blob: 08d09f135aa604ec837edc914ed132280b91e141 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package png
import (
"bufio";
"compress/zlib";
"hash/crc32";
"image";
"io";
"os";
"strconv";
)
type encoder struct {
w io.Writer;
m image.Image;
colorType uint8;
err os.Error;
header [8]byte;
footer [4]byte;
tmp [3 * 256]byte;
}
// Big-endian.
func writeUint32(b []uint8, u uint32) {
b[0] = uint8(u >> 24);
b[1] = uint8(u >> 16);
b[2] = uint8(u >> 8);
b[3] = uint8(u >> 0);
}
// Returns whether or not the image is fully opaque.
func opaque(m image.Image) bool {
for y := 0; y < m.Height(); y++ {
for x := 0; x < m.Width(); x++ {
_, _, _, a := m.At(x, y).RGBA();
if a != 0xffffffff {
return false
}
}
}
return true;
}
// The absolute value of a byte interpreted as a signed int8.
func abs8(d uint8) int {
if d < 128 {
return int(d)
}
return 256 - int(d);
}
func (e *encoder) writeChunk(b []byte, name string) {
if e.err != nil {
return
}
n := uint32(len(b));
if int(n) != len(b) {
e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)));
return;
}
writeUint32(e.header[0:4], n);
e.header[4] = name[0];
e.header[5] = name[1];
e.header[6] = name[2];
e.header[7] = name[3];
crc := crc32.NewIEEE();
crc.Write(e.header[4:8]);
crc.Write(b);
writeUint32(e.footer[0:4], crc.Sum32());
_, e.err = e.w.Write(e.header[0:8]);
if e.err != nil {
return
}
_, e.err = e.w.Write(b);
if e.err != nil {
return
}
_, e.err = e.w.Write(e.footer[0:4]);
}
func (e *encoder) writeIHDR() {
writeUint32(e.tmp[0:4], uint32(e.m.Width()));
writeUint32(e.tmp[4:8], uint32(e.m.Height()));
e.tmp[8] = 8; // bit depth
e.tmp[9] = e.colorType;
e.tmp[10] = 0; // default compression method
e.tmp[11] = 0; // default filter method
e.tmp[12] = 0; // non-interlaced
e.writeChunk(e.tmp[0:13], "IHDR");
}
func (e *encoder) writePLTE(p image.PalettedColorModel) {
if len(p) < 1 || len(p) > 256 {
e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)));
return;
}
for i := 0; i < len(p); i++ {
r, g, b, a := p[i].RGBA();
if a != 0xffffffff {
e.err = UnsupportedError("non-opaque palette color");
return;
}
e.tmp[3*i+0] = uint8(r >> 24);
e.tmp[3*i+1] = uint8(g >> 24);
e.tmp[3*i+2] = uint8(b >> 24);
}
e.writeChunk(e.tmp[0:3*len(p)], "PLTE");
}
// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
//
// This method should only be called from writeIDATs (via writeImage).
// No other code should treat an encoder as an io.Writer.
//
// Note that, because the zlib deflater may involve an io.Pipe, e.Write calls may
// occur on a separate go-routine than the e.writeIDATs call, and care should be
// taken that e's state (such as its tmp buffer) is not modified concurrently.
func (e *encoder) Write(b []byte) (int, os.Error) {
e.writeChunk(b, "IDAT");
if e.err != nil {
return 0, e.err
}
return len(b), nil;
}
// Chooses the filter to use for encoding the current row, and applies it.
// The return value is the index of the filter and also of the row in cr that has had it applied.
func filter(cr [][]byte, pr []byte, bpp int) int {
// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
// This is the same heuristic that libpng uses, although the filters are attempted in order of
// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
cdat0 := cr[0][1:len(cr[0])];
cdat1 := cr[1][1:len(cr[1])];
cdat2 := cr[2][1:len(cr[2])];
cdat3 := cr[3][1:len(cr[3])];
cdat4 := cr[4][1:len(cr[4])];
pdat := pr[1:len(pr)];
n := len(cdat0);
// The up filter.
sum := 0;
for i := 0; i < n; i++ {
cdat2[i] = cdat0[i] - pdat[i];
sum += abs8(cdat2[i]);
}
best := sum;
filter := ftUp;
// The Paeth filter.
sum = 0;
for i := 0; i < bpp; i++ {
cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0);
sum += abs8(cdat4[i]);
}
for i := bpp; i < n; i++ {
cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]);
sum += abs8(cdat4[i]);
if sum >= best {
break
}
}
if sum < best {
best = sum;
filter = ftPaeth;
}
// The none filter.
