| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package fmt |
| |
| import ( |
| "bytes" |
| "io" |
| "os" |
| "reflect" |
| "utf8" |
| ) |
| |
| // Some constants in the form of bytes, to avoid string overhead. |
| // Needlessly fastidious, I suppose. |
| var ( |
| commaSpaceBytes = []byte(", ") |
| nilAngleBytes = []byte("<nil>") |
| nilParenBytes = []byte("(nil)") |
| nilBytes = []byte("nil") |
| mapBytes = []byte("map[") |
| missingBytes = []byte("(MISSING)") |
| extraBytes = []byte("%!(EXTRA ") |
| irparenBytes = []byte("i)") |
| bytesBytes = []byte("[]byte{") |
| widthBytes = []byte("%!(BADWIDTH)") |
| precBytes = []byte("%!(BADPREC)") |
| noVerbBytes = []byte("%!(NOVERB)") |
| ) |
| |
| // State represents the printer state passed to custom formatters. |
| // It provides access to the io.Writer interface plus information about |
| // the flags and options for the operand's format specifier. |
| type State interface { |
| // Write is the function to call to emit formatted output to be printed. |
| Write(b []byte) (ret int, err os.Error) |
| // Width returns the value of the width option and whether it has been set. |
| Width() (wid int, ok bool) |
| // Precision returns the value of the precision option and whether it has been set. |
| Precision() (prec int, ok bool) |
| |
| // Flag returns whether the flag c, a character, has been set. |
| Flag(int) bool |
| } |
| |
| // Formatter is the interface implemented by values with a custom formatter. |
| // The implementation of Format may call Sprintf or Fprintf(f) etc. |
| // to generate its output. |
| type Formatter interface { |
| Format(f State, c int) |
| } |
| |
| // Stringer is implemented by any value that has a String method(), |
| // which defines the ``native'' format for that value. |
| // The String method is used to print values passed as an operand |
| // to a %s or %v format or to an unformatted printer such as Print. |
| type Stringer interface { |
| String() string |
| } |
| |
| // GoStringer is implemented by any value that has a GoString() method, |
| // which defines the Go syntax for that value. |
| // The GoString method is used to print values passed as an operand |
| // to a %#v format. |
| type GoStringer interface { |
| GoString() string |
| } |
| |
| type pp struct { |
| n int |
| buf bytes.Buffer |
| runeBuf [utf8.UTFMax]byte |
| fmt fmt |
| } |
| |
| // A cache holds a set of reusable objects. |
| // The buffered channel holds the currently available objects. |
| // If more are needed, the cache creates them by calling new. |
| type cache struct { |
| saved chan interface{} |
| new func() interface{} |
| } |
| |
| func (c *cache) put(x interface{}) { |
| select { |
| case c.saved <- x: |
| // saved in cache |
| default: |
| // discard |
| } |
| } |
| |
| func (c *cache) get() interface{} { |
| select { |
| case x := <-c.saved: |
| return x // reused from cache |
| default: |
| return c.new() |
| } |
| panic("not reached") |
| } |
| |
| func newCache(f func() interface{}) *cache { |
| return &cache{make(chan interface{}, 100), f} |
| } |
| |
| var ppFree = newCache(func() interface{} { return new(pp) }) |
| |
| // Allocate a new pp struct or grab a cached one. |
| func newPrinter() *pp { |
| p := ppFree.get().(*pp) |
| p.fmt.init(&p.buf) |
| return p |
| } |
| |
| // Save used pp structs in ppFree; avoids an allocation per invocation. |
| func (p *pp) free() { |
| // Don't hold on to pp structs with large buffers. |
| if cap(p.buf.Bytes()) > 1024 { |
| return |
| } |
| p.buf.Reset() |
| ppFree.put(p) |
| } |
| |
