Keith Randall | dd24b10 | 2016-09-07 14:04:31 -0700 | [diff] [blame] | 1 | // Copyright 2016 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package ssa |
| 6 | |
| 7 | // Code to compute lowest common ancestors in the dominator tree. |
| 8 | // https://en.wikipedia.org/wiki/Lowest_common_ancestor |
| 9 | // https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_and_linearithmic_space |
| 10 | |
| 11 | // lcaRange is a data structure that can compute lowest common ancestor queries |
| 12 | // in O(n lg n) precomputed space and O(1) time per query. |
| 13 | type lcaRange struct { |
| 14 | // Additional information about each block (indexed by block ID). |
| 15 | blocks []lcaRangeBlock |
| 16 | |
| 17 | // Data structure for range minimum queries. |
| 18 | // rangeMin[k][i] contains the ID of the minimum depth block |
| 19 | // in the Euler tour from positions i to i+1<<k-1, inclusive. |
| 20 | rangeMin [][]ID |
| 21 | } |
| 22 | |
| 23 | type lcaRangeBlock struct { |
| 24 | b *Block |
| 25 | parent ID // parent in dominator tree. 0 = no parent (entry or unreachable) |
| 26 | firstChild ID // first child in dominator tree |
| 27 | sibling ID // next child of parent |
| 28 | pos int32 // an index in the Euler tour where this block appears (any one of its occurrences) |
| 29 | depth int32 // depth in dominator tree (root=0, its children=1, etc.) |
| 30 | } |
| 31 | |
| 32 | func makeLCArange(f *Func) *lcaRange { |
Hajime Hoshi | c536812 | 2016-10-09 01:09:52 +0900 | [diff] [blame] | 33 | dom := f.Idom() |
Keith Randall | dd24b10 | 2016-09-07 14:04:31 -0700 | [diff] [blame] | 34 | |
| 35 | // Build tree |
| 36 | blocks := make([]lcaRangeBlock, f.NumBlocks()) |
| 37 | for _, b := range f.Blocks { |
| 38 | blocks[b.ID].b = b |
| 39 | if dom[b.ID] == nil { |
| 40 | continue // entry or unreachable |
| 41 | } |
| 42 | parent := dom[b.ID].ID |
| 43 | blocks[b.ID].parent = parent |
| 44 | blocks[b.ID].sibling = blocks[parent].firstChild |
| 45 | blocks[parent].firstChild = b.ID |
| 46 | } |
| 47 | |
| 48 | // Compute euler tour ordering. |
| 49 | // Each reachable block will appear #children+1 times in the tour. |
| 50 | tour := make([]ID, 0, f.NumBlocks()*2-1) |
| 51 | type queueEntry struct { |
| 52 | bid ID // block to work on |
| 53 | cid ID // child we're already working on (0 = haven't started yet) |
| 54 | } |
| 55 | q := []queueEntry{{f.Entry.ID, 0}} |
| 56 | for len(q) > 0 { |
| 57 | n := len(q) - 1 |
| 58 | bid := q[n].bid |
| 59 | cid := q[n].cid |
| 60 | q = q[:n] |
| 61 | |
| 62 | // Add block to tour. |
| 63 | blocks[bid].pos = int32(len(tour)) |
| 64 | tour = append(tour, bid) |
| 65 | |
| 66 | // Proceed down next child edge (if any). |
| 67 | if cid == 0 { |
| 68 | // This is our first visit to b. Set its depth. |
| 69 | blocks[bid].depth = blocks[blocks[bid].parent].depth + 1 |
| 70 | // Then explore its first child. |
| 71 | cid = blocks[bid].firstChild |
| 72 | } else { |
| 73 | // We've seen b before. Explore the next child. |
| 74 | cid = blocks[cid].sibling |
| 75 | } |
| 76 | if cid != 0 { |
| 77 | q = append(q, queueEntry{bid, cid}, queueEntry{cid, 0}) |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | // Compute fast range-minimum query data structure |
| 82 | var rangeMin [][]ID |
| 83 | rangeMin = append(rangeMin, tour) // 1-size windows are just the tour itself. |
| 84 | for logS, s := 1, 2; s < len(tour); logS, s = logS+1, s*2 { |
| 85 | r := make([]ID, len(tour)-s+1) |
| 86 | for i := 0; i < len(tour)-s+1; i++ { |
| 87 | bid := rangeMin[logS-1][i] |
| 88 | bid2 := rangeMin[logS-1][i+s/2] |
| 89 | if blocks[bid2].depth < blocks[bid].depth { |
| 90 | bid = bid2 |
| 91 | } |
| 92 | r[i] = bid |
| 93 | } |
| 94 | rangeMin = append(rangeMin, r) |
| 95 | } |
| 96 | |
| 97 | return &lcaRange{blocks: blocks, rangeMin: rangeMin} |
| 98 | } |
| 99 | |
| 100 | // find returns the lowest common ancestor of a and b. |
| 101 | func (lca *lcaRange) find(a, b *Block) *Block { |
| 102 | if a == b { |
| 103 | return a |
| 104 | } |
| 105 | // Find the positions of a and bin the Euler tour. |
| 106 | p1 := lca.blocks[a.ID].pos |
| 107 | p2 := lca.blocks[b.ID].pos |
| 108 | if p1 > p2 { |
| 109 | p1, p2 = p2, p1 |
| 110 | } |
| 111 | |
| 112 | // The lowest common ancestor is the minimum depth block |
| 113 | // on the tour from p1 to p2. We've precomputed minimum |
| 114 | // depth blocks for powers-of-two subsequences of the tour. |
| 115 | // Combine the right two precomputed values to get the answer. |
| 116 | logS := uint(log2(int64(p2 - p1))) |
| 117 | bid1 := lca.rangeMin[logS][p1] |
| 118 | bid2 := lca.rangeMin[logS][p2-1<<logS+1] |
| 119 | if lca.blocks[bid1].depth < lca.blocks[bid2].depth { |
| 120 | return lca.blocks[bid1].b |
| 121 | } |
| 122 | return lca.blocks[bid2].b |
| 123 | } |