blob: 896ccde8015881a5316187adf44eef054a48d9ce [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
// Indicate the status of vector facility
// -1: init value
// 0: vector not installed
// 1: vector installed and enabled
// 2: vector installed but not enabled
DATA runtime·vectorfacility+0x00(SB)/4, $-1
GLOBL runtime·vectorfacility(SB), NOPTR, $4
TEXT runtime·checkvectorfacility(SB),NOSPLIT,$32-0
MOVD $2, R0
MOVD R1, tmp-32(SP)
MOVD $x-24(SP), R1
// STFLE 0(R1)
WORD $0xB2B01000
MOVBZ z-8(SP), R1
AND $0x40, R1
BNE vectorinstalled
MOVB $0, runtime·vectorfacility(SB) //Vector not installed
MOVD tmp-32(SP), R1
MOVD $0, R0
// check if the vector instruction has been enabled
VLEIB $0, $0xF, V16
VLGVB $0, V16, R0
CMPBEQ R0, $0xF, vectorenabled
MOVB $2, runtime·vectorfacility(SB) //Vector installed but not enabled
MOVD tmp-32(SP), R1
MOVD $0, R0
MOVB $1, runtime·vectorfacility(SB) //Vector installed and enabled
MOVD tmp-32(SP), R1
MOVD $0, R0
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer
// C TLS base pointer in AR0:AR1
// initialize essential registers
XOR R0, R0
SUB $24, R15
MOVW R2, 8(R15) // argc
MOVD R3, 16(R15) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD R15, R11
SUB $(64*1024), R11
MOVD R11, g_stackguard0(g)
MOVD R11, g_stackguard1(g)
MOVD R11, (g_stack+stack_lo)(g)
MOVD R15, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R11
CMPBEQ R11, $0, nocgo
MOVW AR0, R4 // (AR0 << 32 | AR1) is the TLS base pointer; MOVD is translated to EAR
SLD $32, R4, R4
MOVW AR1, R4 // arg 2: TLS base pointer
MOVD $setg_gcc<>(SB), R3 // arg 1: setg
MOVD g, R2 // arg 0: G
// C functions expect 160 bytes of space on caller stack frame
// and an 8-byte aligned stack pointer
MOVD R15, R9 // save current stack (R9 is preserved in the Linux ABI)
SUB $160, R15 // reserve 160 bytes
MOVD $~7, R6
AND R6, R15 // 8-byte align
BL R11 // this call clobbers volatile registers according to Linux ABI (R0-R5, R14)
MOVD R9, R15 // restore stack
XOR R0, R0 // zero R0
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R2
ADD $const__StackGuard, R2
MOVD R2, g_stackguard0(g)
MOVD R2, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R2
// save m->g0 = g0
MOVD g, m_g0(R2)
// save m0 to g0->m
MOVD R2, g_m(g)
BL runtime·check(SB)
// argc/argv are already prepared on stack
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R2 // entry
SUB $24, R15
MOVD R2, 16(R15)
MOVD R0, 8(R15)
MOVD R0, 0(R15)
BL runtime·newproc(SB)
ADD $24, R15
// start this M
BL runtime·mstart(SB)
MOVD R0, 1(R0)
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
MOVD R0, 2(R0)
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
* go-routine
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R3
MOVD R15, gobuf_sp(R3)
MOVD LR, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD $0, gobuf_lr(R3)
MOVD $0, gobuf_ret(R3)
MOVD $0, gobuf_ctxt(R3)
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g // make sure g is not nil
BL runtime·save_g(SB)
MOVD 0(g), R4
MOVD gobuf_sp(R5), R15
MOVD gobuf_lr(R5), LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R12
MOVD $0, gobuf_sp(R5)
MOVD $0, gobuf_ret(R5)
MOVD $0, gobuf_lr(R5)
MOVD $0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R6
BR (R6)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $-8-8
// Save caller state in g->sched
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BR runtime·badmcall(SB)
MOVD fn+0(FP), R12 // context
MOVD 0(R12), R4 // code pointer
MOVD (g_sched+gobuf_sp)(g), R15 // sp = m->g0->sched.sp
SUB $16, R15
MOVD R3, 8(R15)
MOVD $0, 0(R15)
BL (R4)
BR runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
BL (LR) // make sure this function is not leaf
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R12 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMPBEQ g, R5, noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMPBEQ g, R5, noswitch
MOVD m_curg(R4), R6
CMPBEQ g, R6, switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
BL (R3)
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $16, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $8, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, R15
// call target function
MOVD 0(R12), R3 // code pointer
BL (R3)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
MOVD $0, (g_sched+gobuf_sp)(g)
// already on m stack, just call directly
MOVD 0(R12), R3 // code pointer
BL (R3)
* support for morestack
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMPBNE g, R8, 2(PC)
BL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R7), R8
CMP g, R8
BL runtime·abort(SB)
// Called from f.
