blob: 4943d9dddeda49eb27f0692d3dfc5dc962f8ffce [file] [log] [blame]
// Derived from Inferno utils/6c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package gc
import (
"cmd/internal/obj"
"cmd/internal/sys"
"fmt"
"runtime"
"strings"
)
var (
ddumped bool
dfirst *obj.Prog
dpc *obj.Prog
)
// Is this node a memory operand?
func Ismem(n *Node) bool {
switch n.Op {
case OITAB,
OSPTR,
OLEN,
OCAP,
OINDREG,
ONAME,
OCLOSUREVAR:
return true
case OADDR:
// amd64 and s390x use PC relative addressing.
// TODO(rsc): not sure why ppc64 needs this too.
return Thearch.LinkArch.InFamily(sys.AMD64, sys.PPC64, sys.S390X)
}
return false
}
func Samereg(a *Node, b *Node) bool {
if a == nil || b == nil {
return false
}
if a.Op != OREGISTER {
return false
}
if b.Op != OREGISTER {
return false
}
if a.Reg != b.Reg {
return false
}
return true
}
func Gbranch(as obj.As, t *Type, likely int) *obj.Prog {
p := Prog(as)
p.To.Type = obj.TYPE_BRANCH
p.To.Val = nil
if as != obj.AJMP && likely != 0 && !Thearch.LinkArch.InFamily(sys.PPC64, sys.ARM64, sys.MIPS64, sys.S390X) {
p.From.Type = obj.TYPE_CONST
if likely > 0 {
p.From.Offset = 1
}
}
if Debug['g'] != 0 {
fmt.Printf("%v\n", p)
}
return p
}
func Prog(as obj.As) *obj.Prog {
var p *obj.Prog
if as == obj.AGLOBL {
if ddumped {
Fatalf("already dumped data")
}
if dpc == nil {
dpc = Ctxt.NewProg()
dfirst = dpc
}
p = dpc
dpc = Ctxt.NewProg()
p.Link = dpc
} else {
p = Pc
Pc = Ctxt.NewProg()
Clearp(Pc)
p.Link = Pc
}
if lineno == 0 && Debug['K'] != 0 {
Warn("prog: line 0")
}
p.As = as
p.Lineno = lineno
return p
}
func Nodreg(n *Node, t *Type, r int) {
if t == nil {
Fatalf("nodreg: t nil")
}
*n = Node{}
n.Op = OREGISTER
n.Addable = true
ullmancalc(n)
n.Reg = int16(r)
n.Type = t
}
func Nodindreg(n *Node, t *Type, r int) {
Nodreg(n, t, r)
n.Op = OINDREG
}
func Afunclit(a *obj.Addr, n *Node) {
if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN {
a.Type = obj.TYPE_MEM
a.Sym = Linksym(n.Sym)
}
}
func Clearp(p *obj.Prog) {
obj.Nopout(p)
p.As = obj.AEND
p.Pc = int64(pcloc)
pcloc++
}
func dumpdata() {
ddumped = true
if dfirst == nil {
return
}
newplist()
*Pc = *dfirst
Pc = dpc
Clearp(Pc)
}
func flushdata() {
if dfirst == nil {
return
}
newplist()
*Pc = *dfirst
Pc = dpc
Clearp(Pc)
dfirst = nil
dpc = nil
}
// Fixup instructions after allocauto (formerly compactframe) has moved all autos around.
func fixautoused(p *obj.Prog) {
for lp := &p; ; {
p = *lp
if p == nil {
break
}
if p.As == obj.ATYPE && p.From.Node != nil && p.From.Name == obj.NAME_AUTO && !((p.From.Node).(*Node)).Used {
*lp = p.Link
continue
}
if (p.As == obj.AVARDEF || p.As == obj.AVARKILL || p.As == obj.AVARLIVE) && p.To.Node != nil && !((p.To.Node).(*Node)).Used {
// Cannot remove VARDEF instruction, because - unlike TYPE handled above -
// VARDEFs are interspersed with other code, and a jump might be using the
// VARDEF as a target. Replace with a no-op instead. A later pass will remove
// the no-ops.
