blob: 4c5b17d05c73162a895a032dd851ce280e62d2ab [file] [log] [blame]
Charles L. Dorian26f0c832010-03-19 15:29:22 -07001// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package math
6
7// The original C code, the long comment, and the constants
8// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
9// The go code is a simplified version of the original C.
10//
11// tgamma.c
12//
13// Gamma function
14//
15// SYNOPSIS:
16//
17// double x, y, tgamma();
18// extern int signgam;
19//
20// y = tgamma( x );
21//
22// DESCRIPTION:
23//
24// Returns gamma function of the argument. The result is
25// correctly signed, and the sign (+1 or -1) is also
26// returned in a global (extern) variable named signgam.
27// This variable is also filled in by the logarithmic gamma
28// function lgamma().
29//
30// Arguments |x| <= 34 are reduced by recurrence and the function
31// approximated by a rational function of degree 6/7 in the
32// interval (2,3). Large arguments are handled by Stirling's
33// formula. Large negative arguments are made positive using
34// a reflection formula.
35//
36// ACCURACY:
37//
38// Relative error:
39// arithmetic domain # trials peak rms
40// DEC -34, 34 10000 1.3e-16 2.5e-17
41// IEEE -170,-33 20000 2.3e-15 3.3e-16
42// IEEE -33, 33 20000 9.4e-16 2.2e-16
43// IEEE 33, 171.6 20000 2.3e-15 3.2e-16
44//
45// Error for arguments outside the test range will be larger
46// owing to error amplification by the exponential function.
47//
48// Cephes Math Library Release 2.8: June, 2000
49// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
50//
51// The readme file at http://netlib.sandia.gov/cephes/ says:
52// Some software in this archive may be from the book _Methods and
53// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
54// International, 1989) or from the Cephes Mathematical Library, a
55// commercial product. In either event, it is copyrighted by the author.
56// What you see here may be used freely but it comes with no support or
57// guarantee.
58//
59// The two known misprints in the book are repaired here in the
60// source listings for the gamma function and the incomplete beta
61// integral.
62//
63// Stephen L. Moshier
64// moshier@na-net.ornl.gov
65
66var _P = []float64{
67 1.60119522476751861407e-04,
68 1.19135147006586384913e-03,
69 1.04213797561761569935e-02,
70 4.76367800457137231464e-02,
71 2.07448227648435975150e-01,
72 4.94214826801497100753e-01,
73 9.99999999999999996796e-01,
74}
75var _Q = []float64{
76 -2.31581873324120129819e-05,
77 5.39605580493303397842e-04,
78 -4.45641913851797240494e-03,
79 1.18139785222060435552e-02,
80 3.58236398605498653373e-02,
81 -2.34591795718243348568e-01,
82 7.14304917030273074085e-02,
83 1.00000000000000000320e+00,
84}
85var _S = []float64{
86 7.87311395793093628397e-04,
87 -2.29549961613378126380e-04,
88 -2.68132617805781232825e-03,
89 3.47222221605458667310e-03,
90 8.33333333333482257126e-02,
91}
92
93// Gamma function computed by Stirling's formula.
94// The polynomial is valid for 33 <= x <= 172.
95func stirling(x float64) float64 {
96 const (
97 SqrtTwoPi = 2.506628274631000502417
98 MaxStirling = 143.01608
99 )
100 w := 1 / x
101 w = 1 + w*((((_S[0]*w+_S[1])*w+_S[2])*w+_S[3])*w+_S[4])
102 y := Exp(x)
103 if x > MaxStirling { // avoid Pow() overflow
104 v := Pow(x, 0.5*x-0.25)
105 y = v * (v / y)
106 } else {
107 y = Pow(x, x-0.5) / y
108 }
109 y = SqrtTwoPi * y * w
110 return y
111}
112
113// Gamma(x) returns the Gamma function of x.
114//
115// Special cases are:
116// Gamma(Inf) = Inf
117// Gamma(-Inf) = -Inf
118// Gamma(NaN) = NaN
119// Large values overflow to +Inf.
120// Negative integer values equal ±Inf.
121func Gamma(x float64) float64 {
122 const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620
123 // special cases
124 switch {
125 case x < -MaxFloat64 || x != x: // IsInf(x, -1) || IsNaN(x):
126 return x
127 case x < -170.5674972726612 || x > 171.61447887182298:
128 return Inf(1)
129 }
130 q := Fabs(x)
131 p := Floor(q)
132 if q > 33 {
133 if x >= 0 {
134 return stirling(x)
135 }
136 signgam := 1
137 if ip := int(p); ip&1 == 0 {
138 signgam = -1
139 }
140 z := q - p
141 if z > 0.5 {
142 p = p + 1
143 z = q - p
144 }
145 z = q * Sin(Pi*z)
146 if z == 0 {
147 return Inf(signgam)
148 }
149 z = Pi / (Fabs(z) * stirling(q))
150 return float64(signgam) * z
151 }
152
153 // Reduce argument
154 z := float64(1)
155 for x >= 3 {
156 x = x - 1
157 z = z * x
158 }
159 for x < 0 {
160 if x > -1e-09 {
161 goto small
162 }
163 z = z / x
164 x = x + 1
165 }
166 for x < 2 {
167 if x < 1e-09 {
168 goto small
169 }
170 z = z / x
171 x = x + 1
172 }
173
174 if x == 2 {
175 return z
176 }
177
178 x = x - 2
179 p = (((((x*_P[0]+_P[1])*x+_P[2])*x+_P[3])*x+_P[4])*x+_P[5])*x + _P[6]
180 q = ((((((x*_Q[0]+_Q[1])*x+_Q[2])*x+_Q[3])*x+_Q[4])*x+_Q[5])*x+_Q[6])*x + _Q[7]
181 return z * p / q
182
183small:
184 if x == 0 {
185 return Inf(1)
186 }
187 return z / ((1 + Euler*x) * x)
188}