blob: fa7105f62044dbf386ab876bc6058a615c833980 [file] [log] [blame]
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO/NICETOHAVE:
// - eliminate DW_CLS_ if not used
// - package info in compilation units
// - assign global variables and types to their packages
// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg
// ptype struct '[]uint8' and qualifiers need to be quoted away
// - lexical scoping is lost, so gdb gets confused as to which 'main.i' you mean.
// - file:line info for variables
// - make strings a typedef so prettyprinters can see the underlying string type
package ld
import (
"cmd/internal/obj"
"fmt"
"log"
"os"
"strings"
)
const infoprefix = "go.dwarf.info."
/*
* Offsets and sizes of the debug_* sections in the cout file.
*/
var abbrevsym *LSym
var arangessec *LSym
var framesec *LSym
var infosec *LSym
var linesec *LSym
var gdbscript string
/*
* Basic I/O
*/
func addrput(s *LSym, addr int64) {
switch SysArch.PtrSize {
case 4:
Adduint32(Ctxt, s, uint32(addr))
case 8:
Adduint64(Ctxt, s, uint64(addr))
}
}
func appendUleb128(b []byte, v uint64) []byte {
for {
c := uint8(v & 0x7f)
v >>= 7
if v != 0 {
c |= 0x80
}
b = append(b, c)
if c&0x80 == 0 {
break
}
}
return b
}
func appendSleb128(b []byte, v int64) []byte {
for {
c := uint8(v & 0x7f)
s := uint8(v & 0x40)
v >>= 7
if (v != -1 || s == 0) && (v != 0 || s != 0) {
c |= 0x80
}
b = append(b, c)
if c&0x80 == 0 {
break
}
}
return b
}
var encbuf [10]byte
func uleb128put(s *LSym, v int64) {
b := appendUleb128(encbuf[:0], uint64(v))
Addbytes(Ctxt, s, b)
}
func sleb128put(s *LSym, v int64) {
b := appendSleb128(encbuf[:0], v)
Addbytes(Ctxt, s, b)
}
/*
* Defining Abbrevs. This is hardcoded, and there will be
* only a handful of them. The DWARF spec places no restriction on
* the ordering of attributes in the Abbrevs and DIEs, and we will
* always write them out in the order of declaration in the abbrev.
*/
type DWAttrForm struct {
attr uint16
form uint8
}
// Go-specific type attributes.
const (
DW_AT_go_kind = 0x2900
DW_AT_go_key = 0x2901
DW_AT_go_elem = 0x2902
DW_AT_internal_location = 253 // params and locals; not emitted
)
// Index into the abbrevs table below.
// Keep in sync with ispubname() and ispubtype() below.
// ispubtype considers >= NULLTYPE public
const (
DW_ABRV_NULL = iota
DW_ABRV_COMPUNIT
DW_ABRV_FUNCTION
DW_ABRV_VARIABLE
DW_ABRV_AUTO
DW_ABRV_PARAM
DW_ABRV_STRUCTFIELD
DW_ABRV_FUNCTYPEPARAM
DW_ABRV_DOTDOTDOT
DW_ABRV_ARRAYRANGE
DW_ABRV_NULLTYPE
DW_ABRV_BASETYPE
DW_ABRV_ARRAYTYPE
DW_ABRV_CHANTYPE
DW_ABRV_FUNCTYPE
DW_ABRV_IFACETYPE
DW_ABRV_MAPTYPE
DW_ABRV_PTRTYPE
DW_ABRV_BARE_PTRTYPE // only for void*, no DW_AT_type attr to please gdb 6.
DW_ABRV_SLICETYPE
DW_ABRV_STRINGTYPE
DW_ABRV_STRUCTTYPE
DW_ABRV_TYPEDECL
DW_NABRV
)
type DWAbbrev struct {
tag uint8
children uint8
attr []DWAttrForm
}
var abbrevs = [DW_NABRV]DWAbbrev{
/* The mandatory DW_ABRV_NULL entry. */
{0, 0, []DWAttrForm{}},
/* COMPUNIT */
{
DW_TAG_compile_unit,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_language, DW_FORM_data1},
{DW_AT_low_pc, DW_FORM_addr},
{DW_AT_high_pc, DW_FORM_addr},
{DW_AT_stmt_list, DW_FORM_data4},
{DW_AT_comp_dir, DW_FORM_string},
},
},
/* FUNCTION */
{
DW_TAG_subprogram,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_low_pc, DW_FORM_addr},
{DW_AT_high_pc, DW_FORM_addr},
{DW_AT_external, DW_FORM_flag},
},
},
/* VARIABLE */
{
DW_TAG_variable,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_location, DW_FORM_block1},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_external, DW_FORM_flag},
},
},
/* AUTO */
{
DW_TAG_variable,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_location, DW_FORM_block1},
{DW_AT_type, DW_FORM_ref_addr},
},
},
/* PARAM */
{
DW_TAG_formal_parameter,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_location, DW_FORM_block1},
{DW_AT_type, DW_FORM_ref_addr},
},
},
/* STRUCTFIELD */
{
DW_TAG_member,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_data_member_location, DW_FORM_block1},
{DW_AT_type, DW_FORM_ref_addr},
},
},
/* FUNCTYPEPARAM */
{
DW_TAG_formal_parameter,
DW_CHILDREN_no,
// No name!
[]DWAttrForm{
{DW_AT_type, DW_FORM_ref_addr},
},
},
/* DOTDOTDOT */
{
DW_TAG_unspecified_parameters,
DW_CHILDREN_no,
[]DWAttrForm{},
},
/* ARRAYRANGE */
{
DW_TAG_subrange_type,
DW_CHILDREN_no,
// No name!
