blob: b9731fa7c24ff24f4d57ae66d868af8cfb3621a7 [file] [log] [blame]
Keith Randalldd24b102016-09-07 14:04:31 -07001// Copyright 2016 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ssa
6
7// Code to compute lowest common ancestors in the dominator tree.
8// https://en.wikipedia.org/wiki/Lowest_common_ancestor
9// https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_and_linearithmic_space
10
11// lcaRange is a data structure that can compute lowest common ancestor queries
12// in O(n lg n) precomputed space and O(1) time per query.
13type lcaRange struct {
14 // Additional information about each block (indexed by block ID).
15 blocks []lcaRangeBlock
16
17 // Data structure for range minimum queries.
18 // rangeMin[k][i] contains the ID of the minimum depth block
19 // in the Euler tour from positions i to i+1<<k-1, inclusive.
20 rangeMin [][]ID
21}
22
23type lcaRangeBlock struct {
24 b *Block
25 parent ID // parent in dominator tree. 0 = no parent (entry or unreachable)
26 firstChild ID // first child in dominator tree
27 sibling ID // next child of parent
28 pos int32 // an index in the Euler tour where this block appears (any one of its occurrences)
29 depth int32 // depth in dominator tree (root=0, its children=1, etc.)
30}
31
32func makeLCArange(f *Func) *lcaRange {
Hajime Hoshic5368122016-10-09 01:09:52 +090033 dom := f.Idom()
Keith Randalldd24b102016-09-07 14:04:31 -070034
35 // Build tree
36 blocks := make([]lcaRangeBlock, f.NumBlocks())
37 for _, b := range f.Blocks {
38 blocks[b.ID].b = b
39 if dom[b.ID] == nil {
40 continue // entry or unreachable
41 }
42 parent := dom[b.ID].ID
43 blocks[b.ID].parent = parent
44 blocks[b.ID].sibling = blocks[parent].firstChild
45 blocks[parent].firstChild = b.ID
46 }
47
48 // Compute euler tour ordering.
49 // Each reachable block will appear #children+1 times in the tour.
50 tour := make([]ID, 0, f.NumBlocks()*2-1)
51 type queueEntry struct {
52 bid ID // block to work on
53 cid ID // child we're already working on (0 = haven't started yet)
54 }
55 q := []queueEntry{{f.Entry.ID, 0}}
56 for len(q) > 0 {
57 n := len(q) - 1
58 bid := q[n].bid
59 cid := q[n].cid
60 q = q[:n]
61
62 // Add block to tour.
63 blocks[bid].pos = int32(len(tour))
64 tour = append(tour, bid)
65
66 // Proceed down next child edge (if any).
67 if cid == 0 {
68 // This is our first visit to b. Set its depth.
69 blocks[bid].depth = blocks[blocks[bid].parent].depth + 1
70 // Then explore its first child.
71 cid = blocks[bid].firstChild
72 } else {
73 // We've seen b before. Explore the next child.
74 cid = blocks[cid].sibling
75 }
76 if cid != 0 {
77 q = append(q, queueEntry{bid, cid}, queueEntry{cid, 0})
78 }
79 }
80
81 // Compute fast range-minimum query data structure
82 var rangeMin [][]ID
83 rangeMin = append(rangeMin, tour) // 1-size windows are just the tour itself.
84 for logS, s := 1, 2; s < len(tour); logS, s = logS+1, s*2 {
85 r := make([]ID, len(tour)-s+1)
86 for i := 0; i < len(tour)-s+1; i++ {
87 bid := rangeMin[logS-1][i]
88 bid2 := rangeMin[logS-1][i+s/2]
89 if blocks[bid2].depth < blocks[bid].depth {
90 bid = bid2
91 }
92 r[i] = bid
93 }
94 rangeMin = append(rangeMin, r)
95 }
96
97 return &lcaRange{blocks: blocks, rangeMin: rangeMin}
98}
99
100// find returns the lowest common ancestor of a and b.
101func (lca *lcaRange) find(a, b *Block) *Block {
102 if a == b {
103 return a
104 }
105 // Find the positions of a and bin the Euler tour.
106 p1 := lca.blocks[a.ID].pos
107 p2 := lca.blocks[b.ID].pos
108 if p1 > p2 {
109 p1, p2 = p2, p1
110 }
111
112 // The lowest common ancestor is the minimum depth block
113 // on the tour from p1 to p2. We've precomputed minimum
114 // depth blocks for powers-of-two subsequences of the tour.
115 // Combine the right two precomputed values to get the answer.
116 logS := uint(log2(int64(p2 - p1)))
117 bid1 := lca.rangeMin[logS][p1]
118 bid2 := lca.rangeMin[logS][p2-1<<logS+1]
119 if lca.blocks[bid1].depth < lca.blocks[bid2].depth {
120 return lca.blocks[bid1].b
121 }
122 return lca.blocks[bid2].b
123}