obj.Nopout(p)
continue
}
if p.From.Name == obj.NAME_AUTO && p.From.Node != nil {
p.From.Offset += stkdelta[p.From.Node.(*Node)]
}
if p.To.Name == obj.NAME_AUTO && p.To.Node != nil {
p.To.Offset += stkdelta[p.To.Node.(*Node)]
}
lp = &p.Link
}
}
func ggloblnod(nam *Node) {
p := Thearch.Gins(obj.AGLOBL, nam, nil)
p.Lineno = nam.Lineno
p.From.Sym.Gotype = Linksym(ngotype(nam))
p.To.Sym = nil
p.To.Type = obj.TYPE_CONST
p.To.Offset = nam.Type.Width
p.From3 = new(obj.Addr)
if nam.Name.Readonly {
p.From3.Offset = obj.RODATA
}
if nam.Type != nil && !haspointers(nam.Type) {
p.From3.Offset |= obj.NOPTR
}
}
func ggloblsym(s *Sym, width int32, flags int16) {
ggloblLSym(Linksym(s), width, flags)
}
func ggloblLSym(s *obj.LSym, width int32, flags int16) {
p := Thearch.Gins(obj.AGLOBL, nil, nil)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
p.From.Sym = s
if flags&obj.LOCAL != 0 {
p.From.Sym.Local = true
flags &^= obj.LOCAL
}
p.To.Type = obj.TYPE_CONST
p.To.Offset = int64(width)
p.From3 = new(obj.Addr)
p.From3.Offset = int64(flags)
}
func gjmp(to *obj.Prog) *obj.Prog {
p := Gbranch(obj.AJMP, nil, 0)
if to != nil {
Patch(p, to)
}
return p
}
func gtrack(s *Sym) {
p := Thearch.Gins(obj.AUSEFIELD, nil, nil)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
p.From.Sym = Linksym(s)
}
func gused(n *Node) {
Thearch.Gins(obj.ANOP, n, nil) // used
}
func Isfat(t *Type) bool {
if t != nil {
switch t.Etype {
case TSTRUCT, TARRAY, TSLICE, TSTRING,
TINTER: // maybe remove later
return true
}
}
return false
}
// Sweep the prog list to mark any used nodes.
func markautoused(p *obj.Prog) {
for ; p != nil; p = p.Link {
if p.As == obj.ATYPE || p.As == obj.AVARDEF || p.As == obj.AVARKILL {
continue
}
if p.From.Node != nil {
((p.From.Node).(*Node)).Used = true
}
if p.To.Node != nil {
((p.To.Node).(*Node)).Used = true
}
}
}
// Naddr rewrites a to refer to n.
// It assumes that a is zeroed on entry.
func Naddr(a *obj.Addr, n *Node) {
if n == nil {
return
}
if n.Type != nil && n.Type.Etype != TIDEAL {
// TODO(rsc): This is undone by the selective clearing of width below,
// to match architectures that were not as aggressive in setting width
// during naddr. Those widths must be cleared to avoid triggering
// failures in gins when it detects real but heretofore latent (and one
// hopes innocuous) type mismatches.
// The type mismatches should be fixed and the clearing below removed.
dowidth(n.Type)
a.Width = n.Type.Width
}
switch n.Op {
default:
a := a // copy to let escape into Ctxt.Dconv
Debug['h'] = 1
Dump("naddr", n)
Fatalf("naddr: bad %v %v", n.Op, Ctxt.Dconv(a))
case OREGISTER:
a.Type = obj.TYPE_REG
a.Reg = n.Reg
a.Sym = nil
if Thearch.LinkArch.Family == sys.I386 { // TODO(rsc): Never clear a->width.
a.Width = 0
}
case OINDREG:
a.Type = obj.TYPE_MEM
a.Reg = n.Reg
a.Sym = Linksym(n.Sym)
a.Offset = n.Xoffset
if a.Offset != int64(int32(a.Offset)) {
Yyerror("offset %d too large for OINDREG", a.Offset)
}
if Thearch.LinkArch.Family == sys.I386 { // TODO(rsc): Never clear a->width.
a.Width = 0
}
case OCLOSUREVAR:
if !Curfn.Func.Needctxt {
Fatalf("closurevar without needctxt")
}
a.Type = obj.TYPE_MEM
a.Reg = int16(Thearch.REGCTXT)
a.Sym = nil
a.Offset = n.Xoffset
case OCFUNC:
Naddr(a, n.Left)
a.Sym = Linksym(n.Left.Sym)
case ONAME:
a.Etype = 0
if n.Type != nil {
a.Etype = uint8(Simtype[n.Type.Etype])
}
a.Offset = n.Xoffset
s := n.Sym
a.Node = n.Orig
//if(a->node >= (Node*)&n)
// fatal("stack node");
if s == nil {
s = Lookup(".noname")
}
if n.Name.Method && n.Type != nil && n.Type.Sym != nil && n.Type.Sym.Pkg != nil {
s = Pkglookup(s.Name, n.Type.Sym.Pkg)
}
a.Type = obj.TYPE_MEM
switch n.Class {
default:
Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class)
case PEXTERN:
a.Name = obj.NAME_EXTERN
case PAUTO:
a.Name = obj.NAME_AUTO
case PPARAM, PPARAMOUT:
a.Name = obj.NAME_PARAM
case PFUNC:
a.Name = obj.NAME_EXTERN
a.Type = obj.TYPE_ADDR
a.Width = int64(Widthptr)
s = funcsym(s)
}
a.Sym = Linksym(s)
case ODOT:
// A special case to make write barriers more efficient.