[]DWAttrForm{
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_count, DW_FORM_udata},
},
},
// Below here are the types considered public by ispubtype
/* NULLTYPE */
{
DW_TAG_unspecified_type,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
},
},
/* BASETYPE */
{
DW_TAG_base_type,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_encoding, DW_FORM_data1},
{DW_AT_byte_size, DW_FORM_data1},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* ARRAYTYPE */
// child is subrange with upper bound
{
DW_TAG_array_type,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_byte_size, DW_FORM_udata},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* CHANTYPE */
{
DW_TAG_typedef,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_go_kind, DW_FORM_data1},
{DW_AT_go_elem, DW_FORM_ref_addr},
},
},
/* FUNCTYPE */
{
DW_TAG_subroutine_type,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
// {DW_AT_type, DW_FORM_ref_addr},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* IFACETYPE */
{
DW_TAG_typedef,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* MAPTYPE */
{
DW_TAG_typedef,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_go_kind, DW_FORM_data1},
{DW_AT_go_key, DW_FORM_ref_addr},
{DW_AT_go_elem, DW_FORM_ref_addr},
},
},
/* PTRTYPE */
{
DW_TAG_pointer_type,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* BARE_PTRTYPE */
{
DW_TAG_pointer_type,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
},
},
/* SLICETYPE */
{
DW_TAG_structure_type,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_byte_size, DW_FORM_udata},
{DW_AT_go_kind, DW_FORM_data1},
{DW_AT_go_elem, DW_FORM_ref_addr},
},
},
/* STRINGTYPE */
{
DW_TAG_structure_type,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_byte_size, DW_FORM_udata},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* STRUCTTYPE */
{
DW_TAG_structure_type,
DW_CHILDREN_yes,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_byte_size, DW_FORM_udata},
{DW_AT_go_kind, DW_FORM_data1},
},
},
/* TYPEDECL */
{
DW_TAG_typedef,
DW_CHILDREN_no,
[]DWAttrForm{
{DW_AT_name, DW_FORM_string},
{DW_AT_type, DW_FORM_ref_addr},
},
},
}
var dwarfp *LSym
func writeabbrev() *LSym {
s := Linklookup(Ctxt, ".debug_abbrev", 0)
s.Type = obj.SDWARFSECT
abbrevsym = s
for i := 1; i < DW_NABRV; i++ {
// See section 7.5.3
uleb128put(s, int64(i))
uleb128put(s, int64(abbrevs[i].tag))
Adduint8(Ctxt, s, abbrevs[i].children)
for _, f := range abbrevs[i].attr {
uleb128put(s, int64(f.attr))
uleb128put(s, int64(f.form))
}
uleb128put(s, 0)
uleb128put(s, 0)
}
Adduint8(Ctxt, s, 0)
return s
}
/*
* Debugging Information Entries and their attributes.
*/
// For DW_CLS_string and _block, value should contain the length, and
// data the data, for _reference, value is 0 and data is a DWDie* to
// the referenced instance, for all others, value is the whole thing
// and data is null.
type DWAttr struct {
link *DWAttr
atr uint16 // DW_AT_
cls uint8 // DW_CLS_
value int64
data interface{}
}
type DWDie struct {
abbrev int
link *DWDie
child *DWDie
attr *DWAttr
sym *LSym
}
/*
* Root DIEs for compilation units, types and global variables.
*/
var dwroot DWDie
var dwtypes DWDie
var dwglobals DWDie
func newattr(die *DWDie, attr uint16, cls int, value int64, data interface{}) *DWAttr {
a := new(DWAttr)
a.link = die.attr
die.attr = a
a.atr = attr
a.cls = uint8(cls)
a.value = value
a.data = data
return a
}
// Each DIE (except the root ones) has at least 1 attribute: its
// name. getattr moves the desired one to the front so
// frequently searched ones are found faster.
func getattr(die *DWDie, attr uint16) *DWAttr {
if die.attr.atr == attr {
return die.attr
}
a := die.attr
b := a.link
for b != nil {
if b.atr == attr {
a.link = b.link
b.link = die.attr
die.attr = b
return b
}
a = b
b = b.link
}
return nil
}
// Every DIE has at least a DW_AT_name attribute (but it will only be
// written out if it is listed in the abbrev).
func newdie(parent *DWDie, abbrev int, name string, version int) *DWDie {
die := new(DWDie)
die.abbrev = abbrev
die.link = parent.child
parent.child = die
newattr(die, DW_AT_name, DW_CLS_STRING, int64(len(name)), name)
if name != "" && (abbrev <= DW_ABRV_VARIABLE || abbrev >= DW_ABRV_NULLTYPE) {
if abbrev != DW_ABRV_VARIABLE || version == 0 {
die.sym = Linklookup(Ctxt, infoprefix+name, version)
die.sym.Attr |= AttrHidden
die.sym.Type = obj.SDWARFINFO
}
}
return die
}
func walktypedef(die *DWDie) *DWDie {
// Resolve typedef if present.
if die.abbrev == DW_ABRV_TYPEDECL {
for attr := die.attr; attr != nil; attr = attr.link {
if attr.atr == DW_AT_type && attr.cls == DW_CLS_REFERENCE && attr.data != nil {
return attr.data.(*DWDie)
}
}
}
return die
}
func walksymtypedef(s *LSym) *LSym {
if t := Linkrlookup(Ctxt, s.Name+"..def", int(s.Version)); t != nil {
return t
}
return s
}
// Find child by AT_name using hashtable if available or linear scan
// if not.
func findchild(die *DWDie, name string) *DWDie {
var prev *DWDie
for ; die != prev; prev, die = die, walktypedef(die) {
for a := die.child; a != nil; a = a.link {
if name == getattr(a, DW_AT_name).data {
return a
}
}
continue
}
return nil
}
// Used to avoid string allocation when looking up dwarf symbols
var prefixBuf = []byte(infoprefix)
func find(name string) *LSym {
n := append(prefixBuf, name...)
// The string allocation below is optimized away because it is only used in a map lookup.