// Set g->sched to context in f.
MOVD R12, (g_sched+gobuf_ctxt)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R15, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVD $0, R12
BR runtime·morestack(SB)
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
// We came here via a RET to an overwritten LR.
// R3 may be live. Other registers are available.
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
MOVD (g_stkbar+slice_array)(g), R4
MOVD g_stkbarPos(g), R5
MOVD $stkbar__size, R6
ADD R4, R6
MOVD stkbar_savedLRVal(R6), R6
// Record that this stack barrier was hit.
ADD $1, R5
MOVD R5, g_stkbarPos(g)
// Jump to the original return PC.
BR (R6)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
CMP R3, R4; \
BGT 3(PC); \
BR (R5)
// Note: can't just "BR NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $0-0
BR ·reflectcall(SB)
TEXT ·reflectcall(SB), NOSPLIT, $-8-32
MOVWZ argsize+24(FP), R3
// NOTE(rsc): No call16, because CALLFN needs four words
// of argument space to invoke callwritebarrier.
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R5
BR (R5)
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWZ argsize+24(FP), R4; \
MOVD R15, R5; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 6(PC); \
ADD $1, R3; \
ADD $1, R5; \
MOVBZ 0(R3), R6; \
MOVBZ R6, 0(R5); \
BR -6(PC); \
/* call function */ \
MOVD f+8(FP), R12; \
MOVD (R12), R8; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R8); \
/* copy return values back */ \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R15, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
loop: \
CMP R5, R4; \
BEQ end; \
ADD $1, R5; \
ADD $1, R3; \
MOVBZ 0(R5), R6; \
MOVBZ R6, 0(R3); \
BR loop; \
end: \
/* execute write barrier updates */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R7, 8(R15); \
MOVD R3, 16(R15); \
MOVD R4, 24(R15); \
MOVD R6, 32(R15); \
BL runtime·callwritebarrier(SB); \
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 6 bytes to get back to BL deferreturn (size of BRASL instruction)
// 3. BR to fn
TEXT runtime·jmpdefer(SB),NOSPLIT|NOFRAME,$0-16
MOVD 0(R15), R1
SUB $6, R1, LR
MOVD fv+0(FP), R12
MOVD argp+8(FP), R15
SUB $8, R15
MOVD 0(R12), R3
BR (R3)
// Save state of caller into g->sched. Smashes R31.
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD $0, (g_sched+gobuf_ret)(g)
MOVD $0, (g_sched+gobuf_ctxt)(g)
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
// R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer
// C TLS base pointer in AR0:AR1
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R15, R2 // save original stack pointer
MOVD g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R6
MOVD m_g0(R6), R6
CMPBEQ R6, g, g0
BL gosave<>(SB)
MOVD R6, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
// Now on a scheduling stack (a pthread-created stack).
// Save room for two of our pointers, plus 160 bytes of callee
// save area that lives on the caller stack.
SUB $176, R15
MOVD $~7, R6
AND R6, R15 // 8-byte alignment for gcc ABI
MOVD R5, 168(R15) // save old g on stack
MOVD (g_stack+stack_hi)(R5), R5
SUB R2, R5
MOVD R5, 160(R15) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
MOVD R0, 0(R15) // clear back chain pointer (TODO can we give it real back trace information?)
MOVD R4, R2 // arg in R2
BL R3 // can clobber: R0-R5, R14, F0-F3, F5, F7-F15
XOR R0, R0 // set R0 back to 0.
// Restore g, stack pointer.