| func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } |
| |
| func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } |
| |
| func (p *pp) Flag(b int) bool { |
| switch b { |
| case '-': |
| return p.fmt.minus |
| case '+': |
| return p.fmt.plus |
| case '#': |
| return p.fmt.sharp |
| case ' ': |
| return p.fmt.space |
| case '0': |
| return p.fmt.zero |
| } |
| return false |
| } |
| |
| func (p *pp) add(c int) { |
| p.buf.WriteRune(c) |
| } |
| |
| // Implement Write so we can call Fprintf on a pp (through State), for |
| // recursive use in custom verbs. |
| func (p *pp) Write(b []byte) (ret int, err os.Error) { |
| return p.buf.Write(b) |
| } |
| |
| // These routines end in 'f' and take a format string. |
| |
| // Fprintf formats according to a format specifier and writes to w. |
| // It returns the number of bytes written and any write error encountered. |
| func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) { |
| p := newPrinter() |
| p.doPrintf(format, a) |
| n64, error := p.buf.WriteTo(w) |
| p.free() |
| return int(n64), error |
| } |
| |
| // Printf formats according to a format specifier and writes to standard output. |
| // It returns the number of bytes written and any write error encountered. |
| func Printf(format string, a ...interface{}) (n int, errno os.Error) { |
| n, errno = Fprintf(os.Stdout, format, a...) |
| return n, errno |
| } |
| |
| // Sprintf formats according to a format specifier and returns the resulting string. |
| func Sprintf(format string, a ...interface{}) string { |
| p := newPrinter() |
| p.doPrintf(format, a) |
| s := p.buf.String() |
| p.free() |
| return s |
| } |
| |
| // Errorf formats according to a format specifier and returns the string |
| // converted to an os.ErrorString, which satisfies the os.Error interface. |
| func Errorf(format string, a ...interface{}) os.Error { |
| return os.NewError(Sprintf(format, a...)) |
| } |
| |
| // These routines do not take a format string |
| |
| // Fprint formats using the default formats for its operands and writes to w. |
| // Spaces are added between operands when neither is a string. |
| // It returns the number of bytes written and any write error encountered. |
| func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) { |
| p := newPrinter() |
| p.doPrint(a, false, false) |
| n64, error := p.buf.WriteTo(w) |
| p.free() |
| return int(n64), error |
| } |
| |
| // Print formats using the default formats for its operands and writes to standard output. |
| // Spaces are added between operands when neither is a string. |
| // It returns the number of bytes written and any write error encountered. |
| func Print(a ...interface{}) (n int, errno os.Error) { |
| n, errno = Fprint(os.Stdout, a...) |
| return n, errno |
| } |
| |
| // Sprint formats using the default formats for its operands and returns the resulting string. |
| // Spaces are added between operands when neither is a string. |
| func Sprint(a ...interface{}) string { |
| p := newPrinter() |
| p.doPrint(a, false, false) |
| s := p.buf.String() |
| p.free() |
| return s |
| } |
| |
| // These routines end in 'ln', do not take a format string, |
| // always add spaces between operands, and add a newline |
| // after the last operand. |
| |
| // Fprintln formats using the default formats for its operands and writes to w. |
| // Spaces are always added between operands and a newline is appended. |
| // It returns the number of bytes written and any write error encountered. |
| func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) { |
| p := newPrinter() |
| p.doPrint(a, true, true) |