s := Linkrlookup(Ctxt, string(n), 0)
prefixBuf = n[:len(infoprefix)]
return s
}
func mustFind(name string) *LSym {
r := find(name)
if r == nil {
Exitf("dwarf find: cannot find %s", name)
}
return r
}
func adddwarfref(ctxt *Link, s *LSym, t *LSym, size int) int64 {
var result int64
switch size {
default:
Diag("invalid size %d in adddwarfref\n", size)
fallthrough
case SysArch.PtrSize:
result = Addaddr(ctxt, s, t)
case 4:
result = addaddrplus4(ctxt, s, t, 0)
}
r := &s.R[len(s.R)-1]
r.Type = obj.R_DWARFREF
return result
}
func newrefattr(die *DWDie, attr uint16, ref *LSym) *DWAttr {
if ref == nil {
return nil
}
return newattr(die, attr, DW_CLS_REFERENCE, 0, ref)
}
func putattr(s *LSym, abbrev int, form int, cls int, value int64, data interface{}) {
switch form {
case DW_FORM_addr: // address
if Linkmode == LinkExternal {
value -= (data.(*LSym)).Value
Addaddrplus(Ctxt, s, data.(*LSym), value)
break
}
addrput(s, value)
case DW_FORM_block1: // block
if cls == DW_CLS_ADDRESS {
Adduint8(Ctxt, s, uint8(1+SysArch.PtrSize))
Adduint8(Ctxt, s, DW_OP_addr)
Addaddr(Ctxt, s, data.(*LSym))
break
}
value &= 0xff
Adduint8(Ctxt, s, uint8(value))
p := data.([]byte)
for i := 0; int64(i) < value; i++ {
Adduint8(Ctxt, s, p[i])
}
case DW_FORM_block2: // block
value &= 0xffff
Adduint16(Ctxt, s, uint16(value))
p := data.([]byte)
for i := 0; int64(i) < value; i++ {
Adduint8(Ctxt, s, p[i])
}
case DW_FORM_block4: // block
value &= 0xffffffff
Adduint32(Ctxt, s, uint32(value))
p := data.([]byte)
for i := 0; int64(i) < value; i++ {
Adduint8(Ctxt, s, p[i])
}
case DW_FORM_block: // block
uleb128put(s, value)
p := data.([]byte)
for i := 0; int64(i) < value; i++ {
Adduint8(Ctxt, s, p[i])
}
case DW_FORM_data1: // constant
Adduint8(Ctxt, s, uint8(value))
case DW_FORM_data2: // constant
Adduint16(Ctxt, s, uint16(value))
case DW_FORM_data4: // constant, {line,loclist,mac,rangelist}ptr
if Linkmode == LinkExternal && cls == DW_CLS_PTR {
adddwarfref(Ctxt, s, linesec, 4)
break
}
Adduint32(Ctxt, s, uint32(value))
case DW_FORM_data8: // constant, {line,loclist,mac,rangelist}ptr
Adduint64(Ctxt, s, uint64(value))
case DW_FORM_sdata: // constant
sleb128put(s, value)
case DW_FORM_udata: // constant
uleb128put(s, value)
case DW_FORM_string: // string
str := data.(string)
Addstring(s, str)
for i := int64(len(str)); i < value; i++ {
Adduint8(Ctxt, s, 0)
}
case DW_FORM_flag: // flag
if value != 0 {
Adduint8(Ctxt, s, 1)
} else {
Adduint8(Ctxt, s, 0)
}
// In DWARF 2 (which is what we claim to generate),
// the ref_addr is the same size as a normal address.
// In DWARF 3 it is always 32 bits, unless emitting a large
// (> 4 GB of debug info aka "64-bit") unit, which we don't implement.
case DW_FORM_ref_addr: // reference to a DIE in the .info section
if data == nil {
Diag("dwarf: null reference in %d", abbrev)
if SysArch.PtrSize == 8 {
Adduint64(Ctxt, s, 0) // invalid dwarf, gdb will complain.
} else {
Adduint32(Ctxt, s, 0) // invalid dwarf, gdb will complain.
}
} else {
dsym := data.(*LSym)
adddwarfref(Ctxt, s, dsym, SysArch.PtrSize)
}
case DW_FORM_ref1, // reference within the compilation unit
DW_FORM_ref2, // reference
DW_FORM_ref4, // reference
DW_FORM_ref8, // reference
DW_FORM_ref_udata, // reference
DW_FORM_strp, // string
DW_FORM_indirect: // (see Section 7.5.3)
fallthrough
default:
Exitf("dwarf: unsupported attribute form %d / class %d", form, cls)
}
}
// Note that we can (and do) add arbitrary attributes to a DIE, but
// only the ones actually listed in the Abbrev will be written out.
func putattrs(s *LSym, abbrev int, attr *DWAttr) {
Outer:
for _, f := range abbrevs[abbrev].attr {
for ap := attr; ap != nil; ap = ap.link {
if ap.atr == f.attr {
putattr(s, abbrev, int(f.form), int(ap.cls), ap.value, ap.data)
continue Outer
}
}
putattr(s, abbrev, int(f.form), 0, 0, nil)
}
}
func putdies(prev *LSym, die *DWDie) *LSym {
for ; die != nil; die = die.link {
prev = putdie(prev, die)
}
Adduint8(Ctxt, prev, 0)
return prev
}
func putdie(prev *LSym, die *DWDie) *LSym {
s := die.sym
if s == nil {
s = prev
} else {
if s.Attr.OnList() {
log.Fatalf("symbol %s listed multiple times", s.Name)
}
s.Attr |= AttrOnList
prev.Next = s
}
uleb128put(s, int64(die.abbrev))
putattrs(s, die.abbrev, die.attr)
if abbrevs[die.abbrev].children != 0 {
return putdies(s, die.child)
}
return s
}
func reverselist(list **DWDie) {
curr := *list
var prev *DWDie
for curr != nil {
var next *DWDie = curr.link
curr.link = prev
prev = curr
curr = next
}
*list = prev
}
func reversetree(list **DWDie) {
reverselist(list)
for die := *list; die != nil; die = die.link {
if abbrevs[die.abbrev].children != 0 {
reversetree(&die.child)
}
}
}
func newmemberoffsetattr(die *DWDie, offs int32) {
var block [20]byte
b := append(block[:0], DW_OP_plus_uconst)
b = appendUleb128(b, uint64(offs))
newattr(die, DW_AT_data_member_location, DW_CLS_BLOCK, int64(len(b)), b)
}
// GDB doesn't like DW_FORM_addr for DW_AT_location, so emit a
// location expression that evals to a const.
func newabslocexprattr(die *DWDie, addr int64, sym *LSym) {
newattr(die, DW_AT_location, DW_CLS_ADDRESS, addr, sym)
// below
}
// Lookup predefined types
func lookup_or_diag(n string) *LSym {
s := Linkrlookup(Ctxt, n, 0)
if s == nil || s.Size == 0 {
Exitf("dwarf: missing type: %s", n)
}
return s
}
func dotypedef(parent *DWDie, name string, def *DWDie) {
// Only emit typedefs for real names.
if strings.HasPrefix(name, "map[") {
return
}
if strings.HasPrefix(name, "struct {") {
return
}
if strings.HasPrefix(name, "chan ") {
return
}
if name[0] == '[' || name[0] == '*' {
return
}
if def == nil {
Diag("dwarf: bad def in dotypedef")
}
def.sym = Linklookup(Ctxt, def.sym.Name+"..def", 0)
def.sym.Attr |= AttrHidden
def.sym.Type = obj.SDWARFINFO
// The typedef entry must be created after the def,
// so that future lookups will find the typedef instead
// of the real definition. This hooks the typedef into any
// circular definition loops, so that gdb can understand them.
die := newdie(parent, DW_ABRV_TYPEDECL, name, 0)
newrefattr(die, DW_AT_type, def.sym)
}
// Define gotype, for composite ones recurse into constituents.