// Taking the address of the first field of a named struct
// is the same as taking the address of the struct.
if !n.Left.Type.IsStruct() || n.Left.Type.Field(0).Sym != n.Sym {
Debug['h'] = 1
Dump("naddr", n)
Fatalf("naddr: bad %v %v", n.Op, Ctxt.Dconv(a))
}
Naddr(a, n.Left)
case OLITERAL:
if Thearch.LinkArch.Family == sys.I386 {
a.Width = 0
}
switch u := n.Val().U.(type) {
default:
Fatalf("naddr: const %v", Tconv(n.Type, FmtLong))
case *Mpflt:
a.Type = obj.TYPE_FCONST
a.Val = u.Float64()
case *Mpint:
a.Sym = nil
a.Type = obj.TYPE_CONST
a.Offset = u.Int64()
case string:
datagostring(u, a)
case bool:
a.Sym = nil
a.Type = obj.TYPE_CONST
a.Offset = int64(obj.Bool2int(u))
case *NilVal:
a.Sym = nil
a.Type = obj.TYPE_CONST
a.Offset = 0
}
case OADDR:
Naddr(a, n.Left)
a.Etype = uint8(Tptr)
if !Thearch.LinkArch.InFamily(sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { // TODO(rsc): Do this even for these architectures.
a.Width = int64(Widthptr)
}
if a.Type != obj.TYPE_MEM {
a := a // copy to let escape into Ctxt.Dconv
Fatalf("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), n.Left.Op)
}
a.Type = obj.TYPE_ADDR
// itable of interface value
case OITAB:
Naddr(a, n.Left)
if a.Type == obj.TYPE_CONST && a.Offset == 0 {
break // itab(nil)
}
a.Etype = uint8(Tptr)
a.Width = int64(Widthptr)
// pointer in a string or slice
case OSPTR:
Naddr(a, n.Left)
if a.Type == obj.TYPE_CONST && a.Offset == 0 {
break // ptr(nil)
}
a.Etype = uint8(Simtype[Tptr])
a.Offset += int64(Array_array)
a.Width = int64(Widthptr)
// len of string or slice
case OLEN:
Naddr(a, n.Left)
if a.Type == obj.TYPE_CONST && a.Offset == 0 {
break // len(nil)
}
a.Etype = uint8(Simtype[TUINT])
a.Offset += int64(Array_nel)
if Thearch.LinkArch.Family != sys.ARM { // TODO(rsc): Do this even on arm.
a.Width = int64(Widthint)
}
// cap of string or slice
case OCAP:
Naddr(a, n.Left)
if a.Type == obj.TYPE_CONST && a.Offset == 0 {
break // cap(nil)
}
a.Etype = uint8(Simtype[TUINT])
a.Offset += int64(Array_cap)
if Thearch.LinkArch.Family != sys.ARM { // TODO(rsc): Do this even on arm.
a.Width = int64(Widthint)
}
}
}
func newplist() *obj.Plist {
pl := obj.Linknewplist(Ctxt)
Pc = Ctxt.NewProg()
Clearp(Pc)
pl.Firstpc = Pc
return pl
}
// nodarg returns a Node for the function argument denoted by t,
// which is either the entire function argument or result struct (t is a struct *Type)
// or a specific argument (t is a *Field within a struct *Type).
//
// If fp is 0, the node is for use by a caller invoking the given
// function, preparing the arguments before the call
// or retrieving the results after the call.
// In this case, the node will correspond to an outgoing argument
// slot like 8(SP).
//
// If fp is 1, the node is for use by the function itself
// (the callee), to retrieve its arguments or write its results.