| n64, error := p.buf.WriteTo(w) |
| p.free() |
| return int(n64), error |
| } |
| |
| // Println formats using the default formats for its operands and writes to standard output. |
| // Spaces are always added between operands and a newline is appended. |
| // It returns the number of bytes written and any write error encountered. |
| func Println(a ...interface{}) (n int, errno os.Error) { |
| n, errno = Fprintln(os.Stdout, a...) |
| return n, errno |
| } |
| |
| // Sprintln formats using the default formats for its operands and returns the resulting string. |
| // Spaces are always added between operands and a newline is appended. |
| func Sprintln(a ...interface{}) string { |
| p := newPrinter() |
| p.doPrint(a, true, true) |
| s := p.buf.String() |
| p.free() |
| return s |
| } |
| |
| // Get the i'th arg of the struct value. |
| // If the arg itself is an interface, return a value for |
| // the thing inside the interface, not the interface itself. |
| func getField(v *reflect.StructValue, i int) reflect.Value { |
| val := v.Field(i) |
| if i, ok := val.(*reflect.InterfaceValue); ok { |
| if inter := i.Interface(); inter != nil { |
| return reflect.NewValue(inter) |
| } |
| } |
| return val |
| } |
| |
| // Convert ASCII to integer. n is 0 (and got is false) if no number present. |
| func parsenum(s string, start, end int) (num int, isnum bool, newi int) { |
| if start >= end { |
| return 0, false, end |
| } |
| for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { |
| num = num*10 + int(s[newi]-'0') |
| isnum = true |
| } |
| return |
| } |
| |
| func (p *pp) unknownType(v interface{}) { |
| if v == nil { |
| p.buf.Write(nilAngleBytes) |
| return |
| } |
| p.buf.WriteByte('?') |
| p.buf.WriteString(reflect.Typeof(v).String()) |
| p.buf.WriteByte('?') |
| } |
| |
| func (p *pp) badVerb(verb int, val interface{}) { |
| p.add('%') |
| p.add('!') |
| p.add(verb) |
| p.add('(') |
| if val == nil { |
| p.buf.Write(nilAngleBytes) |
| } else { |
| p.buf.WriteString(reflect.Typeof(val).String()) |
| p.add('=') |
| p.printField(val, 'v', false, false, 0) |
| } |
| p.add(')') |
| } |
| |
| func (p *pp) fmtBool(v bool, verb int, value interface{}) { |
| switch verb { |
| case 't', 'v': |
| p.fmt.fmt_boolean(v) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| // fmtC formats a rune for the 'c' format. |
| func (p *pp) fmtC(c int64) { |
| rune := int(c) // Check for overflow. |
| if int64(rune) != c { |
| rune = utf8.RuneError |
| } |
| w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], rune) |
| p.fmt.pad(p.runeBuf[0:w]) |
| } |
| |
| func (p *pp) fmtInt64(v int64, verb int, value interface{}) { |
| switch verb { |
| case 'b': |
| p.fmt.integer(v, 2, signed, ldigits) |
| case 'c': |
| p.fmtC(v) |
| case 'd', 'v': |
| p.fmt.integer(v, 10, signed, ldigits) |
| case 'o': |
| p.fmt.integer(v, 8, signed, ldigits) |
| case 'x': |
| p.fmt.integer(v, 16, signed, ldigits) |
| case 'U': |
| p.fmtUnicode(v) |
| case 'X': |
| p.fmt.integer(v, 16, signed, udigits) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or |
| // not, as requested, by temporarily setting the sharp flag. |
| func (p *pp) fmt0x64(v uint64, leading0x bool) { |
| sharp := p.fmt.sharp |
| p.fmt.sharp = leading0x |
| p.fmt.integer(int64(v), 16, unsigned, ldigits) |
| p.fmt.sharp = sharp |
| } |
| |
| // fmtUnicode formats a uint64 in U+1234 form by |
| // temporarily turning on the unicode flag and tweaking the precision. |
| func (p *pp) fmtUnicode(v int64) { |
| precPresent := p.fmt.precPresent |
| prec := p.fmt.prec |
| if !precPresent { |
