Charles L. Dorian | 2e90f66 | 2010-04-05 22:10:27 -0700 | [diff] [blame] | 1 | // Copyright 2010 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | package cmath |
| 6 | |
| 7 | import "math" |
| 8 | |
| 9 | // The original C code, the long comment, and the constants |
| 10 | // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. |
| 11 | // The go code is a simplified version of the original C. |
| 12 | // |
| 13 | // Cephes Math Library Release 2.8: June, 2000 |
| 14 | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier |
| 15 | // |
| 16 | // The readme file at http://netlib.sandia.gov/cephes/ says: |
| 17 | // Some software in this archive may be from the book _Methods and |
| 18 | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster |
| 19 | // International, 1989) or from the Cephes Mathematical Library, a |
| 20 | // commercial product. In either event, it is copyrighted by the author. |
| 21 | // What you see here may be used freely but it comes with no support or |
| 22 | // guarantee. |
| 23 | // |
| 24 | // The two known misprints in the book are repaired here in the |
| 25 | // source listings for the gamma function and the incomplete beta |
| 26 | // integral. |
| 27 | // |
| 28 | // Stephen L. Moshier |
| 29 | // moshier@na-net.ornl.gov |
| 30 | |
| 31 | // Complex circular sine |
| 32 | // |
| 33 | // DESCRIPTION: |
| 34 | // |
| 35 | // If |
| 36 | // z = x + iy, |
| 37 | // |
| 38 | // then |
| 39 | // |
| 40 | // w = sin x cosh y + i cos x sinh y. |
| 41 | // |
| 42 | // csin(z) = -i csinh(iz). |
| 43 | // |
| 44 | // ACCURACY: |
| 45 | // |
| 46 | // Relative error: |
| 47 | // arithmetic domain # trials peak rms |
| 48 | // DEC -10,+10 8400 5.3e-17 1.3e-17 |
| 49 | // IEEE -10,+10 30000 3.8e-16 1.0e-16 |
| 50 | // Also tested by csin(casin(z)) = z. |
| 51 | |
| 52 | // Sin returns the sine of x. |
| 53 | func Sin(x complex128) complex128 { |
| 54 | s, c := math.Sincos(real(x)) |
| 55 | sh, ch := sinhcosh(imag(x)) |
| 56 | return cmplx(s*ch, c*sh) |
| 57 | } |
| 58 | |
| 59 | // Complex hyperbolic sine |
| 60 | // |
| 61 | // DESCRIPTION: |
| 62 | // |
| 63 | // csinh z = (cexp(z) - cexp(-z))/2 |
| 64 | // = sinh x * cos y + i cosh x * sin y . |
| 65 | // |
| 66 | // ACCURACY: |
| 67 | // |
| 68 | // Relative error: |
| 69 | // arithmetic domain # trials peak rms |
| 70 | // IEEE -10,+10 30000 3.1e-16 8.2e-17 |
| 71 | |
| 72 | // Sinh returns the hyperbolic sine of x. |
| 73 | func Sinh(x complex128) complex128 { |
| 74 | s, c := math.Sincos(imag(x)) |
| 75 | sh, ch := sinhcosh(real(x)) |
| 76 | return cmplx(c*sh, s*ch) |
| 77 | } |
| 78 | |
| 79 | // Complex circular cosine |
| 80 | // |
| 81 | // DESCRIPTION: |
| 82 | // |
| 83 | // If |
| 84 | // z = x + iy, |
| 85 | // |
| 86 | // then |
| 87 | // |
| 88 | // w = cos x cosh y - i sin x sinh y. |
| 89 | // |
| 90 | // ACCURACY: |
| 91 | // |
| 92 | // Relative error: |
| 93 | // arithmetic domain # trials peak rms |
| 94 | // DEC -10,+10 8400 4.5e-17 1.3e-17 |
| 95 | // IEEE -10,+10 30000 3.8e-16 1.0e-16 |
| 96 | |
| 97 | // Cos returns the cosine of x. |
| 98 | func Cos(x complex128) complex128 { |
| 99 | s, c := math.Sincos(real(x)) |
| 100 | sh, ch := sinhcosh(imag(x)) |
| 101 | return cmplx(c*ch, -s*sh) |
| 102 | } |
| 103 | |
| 104 | // Complex hyperbolic cosine |
| 105 | // |
| 106 | // DESCRIPTION: |
| 107 | // |
| 108 | // ccosh(z) = cosh x cos y + i sinh x sin y . |
| 109 | // |
| 110 | // ACCURACY: |
| 111 | // |
| 112 | // Relative error: |
| 113 | // arithmetic domain # trials peak rms |
| 114 | // IEEE -10,+10 30000 2.9e-16 8.1e-17 |
| 115 | |
| 116 | // Cosh returns the hyperbolic cosine of x. |
| 117 | func Cosh(x complex128) complex128 { |
| 118 | s, c := math.Sincos(imag(x)) |
| 119 | sh, ch := sinhcosh(real(x)) |
| 120 | return cmplx(c*ch, s*sh) |
| 121 | } |
| 122 | |
| 123 | // calculate sinh and cosh |
| 124 | func sinhcosh(x float64) (sh, ch float64) { |
| 125 | if math.Fabs(x) <= 0.5 { |
| 126 | return math.Sinh(x), math.Cosh(x) |
| 127 | } |
| 128 | e := math.Exp(x) |
| 129 | ei := 0.5 / e |
| 130 | e *= 0.5 |
| 131 | return e - ei, e + ei |
| 132 | } |