// In this case the node will be an ONAME with an appropriate
// type and offset.
func nodarg(t interface{}, fp int) *Node {
var n *Node
var funarg Funarg
switch t := t.(type) {
default:
Fatalf("bad nodarg %T(%v)", t, t)
case *Type:
// Entire argument struct, not just one arg
if !t.IsFuncArgStruct() {
Fatalf("nodarg: bad type %v", t)
}
funarg = t.StructType().Funarg
// Build fake variable name for whole arg struct.
n = Nod(ONAME, nil, nil)
n.Sym = Lookup(".args")
n.Type = t
first := t.Field(0)
if first == nil {
Fatalf("nodarg: bad struct")
}
if first.Offset == BADWIDTH {
Fatalf("nodarg: offset not computed for %v", t)
}
n.Xoffset = first.Offset
n.Addable = true
case *Field:
funarg = t.Funarg
if fp == 1 {
// NOTE(rsc): This should be using t.Nname directly,
// except in the case where t.Nname.Sym is the blank symbol and
// so the assignment would be discarded during code generation.
// In that case we need to make a new node, and there is no harm
// in optimization passes to doing so. But otherwise we should
// definitely be using the actual declaration and not a newly built node.
// The extra Fatalf checks here are verifying that this is the case,
// without changing the actual logic (at time of writing, it's getting
// toward time for the Go 1.7 beta).
// At some quieter time (assuming we've never seen these Fatalfs happen)
// we could change this code to use "expect" directly.
expect := t.Nname
if expect.isParamHeapCopy() {
expect = expect.Name.Param.Stackcopy
}
for _, n := range Curfn.Func.Dcl {
if (n.Class == PPARAM || n.Class == PPARAMOUT) && !isblanksym(t.Sym) && n.Sym == t.Sym {
if n != expect {
Fatalf("nodarg: unexpected node: %v (%p %v) vs %v (%p %v)", n, n, n.Op, t.Nname, t.Nname, t.Nname.Op)
}
return n
}
}
if !isblanksym(expect.Sym) {
Fatalf("nodarg: did not find node in dcl list: %v", expect)
}
}
// Build fake name for individual variable.
// This is safe because if there was a real declared name
// we'd have used it above.
n = Nod(ONAME, nil, nil)
n.Type = t.Type
n.Sym = t.Sym
if t.Offset == BADWIDTH {
Fatalf("nodarg: offset not computed for %v", t)
}
n.Xoffset = t.Offset
n.Addable = true
n.Orig = t.Nname
}
// Rewrite argument named _ to __,
// or else the assignment to _ will be
// discarded during code generation.
if isblank(n) {
n.Sym = Lookup("__")
}
switch fp {
default:
Fatalf("bad fp")
case 0: // preparing arguments for call
n.Op = OINDREG
n.Reg = int16(Thearch.REGSP)
n.Xoffset += Ctxt.FixedFrameSize()
case 1: // reading arguments inside call
n.Class = PPARAM
if funarg == FunargResults {
n.Class = PPARAMOUT
}
}
n.Typecheck = 1
n.Addrtaken = true // keep optimizers at bay
return n
}
func Patch(p *obj.Prog, to *obj.Prog) {
if p.To.Type != obj.TYPE_BRANCH {
Fatalf("patch: not a branch")
}
p.To.Val = to
p.To.Offset = to.Pc
}
func unpatch(p *obj.Prog) *obj.Prog {
if p.To.Type != obj.TYPE_BRANCH {
Fatalf("unpatch: not a branch")
}
q, _ := p.To.Val.(*obj.Prog)
p.To.Val = nil
p.To.Offset = 0
return q
}
var reg [100]int // count of references to reg
var regstk [100][]byte // allocation sites, when -v is given
func GetReg(r int) int {
return reg[r-Thearch.REGMIN]
}
func SetReg(r, v int) {
reg[r-Thearch.REGMIN] = v
}
func ginit() {
for r := range reg {
reg[r] = 1
}
for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ {
reg[r-Thearch.REGMIN] = 0
}
for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ {
reg[r-Thearch.REGMIN] = 0
}
for _, r := range Thearch.ReservedRegs {
reg[r-Thearch.REGMIN] = 1
}
}
func gclean() {
for _, r := range Thearch.ReservedRegs {
reg[r-Thearch.REGMIN]--
}
for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ {
n := reg[r-Thearch.REGMIN]
if n != 0 {
if Debug['v'] != 0 {
Regdump()
}
Yyerror("reg %v left allocated", obj.Rconv(r))
}
}
for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ {
n := reg[r-Thearch.REGMIN]
if n != 0 {
if Debug['v'] != 0 {
Regdump()
}
Yyerror("reg %v left allocated", obj.Rconv(r))
}
}
}
func Anyregalloc() bool {
n := 0
for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ {
if reg[r-Thearch.REGMIN] == 0 {
n++
}
}
return n > len(Thearch.ReservedRegs)
}
// allocate register of type t, leave in n.
// if o != N, o may be reusable register.
