| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This package implements RSA encryption as specified in PKCS#1. |
| package rsa |
| |
| // TODO(agl): Add support for PSS padding. |
| |
| import ( |
| "big"; |
| "bytes"; |
| "crypto/subtle"; |
| "hash"; |
| "io"; |
| "os"; |
| ) |
| |
| var bigZero = big.NewInt(0) |
| var bigOne = big.NewInt(1) |
| |
| // randomSafePrime returns a number, p, of the given size, such that p and |
| // (p-1)/2 are both prime with high probability. |
| func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) { |
| if bits < 1 { |
| err = os.EINVAL |
| } |
| |
| bytes := make([]byte, (bits+7)/8); |
| p = new(big.Int); |
| p2 := new(big.Int); |
| |
| for { |
| _, err = io.ReadFull(rand, bytes); |
| if err != nil { |
| return |
| } |
| |
| // Don't let the value be too small. |
| bytes[0] |= 0x80; |
| // Make the value odd since an even number this large certainly isn't prime. |
| bytes[len(bytes)-1] |= 1; |
| |
| p.SetBytes(bytes); |
| if big.ProbablyPrime(p, 20) { |
| p2.Rsh(p, 1); // p2 = (p - 1)/2 |
| if big.ProbablyPrime(p2, 20) { |
| return |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| // randomNumber returns a uniform random value in [0, max). |
| func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) { |
| k := (max.Len() + 7) / 8; |
| |
| // r is the number of bits in the used in the most significant byte of |
| // max. |
| r := uint(max.Len() % 8); |
| if r == 0 { |
| r = 8 |
| } |
| |
| bytes := make([]byte, k); |
| n = new(big.Int); |
| |
| for { |
| _, err = io.ReadFull(rand, bytes); |
| if err != nil { |
| return |
| } |
| |
| // Clear bits in the first byte to increase the probability |
| // that the candidate is < max. |
| bytes[0] &= uint8(int(1<<r) - 1); |
| |
| n.SetBytes(bytes); |
| if n.Cmp(max) < 0 { |
| return |
| } |
| } |
| |
| return; |
| } |
| |
| // A PublicKey represents the public part of an RSA key. |
| type PublicKey struct { |
| N *big.Int; // modulus |
| E int; // public exponent |
| } |
| |
| // A PrivateKey represents an RSA key |
| type PrivateKey struct { |
| PublicKey; // public part. |
| D *big.Int; // private exponent |
| P, Q *big.Int; // prime factors of N |
| } |
| |
| // Validate performs basic sanity checks on the key. |
| // It returns nil if the key is valid, or else an os.Error describing a problem. |
| |
| func (priv PrivateKey) Validate() os.Error { |
| // Check that p and q are prime. Note that this is just a sanity |
| // check. Since the random witnesses chosen by ProbablyPrime are |
| // deterministic, given the candidate number, it's easy for an attack |
| // to generate composites that pass this test. |
| if !big.ProbablyPrime(priv.P, 20) { |
| return os.ErrorString("P is composite") |
| } |
| if !big.ProbablyPrime(priv.Q, 20) { |
| return os.ErrorString("Q is composite") |
| } |
| |
| // Check that p*q == n. |
| modulus := new(big.Int).Mul(priv.P, priv.Q); |
| if modulus.Cmp(priv.N) != 0 { |
| return os.ErrorString("invalid modulus") |
| } |
| // Check that e and totient(p, q) are coprime. |
| pminus1 := new(big.Int).Sub(priv.P, bigOne); |
| qminus1 := new(big.Int).Sub(priv.Q, bigOne); |
| totient := new(big.Int).Mul(pminus1, qminus1); |
| e := big.NewInt(int64(priv.E)); |
| gcd := new(big.Int); |
| x := new(big.Int); |
| y := new(big.Int); |
| big.GcdInt(gcd, x, y, totient, e); |
| if gcd.Cmp(bigOne) != 0 { |
| return os.ErrorString("invalid public exponent E") |
| } |
| // Check that de ≡ 1 (mod totient(p, q)) |
| de := new(big.Int).Mul(priv.D, e); |
| de.Mod(de, totient); |
| if de.Cmp(bigOne) != 0 { |
| return os.ErrorString("invalid private exponent D") |
| } |
| return nil; |
| } |
| |
| // GenerateKeyPair generates an RSA keypair of the given bit size. |
| func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) { |
| priv = new(PrivateKey); |
| // Smaller public exponents lead to faster public key |
| // operations. Since the exponent must be coprime to |
| // (p-1)(q-1), the smallest possible value is 3. Some have |
| // suggested that a larger exponent (often 2**16+1) be used |
| // since previous implementation bugs[1] were avoided when this |