func defgotype(gotype *LSym) *LSym {
if gotype == nil {
return mustFind("<unspecified>")
}
if !strings.HasPrefix(gotype.Name, "type.") {
Diag("dwarf: type name doesn't start with \"type.\": %s", gotype.Name)
return mustFind("<unspecified>")
}
name := gotype.Name[5:] // could also decode from Type.string
sdie := find(name)
if sdie != nil {
return sdie
}
return newtype(gotype).sym
}
func newtype(gotype *LSym) *DWDie {
name := gotype.Name[5:] // could also decode from Type.string
kind := decodetype_kind(gotype)
bytesize := decodetype_size(gotype)
var die *DWDie
switch kind {
case obj.KindBool:
die = newdie(&dwtypes, DW_ABRV_BASETYPE, name, 0)
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_boolean, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindInt,
obj.KindInt8,
obj.KindInt16,
obj.KindInt32,
obj.KindInt64:
die = newdie(&dwtypes, DW_ABRV_BASETYPE, name, 0)
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_signed, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindUint,
obj.KindUint8,
obj.KindUint16,
obj.KindUint32,
obj.KindUint64,
obj.KindUintptr:
die = newdie(&dwtypes, DW_ABRV_BASETYPE, name, 0)
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_unsigned, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindFloat32,
obj.KindFloat64:
die = newdie(&dwtypes, DW_ABRV_BASETYPE, name, 0)
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_float, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindComplex64,
obj.KindComplex128:
die = newdie(&dwtypes, DW_ABRV_BASETYPE, name, 0)
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_complex_float, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindArray:
die = newdie(&dwtypes, DW_ABRV_ARRAYTYPE, name, 0)
dotypedef(&dwtypes, name, die)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
s := decodetype_arrayelem(gotype)
newrefattr(die, DW_AT_type, defgotype(s))
fld := newdie(die, DW_ABRV_ARRAYRANGE, "range", 0)
// use actual length not upper bound; correct for 0-length arrays.
newattr(fld, DW_AT_count, DW_CLS_CONSTANT, decodetype_arraylen(gotype), 0)
newrefattr(fld, DW_AT_type, mustFind("uintptr"))
case obj.KindChan:
die = newdie(&dwtypes, DW_ABRV_CHANTYPE, name, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
s := decodetype_chanelem(gotype)
newrefattr(die, DW_AT_go_elem, defgotype(s))
// Save elem type for synthesizechantypes. We could synthesize here
// but that would change the order of DIEs we output.
newrefattr(die, DW_AT_type, s)
case obj.KindFunc:
die = newdie(&dwtypes, DW_ABRV_FUNCTYPE, name, 0)
dotypedef(&dwtypes, name, die)
newrefattr(die, DW_AT_type, mustFind("void"))
nfields := decodetype_funcincount(gotype)
var fld *DWDie
var s *LSym
for i := 0; i < nfields; i++ {
s = decodetype_funcintype(gotype, i)
fld = newdie(die, DW_ABRV_FUNCTYPEPARAM, s.Name[5:], 0)
newrefattr(fld, DW_AT_type, defgotype(s))
}
if decodetype_funcdotdotdot(gotype) {
newdie(die, DW_ABRV_DOTDOTDOT, "...", 0)
}
nfields = decodetype_funcoutcount(gotype)
for i := 0; i < nfields; i++ {
s = decodetype_funcouttype(gotype, i)
fld = newdie(die, DW_ABRV_FUNCTYPEPARAM, s.Name[5:], 0)
newrefattr(fld, DW_AT_type, defptrto(defgotype(s)))
}
case obj.KindInterface:
die = newdie(&dwtypes, DW_ABRV_IFACETYPE, name, 0)
dotypedef(&dwtypes, name, die)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
nfields := int(decodetype_ifacemethodcount(gotype))
var s *LSym
if nfields == 0 {
s = lookup_or_diag("type.runtime.eface")
} else {
s = lookup_or_diag("type.runtime.iface")
}
newrefattr(die, DW_AT_type, defgotype(s))
case obj.KindMap:
die = newdie(&dwtypes, DW_ABRV_MAPTYPE, name, 0)
s := decodetype_mapkey(gotype)
newrefattr(die, DW_AT_go_key, defgotype(s))
s = decodetype_mapvalue(gotype)
newrefattr(die, DW_AT_go_elem, defgotype(s))
// Save gotype for use in synthesizemaptypes. We could synthesize here,
// but that would change the order of the DIEs.
newrefattr(die, DW_AT_type, gotype)
case obj.KindPtr:
die = newdie(&dwtypes, DW_ABRV_PTRTYPE, name, 0)
dotypedef(&dwtypes, name, die)
s := decodetype_ptrelem(gotype)
newrefattr(die, DW_AT_type, defgotype(s))
case obj.KindSlice:
die = newdie(&dwtypes, DW_ABRV_SLICETYPE, name, 0)
dotypedef(&dwtypes, name, die)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
s := decodetype_arrayelem(gotype)
elem := defgotype(s)
newrefattr(die, DW_AT_go_elem, elem)
case obj.KindString:
die = newdie(&dwtypes, DW_ABRV_STRINGTYPE, name, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
case obj.KindStruct:
die = newdie(&dwtypes, DW_ABRV_STRUCTTYPE, name, 0)
dotypedef(&dwtypes, name, die)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, bytesize, 0)
nfields := decodetype_structfieldcount(gotype)
var f string
var fld *DWDie
var s *LSym
for i := 0; i < nfields; i++ {
f = decodetype_structfieldname(gotype, i)
s = decodetype_structfieldtype(gotype, i)
if f == "" {
f = s.Name[5:] // skip "type."
}
fld = newdie(die, DW_ABRV_STRUCTFIELD, f, 0)
newrefattr(fld, DW_AT_type, defgotype(s))
newmemberoffsetattr(fld, int32(decodetype_structfieldoffs(gotype, i)))
}
case obj.KindUnsafePointer:
die = newdie(&dwtypes, DW_ABRV_BARE_PTRTYPE, name, 0)
default:
Diag("dwarf: definition of unknown kind %d: %s", kind, gotype.Name)
die = newdie(&dwtypes, DW_ABRV_TYPEDECL, name, 0)
newrefattr(die, DW_AT_type, mustFind("<unspecified>"))
}
newattr(die, DW_AT_go_kind, DW_CLS_CONSTANT, int64(kind), 0)
if _, ok := prototypedies[gotype.Name]; ok {
prototypedies[gotype.Name] = die
}
return die
}
func nameFromDIESym(dwtype *LSym) string {
return strings.TrimSuffix(dwtype.Name[len(infoprefix):], "..def")
}
// Find or construct *T given T.
func defptrto(dwtype *LSym) *LSym {
ptrname := "*" + nameFromDIESym(dwtype)
die := find(ptrname)
if die == nil {
pdie := newdie(&dwtypes, DW_ABRV_PTRTYPE, ptrname, 0)
newrefattr(pdie, DW_AT_type, dwtype)
return pdie.sym
}
return die
}
// Copies src's children into dst. Copies attributes by value.