MOVD 168(R15), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 160(R15), R6
SUB R6, R5
MOVD R5, R15
MOVW R2, ret+16(FP)
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$32-32
MOVD $fn+0(FP), R3
MOVD R3, 8(R15)
MOVD frame+8(FP), R3
MOVD R3, 16(R15)
MOVD framesize+16(FP), R3
MOVD R3, 24(R15)
MOVD ctxt+24(FP), R3
MOVD R3, 32(R15)
MOVD $runtime·cgocallback_gofunc(SB), R3
BL (R3)
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMPBEQ R3, $0, nocgo
BL runtime·load_g(SB)
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMPBEQ g, $0, needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
BR havem
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R3
BL (R3)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD R15, (g_sched+gobuf_sp)(R3)
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD R15, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
// In the new goroutine, -8(SP) is unused (where SP refers to
// m->curg's SP while we're setting it up, before we've adjusted it).
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -24(R4)
MOVD ctxt+24(FP), R5
MOVD R5, -16(R4)
MOVD $-24(R4), R15
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(R15), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD $24(R15), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMPBNE R6, $0, droppedm
MOVD $runtime·dropm(SB), R3
BL (R3)
// Done!
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
// The standard prologue clobbers LR (R14), which is callee-save in
// the C ABI, so we have to use NOFRAME and save LR ourselves.
// Also save g, R10, and R11 since they're callee-save in C ABI
MOVD R10, R3
MOVD g, R4
MOVD R11, R5
MOVD R2, g
BL runtime·save_g(SB)
MOVD R5, R11
MOVD R4, g
MOVD R3, R10
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
MOVD 16(R15), R3 // LR saved by caller
MOVD runtime·stackBarrierPC(SB), R4
CMPBNE R3, R4, nobar
// Get original return PC.
BL runtime·nextBarrierPC(SB)
MOVD 8(R15), R3
MOVD R3, ret+8(FP)
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
MOVD pc+8(FP), R3
MOVD 16(R15), R4
MOVD runtime·stackBarrierPC(SB), R5
CMPBEQ R4, R5, setbar
MOVD R3, 16(R15) // set LR in caller
// Set the stack barrier return PC.
MOVD R3, 8(R15)
BL runtime·setNextBarrierPC(SB)
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
MOVD argp+0(FP), R3
SUB $8, R3
MOVD R3, ret+8(FP)
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R0
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
// The TOD clock on s390 counts from the year 1900 in ~250ps intervals.
// This means that since about 1972 the msb has been set, making the
// result of a call to STORE CLOCK (stck) a negative number.
// We clear the msb to make it positive.
STCK ret+0(FP) // serialises before and after call
MOVD ret+0(FP), R3 // R3 will wrap to 0 in the year 2043
SLD $1, R3
SRD $1, R3
MOVD R3, ret+0(FP)
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
MOVD p+0(FP), R3
MOVD h+8(FP), R4
MOVD 8(R12), R5
MOVD R3, 8(R15)
MOVD R4, 16(R15)
MOVD R5, 24(R15)
BL runtime·memhash(SB)
MOVD 32(R15), R3
MOVD R3, ret+16(FP)
// AES hashing not implemented for s390x
TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
// memequal(p, q unsafe.Pointer, size uintptr) bool
TEXT runtime·memequal(SB),NOSPLIT|NOFRAME,$0-25
MOVD p+0(FP), R3
MOVD q+8(FP), R5
MOVD size+16(FP), R6
LA ret+24(FP), R7
BR runtime·memeqbody(SB)
// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT|NOFRAME,$0-17
MOVD a+0(FP), R3
MOVD b+8(FP), R5
MOVD 8(R12), R6 // compiler stores size at offset 8 in the closure
LA ret+16(FP), R7
BR runtime·memeqbody(SB)
// eqstring tests whether two strings are equal.
