blob: 6b881a477c4e2afcd5735ec686327dc6ced893fa [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// This encoding algorithm, which prioritizes speed over output size, is
// based on Snappy's LZ77-style encoder: github.com/golang/snappy
const (
tableBits = 14 // Bits used in the table.
tableSize = 1 << tableBits // Size of the table.
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
)
func load32(b []byte, i int) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func hash(u uint32) uint32 {
return (u * 0x1e35a7bd) >> tableShift
}
// These constants are defined by the Snappy implementation so that its
// assembly implementation can fast-path some 16-bytes-at-a-time copies. They
// aren't necessary in the pure Go implementation, as we don't use those same
// optimizations, but using the same thresholds doesn't really hurt.
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
func encodeBestSpeed(dst []token, src []byte) []token {
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
return emitLiteral(dst, src)
}
// Initialize the hash table.
//
// The table element type is uint16, as s < sLimit and sLimit < len(src)
// and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
var table [tableSize]uint16
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
nextHash := hash(load32(src, s))
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := 32
nextS := s
candidate := 0
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = int(table[nextHash&tableMask])
table[nextHash&tableMask] = uint16(s)
nextHash = hash(load32(src, nextS))
// TODO: < should be <=, and add a test for that.
if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) {
break
}
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
dst = emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
// Extend the 4-byte match as long as possible.
//
// This is an inlined version of Snappy's:
// s = extendMatch(src, candidate+4, s+4)
s += 4
s1 := base + maxMatchLength
if s1 > len(src) {
s1 = len(src)
}
for i := candidate + 4; s < s1 && src[i] == src[s]; i, s = i+1, s+1 {
}
// matchToken is flate's equivalent of Snappy's emitCopy.
dst = append(dst, matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset)))
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x >> 0))
table[prevHash&tableMask] = uint16(s - 1)
currHash := hash(uint32(x >> 8))
candidate = int(table[currHash&tableMask])
table[currHash&tableMask] = uint16(s)
// TODO: >= should be >, and add a test for that.
if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
nextHash = hash(uint32(x >> 16))
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
dst = emitLiteral(dst, src[nextEmit:])
}
return dst
}
func emitLiteral(dst []token, lit []byte) []token {
for _, v := range lit {
dst = append(dst, token(v))
}
return dst
}