// DWAttr.data is copied as pointer only. If except is one of
// the top-level children, it will not be copied.
func copychildrenexcept(dst *DWDie, src *DWDie, except *DWDie) {
for src = src.child; src != nil; src = src.link {
if src == except {
continue
}
c := newdie(dst, src.abbrev, getattr(src, DW_AT_name).data.(string), 0)
for a := src.attr; a != nil; a = a.link {
newattr(c, a.atr, int(a.cls), a.value, a.data)
}
copychildrenexcept(c, src, nil)
}
reverselist(&dst.child)
}
func copychildren(dst *DWDie, src *DWDie) {
copychildrenexcept(dst, src, nil)
}
// Search children (assumed to have DW_TAG_member) for the one named
// field and set its DW_AT_type to dwtype
func substitutetype(structdie *DWDie, field string, dwtype *LSym) {
child := findchild(structdie, field)
if child == nil {
Exitf("dwarf substitutetype: %s does not have member %s",
getattr(structdie, DW_AT_name).data, field)
return
}
a := getattr(child, DW_AT_type)
if a != nil {
a.data = dwtype
} else {
newrefattr(child, DW_AT_type, dwtype)
}
}
func findprotodie(name string) *DWDie {
die, ok := prototypedies[name]
if ok && die == nil {
defgotype(lookup_or_diag(name))
die = prototypedies[name]
}
return die
}
func synthesizestringtypes(die *DWDie) {
prototype := walktypedef(findprotodie("type.runtime.stringStructDWARF"))
if prototype == nil {
return
}
for ; die != nil; die = die.link {
if die.abbrev != DW_ABRV_STRINGTYPE {
continue
}
copychildren(die, prototype)
}
}
func synthesizeslicetypes(die *DWDie) {
prototype := walktypedef(findprotodie("type.runtime.slice"))
if prototype == nil {
return
}
for ; die != nil; die = die.link {
if die.abbrev != DW_ABRV_SLICETYPE {
continue
}
copychildren(die, prototype)
elem := getattr(die, DW_AT_go_elem).data.(*LSym)
substitutetype(die, "array", defptrto(elem))
}
}
func mkinternaltypename(base string, arg1 string, arg2 string) string {
var buf string
if arg2 == "" {
buf = fmt.Sprintf("%s<%s>", base, arg1)
} else {
buf = fmt.Sprintf("%s<%s,%s>", base, arg1, arg2)
}
n := buf
return n
}
// synthesizemaptypes is way too closely married to runtime/hashmap.c
const (
MaxKeySize = 128
MaxValSize = 128
BucketSize = 8
)
func mkinternaltype(abbrev int, typename, keyname, valname string, f func(*DWDie)) *LSym {
name := mkinternaltypename(typename, keyname, valname)
symname := infoprefix + name
s := Linkrlookup(Ctxt, symname, 0)
if s != nil {
return s
}
die := newdie(&dwtypes, abbrev, name, 0)
f(die)
return die.sym
}
func synthesizemaptypes(die *DWDie) {
hash := walktypedef(findprotodie("type.runtime.hmap"))
bucket := walktypedef(findprotodie("type.runtime.bmap"))
if hash == nil {
return
}
for ; die != nil; die = die.link {
if die.abbrev != DW_ABRV_MAPTYPE {
continue
}
gotype := getattr(die, DW_AT_type).data.(*LSym)
keytype := decodetype_mapkey(gotype)
valtype := decodetype_mapvalue(gotype)
keysize, valsize := decodetype_size(keytype), decodetype_size(valtype)
keytype, valtype = walksymtypedef(defgotype(keytype)), walksymtypedef(defgotype(valtype))
// compute size info like hashmap.c does.
indirect_key, indirect_val := false, false
if keysize > MaxKeySize {
keysize = int64(SysArch.PtrSize)
indirect_key = true
}
if valsize > MaxValSize {
valsize = int64(SysArch.PtrSize)
indirect_val = true
}
// Construct type to represent an array of BucketSize keys
keyname := nameFromDIESym(keytype)
dwhks := mkinternaltype(DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *DWDie) {
newattr(dwhk, DW_AT_byte_size, DW_CLS_CONSTANT, BucketSize*keysize, 0)
t := keytype
if indirect_key {
t = defptrto(keytype)
}
newrefattr(dwhk, DW_AT_type, t)
fld := newdie(dwhk, DW_ABRV_ARRAYRANGE, "size", 0)
newattr(fld, DW_AT_count, DW_CLS_CONSTANT, BucketSize, 0)
newrefattr(fld, DW_AT_type, mustFind("uintptr"))
})
// Construct type to represent an array of BucketSize values
valname := nameFromDIESym(valtype)
dwhvs := mkinternaltype(DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *DWDie) {
newattr(dwhv, DW_AT_byte_size, DW_CLS_CONSTANT, BucketSize*valsize, 0)
t := valtype
if indirect_val {
t = defptrto(valtype)
}
newrefattr(dwhv, DW_AT_type, t)
fld := newdie(dwhv, DW_ABRV_ARRAYRANGE, "size", 0)
newattr(fld, DW_AT_count, DW_CLS_CONSTANT, BucketSize, 0)
newrefattr(fld, DW_AT_type, mustFind("uintptr"))
})
// Construct bucket<K,V>
dwhbs := mkinternaltype(DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *DWDie) {
// Copy over all fields except the field "data" from the generic
// bucket. "data" will be replaced with keys/values below.
