| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs.h" |
| #include "os.h" |
| #include "stack.h" |
| |
| extern SigTab runtime·sigtab[]; |
| |
| // Linux futex. |
| // |
| // futexsleep(uint32 *addr, uint32 val) |
| // futexwakeup(uint32 *addr) |
| // |
| // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. |
| // Futexwakeup wakes up one thread sleeping on addr. |
| // Futexsleep is allowed to wake up spuriously. |
| |
| enum |
| { |
| FUTEX_WAIT = 0, |
| FUTEX_WAKE = 1, |
| |
| EINTR = 4, |
| EAGAIN = 11, |
| }; |
| |
| // TODO(rsc): I tried using 1<<40 here but futex woke up (-ETIMEDOUT). |
| // I wonder if the timespec that gets to the kernel |
| // actually has two 32-bit numbers in it, so that |
| // a 64-bit 1<<40 ends up being 0 seconds, |
| // 1<<8 nanoseconds. |
| static Timespec longtime = |
| { |
| 1<<30, // 34 years |
| 0 |
| }; |
| |
| // Atomically, |
| // if(*addr == val) sleep |
| // Might be woken up spuriously; that's allowed. |
| static void |
| futexsleep(uint32 *addr, uint32 val) |
| { |
| // Some Linux kernels have a bug where futex of |
| // FUTEX_WAIT returns an internal error code |
| // as an errno. Libpthread ignores the return value |
| // here, and so can we: as it says a few lines up, |
| // spurious wakeups are allowed. |
| runtime·futex(addr, FUTEX_WAIT, val, &longtime, nil, 0); |
| } |
| |
| // If any procs are sleeping on addr, wake up at least one. |
| static void |
| futexwakeup(uint32 *addr) |
| { |
| int64 ret; |
| |
| ret = runtime·futex(addr, FUTEX_WAKE, 1, nil, nil, 0); |
| |
| if(ret >= 0) |
| return; |
| |
| // I don't know that futex wakeup can return |
| // EAGAIN or EINTR, but if it does, it would be |
| // safe to loop and call futex again. |
| |
| runtime·prints("futexwakeup addr="); |
| runtime·printpointer(addr); |
| runtime·prints(" returned "); |
| runtime·printint(ret); |
| runtime·prints("\n"); |
| *(int32*)0x1006 = 0x1006; |
| } |
| |
| |
| // Lock and unlock. |
| // |
| // The lock state is a single 32-bit word that holds |
| // a 31-bit count of threads waiting for the lock |
| // and a single bit (the low bit) saying whether the lock is held. |
| // The uncontended case runs entirely in user space. |
| // When contention is detected, we defer to the kernel (futex). |
| // |
| // A reminder: compare-and-swap runtime·cas(addr, old, new) does |
| // if(*addr == old) { *addr = new; return 1; } |
| // else return 0; |
| // but atomically. |
| |
| static void |
| futexlock(Lock *l) |
| { |
| uint32 v; |
| |
| again: |
| v = l->key; |
| if((v&1) == 0){ |
| if(runtime·cas(&l->key, v, v|1)){ |
| // Lock wasn't held; we grabbed it. |
| return; |
| } |
| goto again; |
| } |
| |
| // Lock was held; try to add ourselves to the waiter count. |
| if(!runtime·cas(&l->key, v, v+2)) |
| goto again; |
| |
| // We're accounted for, now sleep in the kernel. |
| // |
| // We avoid the obvious lock/unlock race because |
| // the kernel won't put us to sleep if l->key has |
| // changed underfoot and is no longer v+2. |
| // |
| // We only really care that (v&1) == 1 (the lock is held), |
| // and in fact there is a futex variant that could |
| // accommodate that check, but let's not get carried away.) |
| futexsleep(&l->key, v+2); |
| |
| // We're awake: remove ourselves from the count. |
| for(;;){ |
| v = l->key; |
| if(v < 2) |
| runtime·throw("bad lock key"); |
| if(runtime·cas(&l->key, v, v-2)) |
| break; |
| } |
| |
| // Try for the lock again. |
| goto again; |
| } |
| |
| static void |
| futexunlock(Lock *l) |
| { |
| uint32 v; |