| // was the case. However, there are no current reasons not to use |
| // small exponents. |
| // [1] http://marc.info/?l=cryptography&m=115694833312008&w=2 |
| priv.E = 3; |
| |
| pminus1 := new(big.Int); |
| qminus1 := new(big.Int); |
| totient := new(big.Int); |
| |
| for { |
| p, err := randomSafePrime(rand, bits/2); |
| if err != nil { |
| return |
| } |
| |
| q, err := randomSafePrime(rand, bits/2); |
| if err != nil { |
| return |
| } |
| |
| if p.Cmp(q) == 0 { |
| continue |
| } |
| |
| n := new(big.Int).Mul(p, q); |
| pminus1.Sub(p, bigOne); |
| qminus1.Sub(q, bigOne); |
| totient.Mul(pminus1, qminus1); |
| |
| g := new(big.Int); |
| priv.D = new(big.Int); |
| y := new(big.Int); |
| e := big.NewInt(int64(priv.E)); |
| big.GcdInt(g, priv.D, y, e, totient); |
| |
| if g.Cmp(bigOne) == 0 { |
| priv.D.Add(priv.D, totient); |
| priv.P = p; |
| priv.Q = q; |
| priv.N = n; |
| |
| break; |
| } |
| } |
| |
| return; |
| } |
| |
| // incCounter increments a four byte, big-endian counter. |
| func incCounter(c *[4]byte) { |
| if c[3]++; c[3] != 0 { |
| return |
| } |
| if c[2]++; c[2] != 0 { |
| return |
| } |
| if c[1]++; c[1] != 0 { |
| return |
| } |
| c[0]++; |
| } |
| |
| // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function |
| // specified in PKCS#1 v2.1. |
| func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { |
| var counter [4]byte; |
| |
| done := 0; |
| for done < len(out) { |
| hash.Write(seed); |
| hash.Write(counter[0:4]); |
| digest := hash.Sum(); |
| hash.Reset(); |
| |
| for i := 0; i < len(digest) && done < len(out); i++ { |
| out[done] ^= digest[i]; |
| done++; |
| } |
| incCounter(&counter); |
| } |
| } |
| |
| // MessageTooLongError is returned when attempting to encrypt a message which |
| // is too large for the size of the public key. |
| type MessageTooLongError struct{} |
| |
| func (MessageTooLongError) String() string { |
| return "message too long for RSA public key size" |
| } |
| |
| func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { |
| e := big.NewInt(int64(pub.E)); |
| c.Exp(m, e, pub.N); |
| return c; |
| } |
| |
| // EncryptOAEP encrypts the given message with RSA-OAEP. |
| // The message must be no longer than the length of the public modulus less |
| // twice the hash length plus 2. |
| func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) { |
| hash.Reset(); |
| k := (pub.N.Len() + 7) / 8; |
| if len(msg) > k-2*hash.Size()-2 { |
| err = MessageTooLongError{}; |
| return; |
| } |
| |
| hash.Write(label); |
| lHash := hash.Sum(); |
| hash.Reset(); |
| |
| em := make([]byte, k); |
| seed := em[1 : 1+hash.Size()]; |
| db := em[1+hash.Size() : len(em)]; |
| |
| bytes.Copy(db[0:hash.Size()], lHash); |
| db[len(db)-len(msg)-1] = 1; |
| bytes.Copy(db[len(db)-len(msg):len(db)], msg); |
| |
| _, err = io.ReadFull(rand, seed); |
| if err != nil { |
| return |
| } |
| |
| mgf1XOR(db, hash, seed); |
| mgf1XOR(seed, hash, db); |
| |
| m := new(big.Int); |
| m.SetBytes(em); |
| c := encrypt(new(big.Int), pub, m); |
| out = c.Bytes(); |
| return; |
| } |
| |
| // A DecryptionError represents a failure to decrypt a message. |
| // It is deliberately vague to avoid adaptive attacks. |
| type DecryptionError struct{} |
| |
| func (DecryptionError) String() string { return "RSA decryption error" } |
| |
| // A VerificationError represents a failure to verify a signature. |
| // It is deliberately vague to avoid adaptive attacks. |
| type VerificationError struct{} |
| |
| func (VerificationError) String() string { return "RSA verification error" } |
| |
| // modInverse returns ia, the inverse of a in the multiplicative group of prime |
| // order n. It requires that a be a member of the group (i.e. less than n). |
| func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { |
| g := new(big.Int); |
| x := new(big.Int); |
| y := new(big.Int); |
| big.GcdInt(g, x, y, a, n); |
| if g.Cmp(bigOne) != 0 { |
| // In this case, a and n aren't coprime and we cannot calculate |
| // the inverse. This happens because the values of n are nearly |
| // prime (being the product of two primes) rather than truly |
