Russ Cox | b4cae4a | 2011-06-30 10:26:22 -0400 | [diff] [blame] | 1 | // Copyright 2011 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package syntax |
| 6 | |
| 7 | // Simplify returns a regexp equivalent to re but without counted repetitions |
| 8 | // and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/. |
| 9 | // The resulting regexp will execute correctly but its string representation |
| 10 | // will not produce the same parse tree, because capturing parentheses |
| 11 | // may have been duplicated or removed. For example, the simplified form |
| 12 | // for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1. |
| 13 | // The returned regexp may share structure with or be the original. |
| 14 | func (re *Regexp) Simplify() *Regexp { |
| 15 | if re == nil { |
| 16 | return nil |
| 17 | } |
| 18 | switch re.Op { |
| 19 | case OpCapture, OpConcat, OpAlternate: |
| 20 | // Simplify children, building new Regexp if children change. |
| 21 | nre := re |
| 22 | for i, sub := range re.Sub { |
| 23 | nsub := sub.Simplify() |
| 24 | if nre == re && nsub != sub { |
| 25 | // Start a copy. |
| 26 | nre = new(Regexp) |
| 27 | *nre = *re |
| 28 | nre.Rune = nil |
| 29 | nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...) |
| 30 | } |
| 31 | if nre != re { |
| 32 | nre.Sub = append(nre.Sub, nsub) |
| 33 | } |
| 34 | } |
| 35 | return nre |
| 36 | |
| 37 | case OpStar, OpPlus, OpQuest: |
| 38 | sub := re.Sub[0].Simplify() |
| 39 | return simplify1(re.Op, re.Flags, sub, re) |
| 40 | |
| 41 | case OpRepeat: |
| 42 | // Special special case: x{0} matches the empty string |
| 43 | // and doesn't even need to consider x. |
| 44 | if re.Min == 0 && re.Max == 0 { |
| 45 | return &Regexp{Op: OpEmptyMatch} |
| 46 | } |
| 47 | |
| 48 | // The fun begins. |
| 49 | sub := re.Sub[0].Simplify() |
| 50 | |
| 51 | // x{n,} means at least n matches of x. |
| 52 | if re.Max == -1 { |
| 53 | // Special case: x{0,} is x*. |
| 54 | if re.Min == 0 { |
| 55 | return simplify1(OpStar, re.Flags, sub, nil) |
| 56 | } |
| 57 | |
| 58 | // Special case: x{1,} is x+. |
| 59 | if re.Min == 1 { |
| 60 | return simplify1(OpPlus, re.Flags, sub, nil) |
| 61 | } |
| 62 | |
| 63 | // General case: x{4,} is xxxx+. |
| 64 | nre := &Regexp{Op: OpConcat} |
| 65 | nre.Sub = nre.Sub0[:0] |
| 66 | for i := 0; i < re.Min-1; i++ { |
| 67 | nre.Sub = append(nre.Sub, sub) |
| 68 | } |
| 69 | nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil)) |
| 70 | return nre |
| 71 | } |
| 72 | |
| 73 | // Special case x{0} handled above. |
| 74 | |
| 75 | // Special case: x{1} is just x. |
| 76 | if re.Min == 1 && re.Max == 1 { |
| 77 | return sub |
| 78 | } |
| 79 | |
| 80 | // General case: x{n,m} means n copies of x and m copies of x? |
| 81 | // The machine will do less work if we nest the final m copies, |
| 82 | // so that x{2,5} = xx(x(x(x)?)?)? |
| 83 | |
| 84 | // Build leading prefix: xx. |
| 85 | var prefix *Regexp |
| 86 | if re.Min > 0 { |
| 87 | prefix = &Regexp{Op: OpConcat} |
| 88 | prefix.Sub = prefix.Sub0[:0] |
| 89 | for i := 0; i < re.Min; i++ { |
| 90 | prefix.Sub = append(prefix.Sub, sub) |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | // Build and attach suffix: (x(x(x)?)?)? |
| 95 | if re.Max > re.Min { |
| 96 | suffix := simplify1(OpQuest, re.Flags, sub, nil) |
| 97 | for i := re.Min + 1; i < re.Max; i++ { |
| 98 | nre2 := &Regexp{Op: OpConcat} |
| 99 | nre2.Sub = append(nre2.Sub0[:0], sub, suffix) |
| 100 | suffix = simplify1(OpQuest, re.Flags, nre2, nil) |
| 101 | } |
| 102 | if prefix == nil { |
| 103 | return suffix |
| 104 | } |
| 105 | prefix.Sub = append(prefix.Sub, suffix) |
| 106 | } |
| 107 | if prefix != nil { |
| 108 | return prefix |
| 109 | } |
| 110 | |
| 111 | // Some degenerate case like min > max or min < max < 0. |
| 112 | // Handle as impossible match. |
| 113 | return &Regexp{Op: OpNoMatch} |
| 114 | } |
| 115 | |
| 116 | return re |
| 117 | } |
| 118 | |
| 119 | // simplify1 implements Simplify for the unary OpStar, |
| 120 | // OpPlus, and OpQuest operators. It returns the simple regexp |
| 121 | // equivalent to |
| 122 | // |
| 123 | // Regexp{Op: op, Flags: flags, Sub: {sub}} |
| 124 | // |
| 125 | // under the assumption that sub is already simple, and |
| 126 | // without first allocating that structure. If the regexp |
| 127 | // to be returned turns out to be equivalent to re, simplify1 |
| 128 | // returns re instead. |
| 129 | // |
| 130 | // simplify1 is factored out of Simplify because the implementation |
| 131 | // for other operators generates these unary expressions. |
| 132 | // Letting them call simplify1 makes sure the expressions they |
| 133 | // generate are simple. |
| 134 | func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp { |
| 135 | // Special case: repeat the empty string as much as |
| 136 | // you want, but it's still the empty string. |
| 137 | if sub.Op == OpEmptyMatch { |
| 138 | return sub |
| 139 | } |
| 140 | // The operators are idempotent if the flags match. |
| 141 | if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy { |
| 142 | return sub |
| 143 | } |
| 144 | if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] { |
| 145 | return re |
| 146 | } |
| 147 | |
| 148 | re = &Regexp{Op: op, Flags: flags} |
| 149 | re.Sub = append(re.Sub0[:0], sub) |
| 150 | return re |
| 151 | } |