| // If prec is already set, leave it alone; otherwise 4 is minimum. |
| p.fmt.prec = 4 |
| p.fmt.precPresent = true |
| } |
| p.fmt.unicode = true // turn on U+ |
| p.fmt.integer(int64(v), 16, unsigned, udigits) |
| p.fmt.unicode = false |
| p.fmt.prec = prec |
| p.fmt.precPresent = precPresent |
| } |
| |
| func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) { |
| switch verb { |
| case 'b': |
| p.fmt.integer(int64(v), 2, unsigned, ldigits) |
| case 'c': |
| p.fmtC(int64(v)) |
| case 'd': |
| p.fmt.integer(int64(v), 10, unsigned, ldigits) |
| case 'v': |
| if goSyntax { |
| p.fmt0x64(v, true) |
| } else { |
| p.fmt.integer(int64(v), 10, unsigned, ldigits) |
| } |
| case 'o': |
| p.fmt.integer(int64(v), 8, unsigned, ldigits) |
| case 'x': |
| p.fmt.integer(int64(v), 16, unsigned, ldigits) |
| case 'X': |
| p.fmt.integer(int64(v), 16, unsigned, udigits) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtFloat32(v float32, verb int, value interface{}) { |
| switch verb { |
| case 'b': |
| p.fmt.fmt_fb32(v) |
| case 'e': |
| p.fmt.fmt_e32(v) |
| case 'E': |
| p.fmt.fmt_E32(v) |
| case 'f': |
| p.fmt.fmt_f32(v) |
| case 'g', 'v': |
| p.fmt.fmt_g32(v) |
| case 'G': |
| p.fmt.fmt_G32(v) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtFloat64(v float64, verb int, value interface{}) { |
| switch verb { |
| case 'b': |
| p.fmt.fmt_fb64(v) |
| case 'e': |
| p.fmt.fmt_e64(v) |
| case 'E': |
| p.fmt.fmt_E64(v) |
| case 'f': |
| p.fmt.fmt_f64(v) |
| case 'g', 'v': |
| p.fmt.fmt_g64(v) |
| case 'G': |
| p.fmt.fmt_G64(v) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) { |
| switch verb { |
| case 'e', 'E', 'f', 'F', 'g', 'G': |
| p.fmt.fmt_c64(v, verb) |
| case 'v': |
| p.fmt.fmt_c64(v, 'g') |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) { |
| switch verb { |
| case 'e', 'E', 'f', 'F', 'g', 'G': |
| p.fmt.fmt_c128(v, verb) |
| case 'v': |
| p.fmt.fmt_c128(v, 'g') |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) { |
| switch verb { |
| case 'v': |
| if goSyntax { |
| p.fmt.fmt_q(v) |
| } else { |
| p.fmt.fmt_s(v) |
| } |
| case 's': |
| p.fmt.fmt_s(v) |
| case 'x': |
| p.fmt.fmt_sx(v) |
| case 'X': |
| p.fmt.fmt_sX(v) |
| case 'q': |
| p.fmt.fmt_q(v) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) { |
| if verb == 'v' || verb == 'd' { |
| if goSyntax { |
| p.buf.Write(bytesBytes) |
| } else { |
| p.buf.WriteByte('[') |
| } |
| for i, c := range v { |
| if i > 0 { |
| if goSyntax { |
| p.buf.Write(commaSpaceBytes) |
| } else { |
| p.buf.WriteByte(' ') |
| } |
| } |
| p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1) |
| } |
| if goSyntax { |
| p.buf.WriteByte('}') |
| } else { |
| p.buf.WriteByte(']') |
| } |
| return |
| } |
| s := string(v) |
| switch verb { |
| case 's': |
| p.fmt.fmt_s(s) |
| case 'x': |
| p.fmt.fmt_sx(s) |
| case 'X': |
| p.fmt.fmt_sX(s) |
| case 'q': |
| p.fmt.fmt_q(s) |
| default: |
| p.badVerb(verb, value) |
| } |
| } |
| |
| func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) { |
| var u uintptr |
| switch value.(type) { |
| case *reflect.ChanValue, *reflect.FuncValue, *reflect.MapValue, *reflect.PtrValue, *reflect.SliceValue, *reflect.UnsafePointerValue: |
| u = value.Pointer() |
| default: |
| p.badVerb(verb, field) |
| return |
| } |
| if goSyntax { |
| p.add('(') |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| p.add(')') |
| p.add('(') |
| if u == 0 { |
| p.buf.Write(nilBytes) |
| } else { |
| p.fmt0x64(uint64(u), true) |
| } |
| p.add(')') |
| } else { |
| p.fmt0x64(uint64(u), !p.fmt.sharp) |
| } |
| } |
| |
| var ( |
| intBits = reflect.Typeof(0).Bits() |
