blob: fdc869992e11fe599bc96c9886cabbc6ea816880 [file] [log] [blame]
Ken Thompson21810982008-03-28 13:56:47 -07001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
Rob Pike43312932008-06-27 17:06:23 -07005package math
Ken Thompson21810982008-03-28 13:56:47 -07006
Russ Coxdd8dc6f2011-12-13 15:20:12 -05007// The original C code and the long comment below are
8// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
9// came with this notice. The go code is a simplified
10// version of the original C.
11//
12// ====================================================
13// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
14//
15// Developed at SunPro, a Sun Microsystems, Inc. business.
16// Permission to use, copy, modify, and distribute this
17// software is freely granted, provided that this notice
18// is preserved.
19// ====================================================
20//
21// __ieee754_sqrt(x)
22// Return correctly rounded sqrt.
23// -----------------------------------------
24// | Use the hardware sqrt if you have one |
25// -----------------------------------------
26// Method:
27// Bit by bit method using integer arithmetic. (Slow, but portable)
28// 1. Normalization
29// Scale x to y in [1,4) with even powers of 2:
30// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
31// sqrt(x) = 2**k * sqrt(y)
32// 2. Bit by bit computation
33// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
34// i 0
35// i+1 2
36// s = 2*q , and y = 2 * ( y - q ). (1)
37// i i i i
38//
39// To compute q from q , one checks whether
40// i+1 i
41//
42// -(i+1) 2
43// (q + 2 ) <= y. (2)
44// i
45// -(i+1)
46// If (2) is false, then q = q ; otherwise q = q + 2 .
47// i+1 i i+1 i
48//
49// With some algebraic manipulation, it is not difficult to see
50// that (2) is equivalent to
51// -(i+1)
52// s + 2 <= y (3)
53// i i
54//
55// The advantage of (3) is that s and y can be computed by
56// i i
57// the following recurrence formula:
58// if (3) is false
59//
60// s = s , y = y ; (4)
61// i+1 i i+1 i
62//
63// otherwise,
64// -i -(i+1)
65// s = s + 2 , y = y - s - 2 (5)
66// i+1 i i+1 i i
67//
68// One may easily use induction to prove (4) and (5).
69// Note. Since the left hand side of (3) contain only i+2 bits,
70// it does not necessary to do a full (53-bit) comparison
71// in (3).
72// 3. Final rounding
73// After generating the 53 bits result, we compute one more bit.
74// Together with the remainder, we can decide whether the
75// result is exact, bigger than 1/2ulp, or less than 1/2ulp
76// (it will never equal to 1/2ulp).
77// The rounding mode can be detected by checking whether
78// huge + tiny is equal to huge, and whether huge - tiny is
79// equal to huge for some floating point number "huge" and "tiny".
80//
81//
82// Notes: Rounding mode detection omitted. The constants "mask", "shift",
Russ Cox220a6de2014-09-08 00:06:45 -040083// and "bias" are found in src/math/bits.go
Russ Coxdd8dc6f2011-12-13 15:20:12 -050084
85// Sqrt returns the square root of x.
86//
87// Special cases are:
88// Sqrt(+Inf) = +Inf
89// Sqrt(±0) = ±0
90// Sqrt(x < 0) = NaN
91// Sqrt(NaN) = NaN
Oling Cat79ae1ad2013-03-22 14:54:20 +110092func Sqrt(x float64) float64
93
Russ Coxdd8dc6f2011-12-13 15:20:12 -050094func sqrt(x float64) float64 {
95 // special cases
Russ Coxdd8dc6f2011-12-13 15:20:12 -050096 switch {
Luuk van Dijk8dd3de42012-02-01 16:08:31 +010097 case x == 0 || IsNaN(x) || IsInf(x, 1):
Russ Coxdd8dc6f2011-12-13 15:20:12 -050098 return x
99 case x < 0:
100 return NaN()
101 }
102 ix := Float64bits(x)
103 // normalize x
104 exp := int((ix >> shift) & mask)
105 if exp == 0 { // subnormal x
106 for ix&1<<shift == 0 {
107 ix <<= 1
108 exp--
109 }
110 exp++
111 }
112 exp -= bias // unbias exponent
113 ix &^= mask << shift
114 ix |= 1 << shift
115 if exp&1 == 1 { // odd exp, double x to make it even
116 ix <<= 1
117 }
118 exp >>= 1 // exp = exp/2, exponent of square root
119 // generate sqrt(x) bit by bit
120 ix <<= 1
121 var q, s uint64 // q = sqrt(x)
122 r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
123 for r != 0 {
124 t := s + r
125 if t <= ix {
126 s = t + r
127 ix -= t
128 q += r
129 }
130 ix <<= 1
131 r >>= 1
132 }
133 // final rounding
134 if ix != 0 { // remainder, result not exact
135 q += q & 1 // round according to extra bit
136 }
137 ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
138 return Float64frombits(ix)
139}
140
141func sqrtC(f float64, r *float64) {
142 *r = sqrt(f)
143}