| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // This algorithm is based on "Faster Suffix Sorting" | 
 | //   by N. Jesper Larsson and Kunihiko Sadakane | 
 | // paper: http://www.larsson.dogma.net/ssrev-tr.pdf | 
 | // code:  http://www.larsson.dogma.net/qsufsort.c | 
 |  | 
 | // This algorithm computes the suffix array sa by computing its inverse. | 
 | // Consecutive groups of suffixes in sa are labeled as sorted groups or | 
 | // unsorted groups. For a given pass of the sorter, all suffixes are ordered | 
 | // up to their first h characters, and sa is h-ordered. Suffixes in their | 
 | // final positions and unambiguously sorted in h-order are in a sorted group. | 
 | // Consecutive groups of suffixes with identical first h characters are an | 
 | // unsorted group. In each pass of the algorithm, unsorted groups are sorted | 
 | // according to the group number of their following suffix. | 
 |  | 
 | // In the implementation, if sa[i] is negative, it indicates that i is | 
 | // the first element of a sorted group of length -sa[i], and can be skipped. | 
 | // An unsorted group sa[i:k] is given the group number of the index of its | 
 | // last element, k-1. The group numbers are stored in the inverse slice (inv), | 
 | // and when all groups are sorted, this slice is the inverse suffix array. | 
 |  | 
 | package suffixarray | 
 |  | 
 | import "sort" | 
 |  | 
 | func qsufsort(data []byte) []int { | 
 | 	// initial sorting by first byte of suffix | 
 | 	sa := sortedByFirstByte(data) | 
 | 	if len(sa) < 2 { | 
 | 		return sa | 
 | 	} | 
 | 	// initialize the group lookup table | 
 | 	// this becomes the inverse of the suffix array when all groups are sorted | 
 | 	inv := initGroups(sa, data) | 
 |  | 
 | 	// the index starts 1-ordered | 
 | 	sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1} | 
 |  | 
 | 	for sa[0] > -len(sa) { // until all suffixes are one big sorted group | 
 | 		// The suffixes are h-ordered, make them 2*h-ordered | 
 | 		pi := 0 // pi is first position of first group | 
 | 		sl := 0 // sl is negated length of sorted groups | 
 | 		for pi < len(sa) { | 
 | 			if s := sa[pi]; s < 0 { // if pi starts sorted group | 
 | 				pi -= s // skip over sorted group | 
 | 				sl += s // add negated length to sl | 
 | 			} else { // if pi starts unsorted group | 
 | 				if sl != 0 { | 
 | 					sa[pi+sl] = sl // combine sorted groups before pi | 
 | 					sl = 0 | 
 | 				} | 
 | 				pk := inv[s] + 1 // pk-1 is last position of unsorted group | 
 | 				sufSortable.sa = sa[pi:pk] | 
 | 				sort.Sort(sufSortable) | 
 | 				sufSortable.updateGroups(pi) | 
 | 				pi = pk // next group | 
 | 			} | 
 | 		} | 
 | 		if sl != 0 { // if the array ends with a sorted group | 
 | 			sa[pi+sl] = sl // combine sorted groups at end of sa | 
 | 		} | 
 |  | 
 | 		sufSortable.h *= 2 // double sorted depth | 
 | 	} | 
 |  | 
 | 	for i := range sa { // reconstruct suffix array from inverse | 
 | 		sa[inv[i]] = i | 
 | 	} | 
 | 	return sa | 
 | } | 
 |  | 
 | func sortedByFirstByte(data []byte) []int { | 
 | 	// total byte counts | 
 | 	var count [256]int | 
 | 	for _, b := range data { | 
 | 		count[b]++ | 
 | 	} | 
 | 	// make count[b] equal index of first occurrence of b in sorted array | 
 | 	sum := 0 | 
 | 	for b := range count { | 
 | 		count[b], sum = sum, count[b]+sum | 
 | 	} | 
 | 	// iterate through bytes, placing index into the correct spot in sa | 
 | 	sa := make([]int, len(data)) | 
 | 	for i, b := range data { | 
 | 		sa[count[b]] = i | 
 | 		count[b]++ | 
 | 	} | 
 | 	return sa | 
 | } | 
 |  | 
 | func initGroups(sa []int, data []byte) []int { | 
 | 	// label contiguous same-letter groups with the same group number | 
 | 	inv := make([]int, len(data)) | 
 | 	prevGroup := len(sa) - 1 | 
 | 	groupByte := data[sa[prevGroup]] | 
 | 	for i := len(sa) - 1; i >= 0; i-- { | 
 | 		if b := data[sa[i]]; b < groupByte { | 
 | 			if prevGroup == i+1 { | 
 | 				sa[i+1] = -1 | 
 | 			} | 
 | 			groupByte = b | 
 | 			prevGroup = i | 
 | 		} | 
 | 		inv[sa[i]] = prevGroup | 
 | 		if prevGroup == 0 { | 
 | 			sa[0] = -1 | 
 | 		} | 
 | 	} | 
 | 	// Separate out the final suffix to the start of its group. | 
 | 	// This is necessary to ensure the suffix "a" is before "aba" | 
 | 	// when using a potentially unstable sort. | 
 | 	lastByte := data[len(data)-1] | 
 | 	s := -1 | 
 | 	for i := range sa { | 
 | 		if sa[i] >= 0 { | 
 | 			if data[sa[i]] == lastByte && s == -1 { | 
 | 				s = i | 
 | 			} | 
 | 			if sa[i] == len(sa)-1 { | 
 | 				sa[i], sa[s] = sa[s], sa[i] | 
 | 				inv[sa[s]] = s | 
 | 				sa[s] = -1 // mark it as an isolated sorted group | 
 | 				break | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return inv | 
 | } | 
 |  | 
 | type suffixSortable struct { | 
 | 	sa  []int | 
 | 	inv []int | 
 | 	h   int | 
 | 	buf []int // common scratch space | 
 | } | 
 |  | 
 | func (x *suffixSortable) Len() int           { return len(x.sa) } | 
 | func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] } | 
 | func (x *suffixSortable) Swap(i, j int)      { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] } | 
 |  | 
 | func (x *suffixSortable) updateGroups(offset int) { | 
 | 	bounds := x.buf[0:0] | 
 | 	group := x.inv[x.sa[0]+x.h] | 
 | 	for i := 1; i < len(x.sa); i++ { | 
 | 		if g := x.inv[x.sa[i]+x.h]; g > group { | 
 | 			bounds = append(bounds, i) | 
 | 			group = g | 
 | 		} | 
 | 	} | 
 | 	bounds = append(bounds, len(x.sa)) | 
 | 	x.buf = bounds | 
 |  | 
 | 	// update the group numberings after all new groups are determined | 
 | 	prev := 0 | 
 | 	for _, b := range bounds { | 
 | 		for i := prev; i < b; i++ { | 
 | 			x.inv[x.sa[i]] = offset + b - 1 | 
 | 		} | 
 | 		if b-prev == 1 { | 
 | 			x.sa[prev] = -1 | 
 | 		} | 
 | 		prev = b | 
 | 	} | 
 | } |