copychildrenexcept(dwhb, bucket, findchild(bucket, "data"))
fld := newdie(dwhb, DW_ABRV_STRUCTFIELD, "keys", 0)
newrefattr(fld, DW_AT_type, dwhks)
newmemberoffsetattr(fld, BucketSize)
fld = newdie(dwhb, DW_ABRV_STRUCTFIELD, "values", 0)
newrefattr(fld, DW_AT_type, dwhvs)
newmemberoffsetattr(fld, BucketSize+BucketSize*int32(keysize))
fld = newdie(dwhb, DW_ABRV_STRUCTFIELD, "overflow", 0)
newrefattr(fld, DW_AT_type, defptrto(dwhb.sym))
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize)))
if SysArch.RegSize > SysArch.PtrSize {
fld = newdie(dwhb, DW_ABRV_STRUCTFIELD, "pad", 0)
newrefattr(fld, DW_AT_type, mustFind("uintptr"))
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize))+int32(SysArch.PtrSize))
}
newattr(dwhb, DW_AT_byte_size, DW_CLS_CONSTANT, BucketSize+BucketSize*keysize+BucketSize*valsize+int64(SysArch.RegSize), 0)
})
// Construct hash<K,V>
dwhs := mkinternaltype(DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *DWDie) {
copychildren(dwh, hash)
substitutetype(dwh, "buckets", defptrto(dwhbs))
substitutetype(dwh, "oldbuckets", defptrto(dwhbs))
newattr(dwh, DW_AT_byte_size, DW_CLS_CONSTANT, getattr(hash, DW_AT_byte_size).value, nil)
})
// make map type a pointer to hash<K,V>
newrefattr(die, DW_AT_type, defptrto(dwhs))
}
}
func synthesizechantypes(die *DWDie) {
sudog := walktypedef(findprotodie("type.runtime.sudog"))
waitq := walktypedef(findprotodie("type.runtime.waitq"))
hchan := walktypedef(findprotodie("type.runtime.hchan"))
if sudog == nil || waitq == nil || hchan == nil {
return
}
sudogsize := int(getattr(sudog, DW_AT_byte_size).value)
for ; die != nil; die = die.link {
if die.abbrev != DW_ABRV_CHANTYPE {
continue
}
elemgotype := getattr(die, DW_AT_type).data.(*LSym)
elemsize := decodetype_size(elemgotype)
elemname := elemgotype.Name[5:]
elemtype := walksymtypedef(defgotype(elemgotype))
// sudog<T>
dwss := mkinternaltype(DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *DWDie) {
copychildren(dws, sudog)
substitutetype(dws, "elem", elemtype)
if elemsize > 8 {
elemsize -= 8
} else {
elemsize = 0
}
newattr(dws, DW_AT_byte_size, DW_CLS_CONSTANT, int64(sudogsize)+elemsize, nil)
})
// waitq<T>
dwws := mkinternaltype(DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *DWDie) {
copychildren(dww, waitq)
substitutetype(dww, "first", defptrto(dwss))
substitutetype(dww, "last", defptrto(dwss))
newattr(dww, DW_AT_byte_size, DW_CLS_CONSTANT, getattr(waitq, DW_AT_byte_size).value, nil)
})
// hchan<T>
dwhs := mkinternaltype(DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *DWDie) {
copychildren(dwh, hchan)
substitutetype(dwh, "recvq", dwws)
substitutetype(dwh, "sendq", dwws)
newattr(dwh, DW_AT_byte_size, DW_CLS_CONSTANT, getattr(hchan, DW_AT_byte_size).value, nil)
})
newrefattr(die, DW_AT_type, defptrto(dwhs))
}
}
// For use with pass.c::genasmsym
func defdwsymb(sym *LSym, s string, t int, v int64, size int64, ver int, gotype *LSym) {
if strings.HasPrefix(s, "go.string.") {
return
}
if strings.HasPrefix(s, "runtime.gcbits.") {
return
}
if strings.HasPrefix(s, "type.") && s != "type.*" && !strings.HasPrefix(s, "type..") {
defgotype(sym)
return
}
var dv *DWDie
var dt *LSym
switch t {
default:
return
case 'd', 'b', 'D', 'B':
dv = newdie(&dwglobals, DW_ABRV_VARIABLE, s, ver)
newabslocexprattr(dv, v, sym)
if ver == 0 {
newattr(dv, DW_AT_external, DW_CLS_FLAG, 1, 0)
}
fallthrough
case 'a', 'p':
dt = defgotype(gotype)
}
if dv != nil {
newrefattr(dv, DW_AT_type, dt)
}
}
func movetomodule(parent *DWDie) {
die := dwroot.child.child
for die.link != nil {
die = die.link
}
die.link = parent.child
}
// If the pcln table contains runtime/runtime.go, use that to set gdbscript path.
func finddebugruntimepath(s *LSym) {
if gdbscript != "" {
return
}
for i := range s.FuncInfo.File {
f := s.FuncInfo.File[i]
if i := strings.Index(f.Name, "runtime/runtime.go"); i >= 0 {
gdbscript = f.Name[:i] + "runtime/runtime-gdb.py"
break
}
}
}
/*
* Generate short opcodes when possible, long ones when necessary.
* See section 6.2.5
*/
const (
LINE_BASE = -1
LINE_RANGE = 4
OPCODE_BASE = 10
)
func putpclcdelta(s *LSym, delta_pc int64, delta_lc int64) {
if LINE_BASE <= delta_lc && delta_lc < LINE_BASE+LINE_RANGE {
var opcode int64 = OPCODE_BASE + (delta_lc - LINE_BASE) + (LINE_RANGE * delta_pc)
if OPCODE_BASE <= opcode && opcode < 256 {
Adduint8(Ctxt, s, uint8(opcode))
return
}
}
if delta_pc != 0 {
Adduint8(Ctxt, s, DW_LNS_advance_pc)
sleb128put(s, delta_pc)
}
Adduint8(Ctxt, s, DW_LNS_advance_line)
sleb128put(s, delta_lc)
Adduint8(Ctxt, s, DW_LNS_copy)
}
func newcfaoffsetattr(die *DWDie, offs int32) {
var block [20]byte
b := append(block[:0], DW_OP_call_frame_cfa)
if offs != 0 {
b = append(b, DW_OP_consts)
b = appendSleb128(b, int64(offs))
b = append(b, DW_OP_plus)
}
newattr(die, DW_AT_location, DW_CLS_BLOCK, int64(len(b)), b)
}
func mkvarname(name string, da int) string {
buf := fmt.Sprintf("%s#%d", name, da)
n := buf
return n
}
/*
* Walk prog table, emit line program and build DIE tree.
*/
func getCompilationDir() string {
if dir, err := os.Getwd(); err == nil {
return dir
}
return "/"
}
func writelines(prev *LSym) *LSym {
if linesec == nil {
linesec = Linklookup(Ctxt, ".debug_line", 0)
}
linesec.Type = obj.SDWARFSECT
linesec.R = linesec.R[:0]
ls := linesec
prev.Next = ls
unitstart := int64(-1)
headerstart := int64(-1)
headerend := int64(-1)
epc := int64(0)
var epcs *LSym
var dwinfo *DWDie
lang := DW_LANG_Go
s := Ctxt.Textp[0]
dwinfo = newdie(&dwroot, DW_ABRV_COMPUNIT, "go", 0)
newattr(dwinfo, DW_AT_language, DW_CLS_CONSTANT, int64(lang), 0)
newattr(dwinfo, DW_AT_stmt_list, DW_CLS_PTR, 0, 0)
newattr(dwinfo, DW_AT_low_pc, DW_CLS_ADDRESS, s.Value, s)
// OS X linker requires compilation dir or absolute path in comp unit name to output debug info.