| floatBits = reflect.Typeof(0.0).Bits() |
| complexBits = reflect.Typeof(1i).Bits() |
| uintptrBits = reflect.Typeof(uintptr(0)).Bits() |
| ) |
| |
| func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) { |
| if field == nil { |
| if verb == 'T' || verb == 'v' { |
| p.buf.Write(nilAngleBytes) |
| } else { |
| p.badVerb(verb, field) |
| } |
| return false |
| } |
| |
| // Special processing considerations. |
| // %T (the value's type) and %p (its address) are special; we always do them first. |
| switch verb { |
| case 'T': |
| p.printField(reflect.Typeof(field).String(), 's', false, false, 0) |
| return false |
| case 'p': |
| p.fmtPointer(field, reflect.NewValue(field), verb, goSyntax) |
| return false |
| } |
| // Is it a Formatter? |
| if formatter, ok := field.(Formatter); ok { |
| formatter.Format(p, verb) |
| return false // this value is not a string |
| |
| } |
| // Must not touch flags before Formatter looks at them. |
| if plus { |
| p.fmt.plus = false |
| } |
| // If we're doing Go syntax and the field knows how to supply it, take care of it now. |
| if goSyntax { |
| p.fmt.sharp = false |
| if stringer, ok := field.(GoStringer); ok { |
| // Print the result of GoString unadorned. |
| p.fmtString(stringer.GoString(), 's', false, field) |
| return false // this value is not a string |
| } |
| } else { |
| // Is it a Stringer? |
| if stringer, ok := field.(Stringer); ok { |
| p.printField(stringer.String(), verb, plus, false, depth) |
| return false // this value is not a string |
| } |
| } |
| |
| // Some types can be done without reflection. |
| switch f := field.(type) { |
| case bool: |
| p.fmtBool(f, verb, field) |
| return false |
| case float32: |
| p.fmtFloat32(f, verb, field) |
| return false |
| case float64: |
| p.fmtFloat64(f, verb, field) |
| return false |
| case complex64: |
| p.fmtComplex64(complex64(f), verb, field) |
| return false |
| case complex128: |
| p.fmtComplex128(f, verb, field) |
| return false |
| case int: |
| p.fmtInt64(int64(f), verb, field) |
| return false |
| case int8: |
| p.fmtInt64(int64(f), verb, field) |
| return false |
| case int16: |
| p.fmtInt64(int64(f), verb, field) |
| return false |
| case int32: |
| p.fmtInt64(int64(f), verb, field) |
| return false |
| case int64: |
| p.fmtInt64(f, verb, field) |
| return false |
| case uint: |
| p.fmtUint64(uint64(f), verb, goSyntax, field) |
| return false |
| case uint8: |
| p.fmtUint64(uint64(f), verb, goSyntax, field) |
| return false |
| case uint16: |
| p.fmtUint64(uint64(f), verb, goSyntax, field) |
| return false |
| case uint32: |
| p.fmtUint64(uint64(f), verb, goSyntax, field) |
| return false |
| case uint64: |
| p.fmtUint64(f, verb, goSyntax, field) |
| return false |
| case uintptr: |
| p.fmtUint64(uint64(f), verb, goSyntax, field) |
| return false |
| case string: |
| p.fmtString(f, verb, goSyntax, field) |
| return verb == 's' || verb == 'v' |
| case []byte: |
| p.fmtBytes(f, verb, goSyntax, depth, field) |
| return verb == 's' |
| } |
| |
| // Need to use reflection |
| value := reflect.NewValue(field) |
| |
| BigSwitch: |
| switch f := value.(type) { |
| case *reflect.BoolValue: |
| p.fmtBool(f.Get(), verb, field) |
| case *reflect.IntValue: |
| p.fmtInt64(f.Get(), verb, field) |
| case *reflect.UintValue: |
| p.fmtUint64(uint64(f.Get()), verb, goSyntax, field) |
| case *reflect.FloatValue: |
| if f.Type().Size() == 4 { |
| p.fmtFloat32(float32(f.Get()), verb, field) |
| } else { |
| p.fmtFloat64(float64(f.Get()), verb, field) |
| } |
| case *reflect.ComplexValue: |
| if f.Type().Size() == 8 { |