// caller must Regfree(n).
func Regalloc(n *Node, t *Type, o *Node) {
if t == nil {
Fatalf("regalloc: t nil")
}
et := Simtype[t.Etype]
if Ctxt.Arch.RegSize == 4 && (et == TINT64 || et == TUINT64) {
Fatalf("regalloc 64bit")
}
var i int
Switch:
switch et {
default:
Fatalf("regalloc: unknown type %v", t)
case TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, TUINT64, TPTR32, TPTR64, TBOOL:
if o != nil && o.Op == OREGISTER {
i = int(o.Reg)
if Thearch.REGMIN <= i && i <= Thearch.REGMAX {
break Switch
}
}
for i = Thearch.REGMIN; i <= Thearch.REGMAX; i++ {
if reg[i-Thearch.REGMIN] == 0 {
break Switch
}
}
Flusherrors()
Regdump()
Fatalf("out of fixed registers")
case TFLOAT32, TFLOAT64:
if Thearch.Use387 {
i = Thearch.FREGMIN // x86.REG_F0
break Switch
}
if o != nil && o.Op == OREGISTER {
i = int(o.Reg)
if Thearch.FREGMIN <= i && i <= Thearch.FREGMAX {
break Switch
}
}
for i = Thearch.FREGMIN; i <= Thearch.FREGMAX; i++ {
if reg[i-Thearch.REGMIN] == 0 { // note: REGMIN, not FREGMIN
break Switch
}
}
Flusherrors()
Regdump()
Fatalf("out of floating registers")
case TCOMPLEX64, TCOMPLEX128:
Tempname(n, t)
return
}
ix := i - Thearch.REGMIN
if reg[ix] == 0 && Debug['v'] > 0 {
if regstk[ix] == nil {
regstk[ix] = make([]byte, 4096)
}
stk := regstk[ix]
n := runtime.Stack(stk[:cap(stk)], false)
regstk[ix] = stk[:n]
}
reg[ix]++
Nodreg(n, t, i)
}
func Regfree(n *Node) {
if n.Op == ONAME {
return
}
if n.Op != OREGISTER && n.Op != OINDREG {
Fatalf("regfree: not a register")
}
i := int(n.Reg)
if i == Thearch.REGSP {
return
}
switch {
case Thearch.REGMIN <= i && i <= Thearch.REGMAX,
Thearch.FREGMIN <= i && i <= Thearch.FREGMAX:
// ok
default:
Fatalf("regfree: reg out of range")
}
i -= Thearch.REGMIN
if reg[i] <= 0 {
Fatalf("regfree: reg not allocated")
}
reg[i]--
if reg[i] == 0 {
regstk[i] = regstk[i][:0]
}
}
// Reginuse reports whether r is in use.
func Reginuse(r int) bool {
switch {
case Thearch.REGMIN <= r && r <= Thearch.REGMAX,
Thearch.FREGMIN <= r && r <= Thearch.FREGMAX:
// ok
default:
Fatalf("reginuse: reg out of range")
}
return reg[r-Thearch.REGMIN] > 0
}
// Regrealloc(n) undoes the effect of Regfree(n),
// so that a register can be given up but then reclaimed.
func Regrealloc(n *Node) {
if n.Op != OREGISTER && n.Op != OINDREG {
Fatalf("regrealloc: not a register")
}
i := int(n.Reg)
if i == Thearch.REGSP {
return
}
switch {
case Thearch.REGMIN <= i && i <= Thearch.REGMAX,
Thearch.FREGMIN <= i && i <= Thearch.FREGMAX:
// ok
default:
Fatalf("regrealloc: reg out of range")
}
i -= Thearch.REGMIN
if reg[i] == 0 && Debug['v'] > 0 {
if regstk[i] == nil {
regstk[i] = make([]byte, 4096)
}
stk := regstk[i]
n := runtime.Stack(stk[:cap(stk)], false)
regstk[i] = stk[:n]
}
reg[i]++
}
func Regdump() {
if Debug['v'] == 0 {
fmt.Printf("run compiler with -v for register allocation sites\n")
return
}
dump := func(r int) {
stk := regstk[r-Thearch.REGMIN]
if len(stk) == 0 {
return
}
fmt.Printf("reg %v allocated at:\n", obj.Rconv(r))
fmt.Printf("\t%s\n", strings.Replace(strings.TrimSpace(string(stk)), "\n", "\n\t", -1))
}
for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ {
if reg[r-Thearch.REGMIN] != 0 {
dump(r)
}
}
for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ {
if reg[r-Thearch.REGMIN] == 0 {
dump(r)
}
}
}