compDir := getCompilationDir()
newattr(dwinfo, DW_AT_comp_dir, DW_CLS_STRING, int64(len(compDir)), compDir)
// Write .debug_line Line Number Program Header (sec 6.2.4)
// Fields marked with (*) must be changed for 64-bit dwarf
unit_length_offset := ls.Size
Adduint32(Ctxt, ls, 0) // unit_length (*), filled in at end.
unitstart = ls.Size
Adduint16(Ctxt, ls, 2) // dwarf version (appendix F)
header_length_offset := ls.Size
Adduint32(Ctxt, ls, 0) // header_length (*), filled in at end.
headerstart = ls.Size
// cpos == unitstart + 4 + 2 + 4
Adduint8(Ctxt, ls, 1) // minimum_instruction_length
Adduint8(Ctxt, ls, 1) // default_is_stmt
Adduint8(Ctxt, ls, LINE_BASE&0xFF) // line_base
Adduint8(Ctxt, ls, LINE_RANGE) // line_range
Adduint8(Ctxt, ls, OPCODE_BASE) // opcode_base
Adduint8(Ctxt, ls, 0) // standard_opcode_lengths[1]
Adduint8(Ctxt, ls, 1) // standard_opcode_lengths[2]
Adduint8(Ctxt, ls, 1) // standard_opcode_lengths[3]
Adduint8(Ctxt, ls, 1) // standard_opcode_lengths[4]
Adduint8(Ctxt, ls, 1) // standard_opcode_lengths[5]
Adduint8(Ctxt, ls, 0) // standard_opcode_lengths[6]
Adduint8(Ctxt, ls, 0) // standard_opcode_lengths[7]
Adduint8(Ctxt, ls, 0) // standard_opcode_lengths[8]
Adduint8(Ctxt, ls, 1) // standard_opcode_lengths[9]
Adduint8(Ctxt, ls, 0) // include_directories (empty)
for _, f := range Ctxt.Filesyms {
Addstring(ls, f.Name)
Adduint8(Ctxt, ls, 0)
Adduint8(Ctxt, ls, 0)
Adduint8(Ctxt, ls, 0)
}
// 4 zeros: the string termination + 3 fields.
Adduint8(Ctxt, ls, 0)
// terminate file_names.
headerend = ls.Size
Adduint8(Ctxt, ls, 0) // start extended opcode
uleb128put(ls, 1+int64(SysArch.PtrSize))
Adduint8(Ctxt, ls, DW_LNE_set_address)
pc := s.Value
line := 1
file := 1
if Linkmode == LinkExternal {
Addaddr(Ctxt, ls, s)
} else {
addrput(ls, pc)
}
var pcfile Pciter
var pcline Pciter
for _, Ctxt.Cursym = range Ctxt.Textp {
s := Ctxt.Cursym
dwfunc := newdie(dwinfo, DW_ABRV_FUNCTION, s.Name, int(s.Version))
newattr(dwfunc, DW_AT_low_pc, DW_CLS_ADDRESS, s.Value, s)
epc = s.Value + s.Size
epcs = s
newattr(dwfunc, DW_AT_high_pc, DW_CLS_ADDRESS, epc, s)
if s.Version == 0 {
newattr(dwfunc, DW_AT_external, DW_CLS_FLAG, 1, 0)
}
if s.FuncInfo == nil {
continue
}
finddebugruntimepath(s)
pciterinit(Ctxt, &pcfile, &s.FuncInfo.Pcfile)
pciterinit(Ctxt, &pcline, &s.FuncInfo.Pcline)
epc = pc
for pcfile.done == 0 && pcline.done == 0 {
if epc-s.Value >= int64(pcfile.nextpc) {
pciternext(&pcfile)
continue
}
if epc-s.Value >= int64(pcline.nextpc) {
pciternext(&pcline)
continue
}
if int32(file) != pcfile.value {
Adduint8(Ctxt, ls, DW_LNS_set_file)
uleb128put(ls, int64(pcfile.value))
file = int(pcfile.value)
}
putpclcdelta(ls, s.Value+int64(pcline.pc)-pc, int64(pcline.value)-int64(line))
pc = s.Value + int64(pcline.pc)
line = int(pcline.value)
if pcfile.nextpc < pcline.nextpc {
epc = int64(pcfile.nextpc)
} else {
epc = int64(pcline.nextpc)
}
epc += s.Value
}
var (
dt, da int
offs int64
)
for _, a := range s.FuncInfo.Autom {
switch a.Name {
case obj.A_AUTO:
dt = DW_ABRV_AUTO
offs = int64(a.Aoffset)
if !haslinkregister() {
offs -= int64(SysArch.PtrSize)
}
if obj.Framepointer_enabled(obj.Getgoos(), obj.Getgoarch()) {
// The frame pointer is saved
// between the CFA and the
// autos.
offs -= int64(SysArch.PtrSize)
}
case obj.A_PARAM:
dt = DW_ABRV_PARAM
offs = int64(a.Aoffset) + Ctxt.FixedFrameSize()
default:
continue
}
if strings.Contains(a.Asym.Name, ".autotmp_") {
continue
}
var n string
if findchild(dwfunc, a.Asym.Name) != nil {
n = mkvarname(a.Asym.Name, da)
} else {
n = a.Asym.Name
}
// Drop the package prefix from locals and arguments.
if i := strings.LastIndex(n, "."); i >= 0 {
n = n[i+1:]
}
dwvar := newdie(dwfunc, dt, n, 0)
newcfaoffsetattr(dwvar, int32(offs))
newrefattr(dwvar, DW_AT_type, defgotype(a.Gotype))
// push dwvar down dwfunc->child to preserve order
newattr(dwvar, DW_AT_internal_location, DW_CLS_CONSTANT, offs, nil)
dwfunc.child = dwvar.link // take dwvar out from the top of the list
dws := &dwfunc.child
for ; *dws != nil; dws = &(*dws).link {
if offs > getattr(*dws, DW_AT_internal_location).value {
break
}
}
dwvar.link = *dws
*dws = dwvar
da++
}
}
Adduint8(Ctxt, ls, 0) // start extended opcode
uleb128put(ls, 1)
Adduint8(Ctxt, ls, DW_LNE_end_sequence)
newattr(dwinfo, DW_AT_high_pc, DW_CLS_ADDRESS, epc+1, epcs)
setuint32(Ctxt, ls, unit_length_offset, uint32(ls.Size-unitstart))
setuint32(Ctxt, ls, header_length_offset, uint32(headerend-headerstart))
return ls
}
/*
* Emit .debug_frame
*/
const (
dataAlignmentFactor = -4
)
// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice.