| |
| // Atomically get value and clear lock bit. |
| again: |
| v = l->key; |
| if((v&1) == 0) |
| runtime·throw("unlock of unlocked lock"); |
| if(!runtime·cas(&l->key, v, v&~1)) |
| goto again; |
| |
| // If there were waiters, wake one. |
| if(v & ~1) |
| futexwakeup(&l->key); |
| } |
| |
| void |
| runtime·lock(Lock *l) |
| { |
| if(m->locks < 0) |
| runtime·throw("lock count"); |
| m->locks++; |
| futexlock(l); |
| } |
| |
| void |
| runtime·unlock(Lock *l) |
| { |
| m->locks--; |
| if(m->locks < 0) |
| runtime·throw("lock count"); |
| futexunlock(l); |
| } |
| |
| void |
| runtime·destroylock(Lock*) |
| { |
| } |
| |
| |
| // One-time notifications. |
| // |
| // Since the lock/unlock implementation already |
| // takes care of sleeping in the kernel, we just reuse it. |
| // (But it's a weird use, so it gets its own interface.) |
| // |
| // We use a lock to represent the event: |
| // unlocked == event has happened. |
| // Thus the lock starts out locked, and to wait for the |
| // event you try to lock the lock. To signal the event, |
| // you unlock the lock. |
| |
| void |
| runtime·noteclear(Note *n) |
| { |
| n->lock.key = 0; // memset(n, 0, sizeof *n) |
| futexlock(&n->lock); |
| } |
| |
| void |
| runtime·notewakeup(Note *n) |
| { |
| futexunlock(&n->lock); |
| } |
| |
| void |
| runtime·notesleep(Note *n) |
| { |
| futexlock(&n->lock); |
| futexunlock(&n->lock); // Let other sleepers find out too. |
| } |
| |
| |
| // Clone, the Linux rfork. |
| enum |
| { |
| CLONE_VM = 0x100, |
| CLONE_FS = 0x200, |
| CLONE_FILES = 0x400, |
| CLONE_SIGHAND = 0x800, |
| CLONE_PTRACE = 0x2000, |
| CLONE_VFORK = 0x4000, |
| CLONE_PARENT = 0x8000, |
| CLONE_THREAD = 0x10000, |
| CLONE_NEWNS = 0x20000, |
| CLONE_SYSVSEM = 0x40000, |
| CLONE_SETTLS = 0x80000, |
| CLONE_PARENT_SETTID = 0x100000, |
| CLONE_CHILD_CLEARTID = 0x200000, |
| CLONE_UNTRACED = 0x800000, |
| CLONE_CHILD_SETTID = 0x1000000, |
| CLONE_STOPPED = 0x2000000, |
| CLONE_NEWUTS = 0x4000000, |
| CLONE_NEWIPC = 0x8000000, |
| }; |
| |
| void |
| runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) |
| { |
| int32 ret; |
| int32 flags; |
| |
| /* |
| * note: strace gets confused if we use CLONE_PTRACE here. |
| */ |
| flags = CLONE_VM /* share memory */ |
| | CLONE_FS /* share cwd, etc */ |
| | CLONE_FILES /* share fd table */ |
| | CLONE_SIGHAND /* share sig handler table */ |
| | CLONE_THREAD /* revisit - okay for now */ |
| ; |
| |
| m->tls[0] = m->id; // so 386 asm can find it |
| if(0){ |
| runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n", |
| stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m); |
| } |
| |
| if((ret = runtime·clone(flags, stk, m, g, fn)) < 0) { |
| runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret); |
| runtime·throw("runtime.newosproc"); |
| } |
| } |
| |
| void |
| runtime·osinit(void) |
| { |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling. |
| m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K |
| runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); |
| } |
| |
| void |
| runtime·sigpanic(void) |
| { |
| switch(g->sig) { |
| case SIGBUS: |
| if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGSEGV: |
| if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGFPE: |
| switch(g->sigcode0) { |
| case FPE_INTDIV: |
| runtime·panicstring("integer divide by zero"); |
| case FPE_INTOVF: |
| runtime·panicstring("integer overflow"); |
| } |
| runtime·panicstring("floating point error"); |
| } |
| runtime·panicstring(runtime·sigtab[g->sig].name); |
| } |