| p.fmtComplex64(complex64(f.Get()), verb, field) |
| } else { |
| p.fmtComplex128(complex128(f.Get()), verb, field) |
| } |
| case *reflect.StringValue: |
| p.fmtString(f.Get(), verb, goSyntax, field) |
| case *reflect.MapValue: |
| if goSyntax { |
| p.buf.WriteString(f.Type().String()) |
| p.buf.WriteByte('{') |
| } else { |
| p.buf.Write(mapBytes) |
| } |
| keys := f.Keys() |
| for i, key := range keys { |
| if i > 0 { |
| if goSyntax { |
| p.buf.Write(commaSpaceBytes) |
| } else { |
| p.buf.WriteByte(' ') |
| } |
| } |
| p.printField(key.Interface(), verb, plus, goSyntax, depth+1) |
| p.buf.WriteByte(':') |
| p.printField(f.Elem(key).Interface(), verb, plus, goSyntax, depth+1) |
| } |
| if goSyntax { |
| p.buf.WriteByte('}') |
| } else { |
| p.buf.WriteByte(']') |
| } |
| case *reflect.StructValue: |
| if goSyntax { |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| } |
| p.add('{') |
| v := f |
| t := v.Type().(*reflect.StructType) |
| for i := 0; i < v.NumField(); i++ { |
| if i > 0 { |
| if goSyntax { |
| p.buf.Write(commaSpaceBytes) |
| } else { |
| p.buf.WriteByte(' ') |
| } |
| } |
| if plus || goSyntax { |
| if f := t.Field(i); f.Name != "" { |
| p.buf.WriteString(f.Name) |
| p.buf.WriteByte(':') |
| } |
| } |
| p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1) |
| } |
| p.buf.WriteByte('}') |
| case *reflect.InterfaceValue: |
| value := f.Elem() |
| if value == nil { |
| if goSyntax { |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| p.buf.Write(nilParenBytes) |
| } else { |
| p.buf.Write(nilAngleBytes) |
| } |
| } else { |
| return p.printField(value.Interface(), verb, plus, goSyntax, depth+1) |
| } |
| case reflect.ArrayOrSliceValue: |
| // Byte slices are special. |
| if f.Type().(reflect.ArrayOrSliceType).Elem().Kind() == reflect.Uint8 { |
| // We know it's a slice of bytes, but we also know it does not have static type |
| // []byte, or it would have been caught above. Therefore we cannot convert |
| // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have |
| // that type, and we can't write an expression of the right type and do a |
| // conversion because we don't have a static way to write the right type. |
| // So we build a slice by hand. This is a rare case but it would be nice |
| // if reflection could help a little more. |
| bytes := make([]byte, f.Len()) |
| for i := range bytes { |
| bytes[i] = byte(f.Elem(i).(*reflect.UintValue).Get()) |
| } |
| p.fmtBytes(bytes, verb, goSyntax, depth, field) |
| return verb == 's' |
| } |
| if goSyntax { |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| p.buf.WriteByte('{') |
| } else { |
| p.buf.WriteByte('[') |
| } |
| for i := 0; i < f.Len(); i++ { |
| if i > 0 { |
| if goSyntax { |
| p.buf.Write(commaSpaceBytes) |
| } else { |
| p.buf.WriteByte(' ') |
| } |
| } |
| p.printField(f.Elem(i).Interface(), verb, plus, goSyntax, depth+1) |
| } |
| if goSyntax { |
| p.buf.WriteByte('}') |
| } else { |
| p.buf.WriteByte(']') |
| } |
| case *reflect.PtrValue: |
| v := f.Get() |
| // pointer to array or slice or struct? ok at top level |
| // but not embedded (avoid loops) |
| if v != 0 && depth == 0 { |
| switch a := f.Elem().(type) { |
| case reflect.ArrayOrSliceValue: |
| p.buf.WriteByte('&') |
| p.printField(a.Interface(), verb, plus, goSyntax, depth+1) |
| break BigSwitch |
| case *reflect.StructValue: |
| p.buf.WriteByte('&') |
| p.printField(a.Interface(), verb, plus, goSyntax, depth+1) |
| break BigSwitch |
| } |
| } |
| if goSyntax { |
| p.buf.WriteByte('(') |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| p.buf.WriteByte(')') |