// The compiler guarantees that strings passed
// to eqstring have equal length.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT|NOFRAME,$0-33
MOVD s1str+0(FP), R3
MOVD s1len+8(FP), R6
MOVD s2str+16(FP), R5
LA ret+32(FP), R7
BR runtime·memeqbody(SB)
TEXT bytes·Equal(SB),NOSPLIT|NOFRAME,$0-49
MOVD a_len+8(FP), R2
MOVD b_len+32(FP), R6
MOVD a+0(FP), R3
MOVD b+24(FP), R5
LA ret+48(FP), R7
CMPBNE R2, R6, notequal
BR runtime·memeqbody(SB)
MOVB $0, ret+48(FP)
// input:
// R3 = a
// R5 = b
// R6 = len
// R7 = address of output byte (stores 0 or 1 here)
// a and b have the same length
TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0
CMPBEQ R3, R5, equal
CMPBEQ R6, $0, equal
CMPBLT R6, $32, tiny
CMP R6, $256
BLT tail
CLC $256, 0(R3), 0(R5)
BNE notequal
SUB $256, R6
LA 256(R3), R3
LA 256(R5), R5
BR loop
SUB $1, R6, R8
EXRL $runtime·memeqbodyclc(SB), R8
BEQ equal
MOVB $0, 0(R7)
MOVB $1, 0(R7)
MOVD $0, R2
CMPBLT R6, $16, lt16
MOVD 0(R3), R8
MOVD 0(R5), R9
CMPBNE R8, R9, notequal
MOVD 8(R3), R8
MOVD 8(R5), R9
CMPBNE R8, R9, notequal
LA 16(R2), R2
SUB $16, R6
CMPBLT R6, $8, lt8
MOVD 0(R3)(R2*1), R8
MOVD 0(R5)(R2*1), R9
CMPBNE R8, R9, notequal
LA 8(R2), R2
SUB $8, R6
CMPBLT R6, $4, lt4
MOVWZ 0(R3)(R2*1), R8
MOVWZ 0(R5)(R2*1), R9
CMPBNE R8, R9, notequal
LA 4(R2), R2
SUB $4, R6
#define CHECK(n) \
CMPBEQ R6, $n, equal \
MOVB n(R3)(R2*1), R8 \
MOVB n(R5)(R2*1), R9 \
CMPBNE R8, R9, notequal
BR equal
TEXT runtime·memeqbodyclc(SB),NOSPLIT|NOFRAME,$0-0
CLC $1, 0(R3), 0(R5)
TEXT runtime·fastrand1(SB), NOSPLIT, $0-4
MOVD g_m(g), R4
MOVWZ m_fastrand(R4), R3
ADD R3, R3
CMPW R3, $0
XOR $0x88888eef, R3
MOVW R3, m_fastrand(R4)
MOVW R3, ret+0(FP)
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
MOVD s+0(FP), R3 // s => R3
MOVD s_len+8(FP), R4 // s_len => R4
MOVBZ c+24(FP), R5 // c => R5
MOVD $ret+32(FP), R2 // &ret => R9
BR runtime·indexbytebody(SB)
TEXT strings·IndexByte(SB),NOSPLIT,$0-32
MOVD s+0(FP), R3 // s => R3
MOVD s_len+8(FP), R4 // s_len => R4
MOVBZ c+16(FP), R5 // c => R5
MOVD $ret+24(FP), R2 // &ret => R9
BR runtime·indexbytebody(SB)
// input:
// R3: s
// R4: s_len
// R5: c -- byte sought
// R2: &ret -- address to put index into
TEXT runtime·indexbytebody(SB),NOSPLIT,$0
CMPBEQ R4, $0, notfound
MOVD R3, R6 // store base for later
ADD R3, R4, R8 // the address after the end of the string
//if the length is small, use loop; otherwise, use vector or srst search
CMPBGE R4, $16, large
CMPBEQ R3, R8, notfound
MOVBZ 0(R3), R7
LA 1(R3), R3
CMPBNE R7, R5, residual
SUB R6, R3
SUB $1, R3
MOVD R3, 0(R2)
MOVD $-1, 0(R2)
MOVB runtime·vectorfacility(SB), R1
CMPBEQ R1, $-1, checkvector // vectorfacility = -1, vector not checked yet
CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
srstimpl: // vectorfacility != 1, not support or enable vector
MOVBZ R5, R0 // c needs to be in R0, leave until last minute as currently R0 is expected to be 0
WORD $0xB25E0083 // srst %r8, %r3 (search the range [R3, R8))
BVS srstloop // interrupted - continue
BGT notfoundr0
XOR R0, R0 // reset R0
SUB R6, R8 // remove base
MOVD R8, 0(R2)
XOR R0, R0 // reset R0
MOVD $-1, 0(R2)