sum = 0;
for i := 0; i < n; i++ {
sum += abs8(cdat0[i]);
if sum >= best {
break
}
}
if sum < best {
best = sum;
filter = ftNone;
}
// The sub filter.
sum = 0;
for i := 0; i < bpp; i++ {
cdat1[i] = cdat0[i];
sum += abs8(cdat1[i]);
}
for i := bpp; i < n; i++ {
cdat1[i] = cdat0[i] - cdat0[i-bpp];
sum += abs8(cdat1[i]);
if sum >= best {
break
}
}
if sum < best {
best = sum;
filter = ftSub;
}
// The average filter.
sum = 0;
for i := 0; i < bpp; i++ {
cdat3[i] = cdat0[i] - pdat[i]/2;
sum += abs8(cdat3[i]);
}
for i := bpp; i < n; i++ {
cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2);
sum += abs8(cdat3[i]);
if sum >= best {
break
}
}
if sum < best {
best = sum;
filter = ftAverage;
}
return filter;
}
func writeImage(w io.Writer, m image.Image, ct uint8) os.Error {
zw, err := zlib.NewDeflater(w);
if err != nil {
return err
}
defer zw.Close();
bpp := 0; // Bytes per pixel.
var paletted *image.Paletted;
switch ct {
case ctTrueColor:
bpp = 3
case ctPaletted:
bpp = 1;
paletted = m.(*image.Paletted);
case ctTrueColorAlpha:
bpp = 4
}
// cr[*] and pr are the bytes for the current and previous row.
// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
// other PNG filter types. These buffers are allocated once and re-used for each row.
// The +1 is for the per-row filter type, which is at cr[*][0].
var cr [nFilter][]uint8;
for i := 0; i < len(cr); i++ {
cr[i] = make([]uint8, 1+bpp*m.Width());
cr[i][0] = uint8(i);
}
pr := make([]uint8, 1+bpp*m.Width());
for y := 0; y < m.Height(); y++ {
// Convert from colors to bytes.
switch ct {
case ctTrueColor:
for x := 0; x < m.Width(); x++ {
// We have previously verified that the alpha value is fully opaque.
r, g, b, _ := m.At(x, y).RGBA();
cr[0][3*x+1] = uint8(r >> 24);
cr[0][3*x+2] = uint8(g >> 24);
cr[0][3*x+3] = uint8(b >> 24);
}
case ctPaletted:
for x := 0; x < m.Width(); x++ {
cr[0][x+1] = paletted.ColorIndexAt(x, y)
}
case ctTrueColorAlpha:
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := 0; x < m.Width(); x++ {
c := image.NRGBAColorModel.Convert(m.At(x, y)).(image.NRGBAColor);
cr[0][4*x+1] = c.R;
cr[0][4*x+2] = c.G;
cr[0][4*x+3] = c.B;
cr[0][4*x+4] = c.A;
}
}
// Apply the filter.
f := filter(cr[0:nFilter], pr, bpp);
// Write the compressed bytes.
_, err = zw.Write(cr[f]);
if err != nil {
return err
}
// The current row for y is the previous row for y+1.
pr, cr[0] = cr[0], pr;
}
return nil;
}
// Write the actual image data to one or more IDAT chunks.
func (e *encoder) writeIDATs() {
if e.err != nil {
return
}
var bw *bufio.Writer;
bw, e.err = bufio.NewWriterSize(e, 1<<15);
if e.err != nil {
return
}
e.err = writeImage(bw, e.m, e.colorType);
if e.err != nil {
return
}
e.err = bw.Flush();
}
func (e *encoder) writeIEND() { e.writeChunk(e.tmp[0:0], "IEND") }
// Encode writes the Image m to w in PNG format. Any Image may be encoded, but
// images that are not image.NRGBA might be encoded lossily.
func Encode(w io.Writer, m image.Image) os.Error {
// Obviously, negative widths and heights are invalid. Furthermore, the PNG
// spec section 11.2.2 says that zero is invalid. Excessively large images are
// also rejected.
mw, mh := int64(m.Width()), int64(m.Height());
if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
return FormatError("invalid image size: " + strconv.Itoa64(mw) + "x" + strconv.Itoa64(mw))
}
var e encoder;
e.w = w;
e.m = m;
e.colorType = uint8(ctTrueColorAlpha);
pal, _ := m.(*image.Paletted);
if pal != nil {
e.colorType = ctPaletted
} else if opaque(m) {
e.colorType = ctTrueColor
}
_, e.err = io.WriteString(w, pngHeader);
e.writeIHDR();
if pal != nil {
e.writePLTE(pal.Palette)
}
e.writeIDATs();
e.writeIEND();
return e.err;
}