| p.buf.WriteByte('(') |
| if v == 0 { |
| p.buf.Write(nilBytes) |
| } else { |
| p.fmt0x64(uint64(v), true) |
| } |
| p.buf.WriteByte(')') |
| break |
| } |
| if v == 0 { |
| p.buf.Write(nilAngleBytes) |
| break |
| } |
| p.fmt0x64(uint64(v), true) |
| case *reflect.ChanValue, *reflect.FuncValue, *reflect.UnsafePointerValue: |
| p.fmtPointer(field, value, verb, goSyntax) |
| default: |
| p.unknownType(f) |
| } |
| return false |
| } |
| |
| // intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int. |
| func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) { |
| newi, newfieldnum = end, fieldnum |
| if i < end && fieldnum < len(a) { |
| num, isInt = a[fieldnum].(int) |
| newi, newfieldnum = i+1, fieldnum+1 |
| } |
| return |
| } |
| |
| func (p *pp) doPrintf(format string, a []interface{}) { |
| end := len(format) |
| fieldnum := 0 // we process one field per non-trivial format |
| for i := 0; i < end; { |
| lasti := i |
| for i < end && format[i] != '%' { |
| i++ |
| } |
| if i > lasti { |
| p.buf.WriteString(format[lasti:i]) |
| } |
| if i >= end { |
| // done processing format string |
| break |
| } |
| |
| // Process one verb |
| i++ |
| // flags and widths |
| p.fmt.clearflags() |
| F: |
| for ; i < end; i++ { |
| switch format[i] { |
| case '#': |
| p.fmt.sharp = true |
| case '0': |
| p.fmt.zero = true |
| case '+': |
| p.fmt.plus = true |
| case '-': |
| p.fmt.minus = true |
| case ' ': |
| p.fmt.space = true |
| default: |
| break F |
| } |
| } |
| // do we have width? |
| if i < end && format[i] == '*' { |
| p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum) |
| if !p.fmt.widPresent { |
| p.buf.Write(widthBytes) |
| } |
| } else { |
| p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) |
| } |
| // do we have precision? |
| if i < end && format[i] == '.' { |
| if format[i+1] == '*' { |
| p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum) |
| if !p.fmt.precPresent { |
| p.buf.Write(precBytes) |
| } |
| } else { |
| p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end) |
| } |
| } |
| if i >= end { |
| p.buf.Write(noVerbBytes) |
| continue |
| } |
| c, w := utf8.DecodeRuneInString(format[i:]) |
| i += w |
| // percent is special - absorbs no operand |
| if c == '%' { |
| p.buf.WriteByte('%') // We ignore width and prec. |
| continue |
| } |
| if fieldnum >= len(a) { // out of operands |
| p.buf.WriteByte('%') |
| p.add(c) |
| p.buf.Write(missingBytes) |
| continue |
| } |
| field := a[fieldnum] |
| fieldnum++ |
| |
| goSyntax := c == 'v' && p.fmt.sharp |
| plus := c == 'v' && p.fmt.plus |
| p.printField(field, c, plus, goSyntax, 0) |
| } |
| |
| if fieldnum < len(a) { |
| p.buf.Write(extraBytes) |
| for ; fieldnum < len(a); fieldnum++ { |
| field := a[fieldnum] |
| if field != nil { |
| p.buf.WriteString(reflect.Typeof(field).String()) |
| p.buf.WriteByte('=') |
| } |
| p.printField(field, 'v', false, false, 0) |
| if fieldnum+1 < len(a) { |
| p.buf.Write(commaSpaceBytes) |
| } |
| } |
| p.buf.WriteByte(')') |
| } |
| } |
| |
| func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) { |
| prevString := false |
| for fieldnum := 0; fieldnum < len(a); fieldnum++ { |
| p.fmt.clearflags() |
| // always add spaces if we're doing println |
| field := a[fieldnum] |
| if fieldnum > 0 { |
| isString := field != nil && reflect.Typeof(field).Kind() == reflect.String |
| if addspace || !isString && !prevString { |
| p.buf.WriteByte(' ') |
| } |
| } |
| prevString = p.printField(field, 'v', false, false, 0) |
| } |
| if addnewline { |
| p.buf.WriteByte('\n') |
| } |
| } |