { |
| G *gp; |
| |
| gp = runtime_sched.gfree; |
| if(gp) |
| runtime_sched.gfree = gp->schedlink; |
| return gp; |
| } |
| |
| void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched"); |
| |
| void |
| runtime_Gosched(void) |
| { |
| runtime_gosched(); |
| } |
| |
| // Implementation of runtime.GOMAXPROCS. |
| // delete when scheduler is stronger |
| int32 |
| runtime_gomaxprocsfunc(int32 n) |
| { |
| int32 ret; |
| uint32 v; |
| |
| schedlock(); |
| ret = runtime_gomaxprocs; |
| if(n <= 0) |
| n = ret; |
| if(n > maxgomaxprocs) |
| n = maxgomaxprocs; |
| runtime_gomaxprocs = n; |
| if(runtime_gomaxprocs > 1) |
| runtime_singleproc = false; |
| if(runtime_gcwaiting != 0) { |
| if(atomic_mcpumax(runtime_sched.atomic) != 1) |
| runtime_throw("invalid mcpumax during gc"); |
| schedunlock(); |
| return ret; |
| } |
| |
| setmcpumax(n); |
| |
| // If there are now fewer allowed procs |
| // than procs running, stop. |
| v = runtime_atomicload(&runtime_sched.atomic); |
| if((int32)atomic_mcpu(v) > n) { |
| schedunlock(); |
| runtime_gosched(); |
| return ret; |
| } |
| // handle more procs |
| matchmg(); |
| schedunlock(); |
| return ret; |
| } |
| |
| void |
| runtime_LockOSThread(void) |
| { |
| if(m == &runtime_m0 && runtime_sched.init) { |
| runtime_sched.lockmain = true; |
| return; |
| } |
| m->lockedg = g; |
| g->lockedm = m; |
| } |
| |
| void |
| runtime_UnlockOSThread(void) |
| { |
| if(m == &runtime_m0 && runtime_sched.init) { |
| runtime_sched.lockmain = false; |
| return; |
| } |
| m->lockedg = nil; |
| g->lockedm = nil; |
| } |
| |
| bool |
| runtime_lockedOSThread(void) |
| { |
| return g->lockedm != nil && m->lockedg != nil; |
| } |
| |
| // for testing of callbacks |
| |
| _Bool runtime_golockedOSThread(void) |
| __asm__ (GOSYM_PREFIX "runtime.golockedOSThread"); |
| |
| _Bool |
| runtime_golockedOSThread(void) |
| { |
| return runtime_lockedOSThread(); |
| } |
| |
| // for testing of wire, unwire |
| uint32 |
| runtime_mid() |
| { |
| return m->id; |
| } |
| |
| intgo runtime_NumGoroutine (void) |
| __asm__ (GOSYM_PREFIX "runtime.NumGoroutine"); |
| |
| intgo |
| runtime_NumGoroutine() |
| { |
| return runtime_sched.gcount; |
| } |
| |
| int32 |
| runtime_gcount(void) |
| { |
| return runtime_sched.gcount; |
| } |
| |
| int32 |
| runtime_mcount(void) |
| { |
| return runtime_sched.mcount; |
| } |
| |
| static struct { |
| Lock; |
| void (*fn)(uintptr*, int32); |
| int32 hz; |
| uintptr pcbuf[100]; |
| Location locbuf[100]; |
| } prof; |
| |
| // Called if we receive a SIGPROF signal. |
| void |
| runtime_sigprof() |
| { |
| int32 n, i; |
| |
| if(prof.fn == nil || prof.hz == 0) |
| return; |
| |
| runtime_lock(&prof); |
| if(prof.fn == nil) { |
| runtime_unlock(&prof); |
| return; |
| } |
| n = runtime_callers(0, prof.locbuf, nelem(prof.locbuf)); |
| for(i = 0; i < n; i++) |
| prof.pcbuf[i] = prof.locbuf[i].pc; |
| if(n > 0) |
| prof.fn(prof.pcbuf, n); |
| runtime_unlock(&prof); |
| } |
| |
| // Arrange to call fn with a traceback hz times a second. |
| void |
| runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) |
| { |
| // Force sane arguments. |
| if(hz < 0) |
| hz = 0; |
| if(hz == 0) |
| fn = nil; |
| if(fn == nil) |
| hz = 0; |
| |
| // Stop profiler on this cpu so that it is safe to lock prof. |
| // if a profiling signal came in while we had prof locked, |
| // it would deadlock. |
| runtime_resetcpuprofiler(0); |
| |
| runtime_lock(&prof); |
| prof.fn = fn; |
| prof.hz = hz; |
| runtime_unlock(&prof); |
| runtime_lock(&runtime_sched); |
| runtime_sched.profilehz = hz; |
| runtime_unlock(&runtime_sched); |
| |
| if(hz != 0) |
| runtime_resetcpuprofiler(hz); |
| } |