| // prime. |
| return |
| } |
| |
| if x.Cmp(bigOne) < 0 { |
| // 0 is not the multiplicative inverse of any element so, if x |
| // < 1, then x is negative. |
| x.Add(x, n) |
| } |
| |
| return x, true; |
| } |
| |
| // decrypt performs an RSA decryption, resulting in a plaintext integer. If a |
| // random source is given, RSA blinding is used. |
| func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) { |
| // TODO(agl): can we get away with reusing blinds? |
| if c.Cmp(priv.N) > 0 { |
| err = DecryptionError{}; |
| return; |
| } |
| |
| var ir *big.Int; |
| if rand != nil { |
| // Blinding enabled. Blinding involves multiplying c by r^e. |
| // Then the decryption operation performs (m^e * r^e)^d mod n |
| // which equals mr mod n. The factor of r can then be removed |
| // by multipling by the multiplicative inverse of r. |
| |
| var r *big.Int; |
| |
| for { |
| r, err = randomNumber(rand, priv.N); |
| if err != nil { |
| return |
| } |
| if r.Cmp(bigZero) == 0 { |
| r = bigOne |
| } |
| var ok bool; |
| ir, ok = modInverse(r, priv.N); |
| if ok { |
| break |
| } |
| } |
| bigE := big.NewInt(int64(priv.E)); |
| rpowe := new(big.Int).Exp(r, bigE, priv.N); |
| c.Mul(c, rpowe); |
| c.Mod(c, priv.N); |
| } |
| |
| m = new(big.Int).Exp(c, priv.D, priv.N); |
| |
| if ir != nil { |
| // Unblind. |
| m.Mul(m, ir); |
| m.Mod(m, priv.N); |
| } |
| |
| return; |
| } |
| |
| // DecryptOAEP decrypts ciphertext using RSA-OAEP. |
| // If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. |
| func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) { |
| k := (priv.N.Len() + 7) / 8; |
| if len(ciphertext) > k || |
| k < hash.Size()*2+2 { |
| err = DecryptionError{}; |
| return; |
| } |
| |
| c := new(big.Int).SetBytes(ciphertext); |
| |
| m, err := decrypt(rand, priv, c); |
| if err != nil { |
| return |
| } |
| |
| hash.Write(label); |
| lHash := hash.Sum(); |
| hash.Reset(); |
| |
| // Converting the plaintext number to bytes will strip any |
| // leading zeros so we may have to left pad. We do this unconditionally |
| // to avoid leaking timing information. (Although we still probably |
| // leak the number of leading zeros. It's not clear that we can do |
| // anything about this.) |
| em := leftPad(m.Bytes(), k); |
| |
| firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0); |
| |
| seed := em[1 : hash.Size()+1]; |
| db := em[hash.Size()+1 : len(em)]; |
| |
| mgf1XOR(seed, hash, db); |
| mgf1XOR(db, hash, seed); |
| |
| lHash2 := db[0:hash.Size()]; |
| |
| // We have to validate the plaintext in contanst time in order to avoid |
| // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal |
| // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 |
| // v2.0. In J. Kilian, editor, Advances in Cryptology. |
| lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2); |
| |
| // The remainder of the plaintext must be zero or more 0x00, followed |
| // by 0x01, followed by the message. |
| // lookingForIndex: 1 iff we are still looking for the 0x01 |
| // index: the offset of the first 0x01 byte |
| // invalid: 1 iff we saw a non-zero byte before the 0x01. |
| var lookingForIndex, index, invalid int; |
| lookingForIndex = 1; |
| rest := db[hash.Size():len(db)]; |
| |
| for i := 0; i < len(rest); i++ { |
| equals0 := subtle.ConstantTimeByteEq(rest[i], 0); |
| equals1 := subtle.ConstantTimeByteEq(rest[i], 1); |
| index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index); |
| lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex); |
| invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid); |
| } |
| |
| if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { |
| err = DecryptionError{}; |
| return; |
| } |
| |
| msg = rest[index+1 : len(rest)]; |
| return; |
| } |
| |
| // leftPad returns a new slice of length size. The contents of input are right |
| // aligned in the new slice. |
| func leftPad(input []byte, size int) (out []byte) { |
| n := len(input); |
| if n > size { |
| n = size |
| } |
| out = make([]byte, size); |
| bytes.Copy(out[len(out)-n:len(out)], input); |
| return; |
| } |