//if the address is not 16byte aligned, use loop for the header
AND $15, R3, R8
CMPBGT R8, $0, notaligned
ADD R6, R4, R8
AND $-16, R8, R7
// replicate c across V17
VLVGB $0, R5, V19
VREPB $0, V19, V17
CMPBGE R3, R7, residual
VL 0(R3), V16 // load string to be searched into V16
ADD $16, R3
VFEEBS V16, V17, V18 // search V17 in V16 and set conditional code accordingly
BVS vectorloop
// when vector search found c in the string
VLGVB $7, V18, R7 // load 7th element of V18 containing index into R7
SUB $16, R3
SUB R6, R3
ADD R3, R7
MOVD R7, 0(R2)
AND $-16, R3, R8
ADD $16, R8
CMPBEQ R3, R8, aligned
MOVBZ 0(R3), R7
LA 1(R3), R3
CMPBNE R7, R5, notalignedloop
BR found
CALL runtime·checkvectorfacility(SB)
MOVB runtime·vectorfacility(SB), R1
BR vectorchecked
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R3
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
// g (R13), R10, R11 and LR (R14) are callee-save in the C ABI, so save them
MOVD g, R1
MOVD R10, R3
MOVD R11, R5
BL runtime·load_g(SB) // clobbers g (R13), R10, R11
MOVD g_m(g), R2
MOVD m_curg(R2), R2
MOVD (g_stack+stack_hi)(R2), R2
MOVD R1, g
MOVD R3, R10
MOVD R5, R11
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0
BYTE $0x07; BYTE $0x00; // 2-byte nop
BL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
BYTE $0x07; BYTE $0x00; // 2-byte nop
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
TEXT runtime·sigreturn(SB),NOSPLIT,$0-8
TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40
MOVD s1_base+0(FP), R3
MOVD s1_len+8(FP), R4
MOVD s2_base+16(FP), R5
MOVD s2_len+24(FP), R6
LA ret+32(FP), R7
BR runtime·cmpbody(SB)
TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56
MOVD s1+0(FP), R3
MOVD s1+8(FP), R4
MOVD s2+24(FP), R5
MOVD s2+32(FP), R6
LA res+48(FP), R7
BR runtime·cmpbody(SB)
// input:
// R3 = a
// R4 = alen
// R5 = b
// R6 = blen
// R7 = address of output word (stores -1/0/1 here)
TEXT runtime·cmpbody(SB),NOSPLIT|NOFRAME,$0-0
CMPBEQ R3, R5, cmplengths
CMPBLE R4, R6, amin
CMPBEQ R8, $0, cmplengths
CMP R8, $256
BLE tail
CLC $256, 0(R3), 0(R5)
BGT gt
BLT lt
SUB $256, R8
CMP R8, $256
BGT loop
SUB $1, R8
EXRL $runtime·cmpbodyclc(SB), R8
BGT gt
BLT lt
CMP R4, R6
BEQ eq
BLT lt
MOVD $1, 0(R7)
MOVD $-1, 0(R7)
MOVD $0, 0(R7)
TEXT runtime·cmpbodyclc(SB),NOSPLIT|NOFRAME,$0-0
CLC $1, 0(R3), 0(R5)
// This is called from .init_array and follows the platform, not Go, ABI.
// We are overly conservative. We could only save the registers we use.
// However, since this function is only called once per loaded module
// performance is unimportant.
TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0
// Save R6-R15, F0, F2, F4 and F6 in the
// register save area of the calling function
STMG R6, R15, 48(R15)
FMOVD F0, 128(R15)
FMOVD F2, 136(R15)
FMOVD F4, 144(R15)
FMOVD F6, 152(R15)
// append the argument (passed in R2, as per the ELF ABI) to the
// moduledata linked list.
MOVD runtime·lastmoduledatap(SB), R1
MOVD R2, moduledata_next(R1)
MOVD R2, runtime·lastmoduledatap(SB)
// Restore R6-R15, F0, F2, F4 and F6
LMG 48(R15), R6, R15
FMOVD F0, 128(R15)
FMOVD F2, 136(R15)
FMOVD F4, 144(R15)
FMOVD F6, 152(R15)
MOVB $1, ret+0(FP)