func appendPCDeltaCFA(b []byte, deltapc, cfa int64) []byte {
b = append(b, DW_CFA_def_cfa_offset_sf)
b = appendSleb128(b, cfa/dataAlignmentFactor)
switch {
case deltapc < 0x40:
b = append(b, uint8(DW_CFA_advance_loc+deltapc))
case deltapc < 0x100:
b = append(b, DW_CFA_advance_loc1)
b = append(b, uint8(deltapc))
case deltapc < 0x10000:
b = append(b, DW_CFA_advance_loc2)
b = Thearch.Append16(b, uint16(deltapc))
default:
b = append(b, DW_CFA_advance_loc4)
b = Thearch.Append32(b, uint32(deltapc))
}
return b
}
func writeframes(prev *LSym) *LSym {
if framesec == nil {
framesec = Linklookup(Ctxt, ".debug_frame", 0)
}
framesec.Type = obj.SDWARFSECT
framesec.R = framesec.R[:0]
fs := framesec
prev.Next = fs
// Emit the CIE, Section 6.4.1
cieReserve := uint32(16)
if haslinkregister() {
cieReserve = 32
}
Adduint32(Ctxt, fs, cieReserve) // initial length, must be multiple of pointer size
Adduint32(Ctxt, fs, 0xffffffff) // cid.
Adduint8(Ctxt, fs, 3) // dwarf version (appendix F)
Adduint8(Ctxt, fs, 0) // augmentation ""
uleb128put(fs, 1) // code_alignment_factor
sleb128put(fs, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor
uleb128put(fs, int64(Thearch.Dwarfreglr)) // return_address_register
Adduint8(Ctxt, fs, DW_CFA_def_cfa) // Set the current frame address..
uleb128put(fs, int64(Thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)...
if haslinkregister() {
uleb128put(fs, int64(0)) // ...plus a 0 offset.
Adduint8(Ctxt, fs, DW_CFA_same_value) // The platform's link register is unchanged during the prologue.
uleb128put(fs, int64(Thearch.Dwarfreglr))
Adduint8(Ctxt, fs, DW_CFA_val_offset) // The previous value...
uleb128put(fs, int64(Thearch.Dwarfregsp)) // ...of the platform's SP register...
uleb128put(fs, int64(0)) // ...is CFA+0.
} else {
uleb128put(fs, int64(SysArch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame).
Adduint8(Ctxt, fs, DW_CFA_offset_extended) // The previous value...
uleb128put(fs, int64(Thearch.Dwarfreglr)) // ...of the return address...
uleb128put(fs, int64(-SysArch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)].
}
// 4 is to exclude the length field.
pad := int64(cieReserve) + 4 - fs.Size
if pad < 0 {
Exitf("dwarf: cieReserve too small by %d bytes.", -pad)
}
Addbytes(Ctxt, fs, zeros[:pad])
var deltaBuf []byte
var pcsp Pciter
for _, Ctxt.Cursym = range Ctxt.Textp {
s := Ctxt.Cursym
if s.FuncInfo == nil {
continue
}
// Emit a FDE, Section 6.4.1.
// First build the section contents into a byte buffer.
deltaBuf = deltaBuf[:0]
for pciterinit(Ctxt, &pcsp, &s.FuncInfo.Pcsp); pcsp.done == 0; pciternext(&pcsp) {
nextpc := pcsp.nextpc
// pciterinit goes up to the end of the function,
// but DWARF expects us to stop just before the end.
if int64(nextpc) == s.Size {
nextpc--
if nextpc < pcsp.pc {
continue
}
}
if haslinkregister() {
// TODO(bryanpkc): This is imprecise. In general, the instruction
// that stores the return address to the stack frame is not the
// same one that allocates the frame.
if pcsp.value > 0 {
// The return address is preserved at (CFA-frame_size)
// after a stack frame has been allocated.
deltaBuf = append(deltaBuf, DW_CFA_offset_extended_sf)
deltaBuf = appendUleb128(deltaBuf, uint64(Thearch.Dwarfreglr))
deltaBuf = appendSleb128(deltaBuf, -int64(pcsp.value)/dataAlignmentFactor)
} else {
// The return address is restored into the link register
// when a stack frame has been de-allocated.
deltaBuf = append(deltaBuf, DW_CFA_same_value)
deltaBuf = appendUleb128(deltaBuf, uint64(Thearch.Dwarfreglr))
}
deltaBuf = appendPCDeltaCFA(deltaBuf, int64(nextpc)-int64(pcsp.pc), int64(pcsp.value))
} else {
deltaBuf = appendPCDeltaCFA(deltaBuf, int64(nextpc)-int64(pcsp.pc), int64(SysArch.PtrSize)+int64(pcsp.value))
}
}
pad := int(Rnd(int64(len(deltaBuf)), int64(SysArch.PtrSize))) - len(deltaBuf)
deltaBuf = append(deltaBuf, zeros[:pad]...)
// Emit the FDE header, Section 6.4.1.
// 4 bytes: length, must be multiple of thearch.ptrsize
// 4 bytes: Pointer to the CIE above, at offset 0
// ptrsize: initial location
// ptrsize: address range
Adduint32(Ctxt, fs, uint32(4+2*SysArch.PtrSize+len(deltaBuf))) // length (excludes itself)
if Linkmode == LinkExternal {
adddwarfref(Ctxt, fs, framesec, 4)
} else {
Adduint32(Ctxt, fs, 0) // CIE offset
}
Addaddr(Ctxt, fs, s)
addrput(fs, s.Size) // address range
Addbytes(Ctxt, fs, deltaBuf)
}
return fs
}
/*
* Walk DWarfDebugInfoEntries, and emit .debug_info
*/
const (
COMPUNITHEADERSIZE = 4 + 2 + 4 + 1
)
func writeinfo(prev *LSym) *LSym {
if infosec == nil {
infosec = Linklookup(Ctxt, ".debug_info", 0)
}
infosec.R = infosec.R[:0]
infosec.Type = obj.SDWARFINFO
infosec.Attr |= AttrReachable
prev.Next, prev = infosec, infosec
if arangessec == nil {
arangessec = Linklookup(Ctxt, ".dwarfaranges", 0)
}
arangessec.R = arangessec.R[:0]
for compunit := dwroot.child; compunit != nil; compunit = compunit.link {
s := compunit.sym
prev.Next, prev = s, s
// Write .debug_info Compilation Unit Header (sec 7.5.1)
// Fields marked with (*) must be changed for 64-bit dwarf
// This must match COMPUNITHEADERSIZE above.
Adduint32(Ctxt, s, 0) // unit_length (*), will be filled in later.
Adduint16(Ctxt, s, 2) // dwarf version (appendix F)
// debug_abbrev_offset (*)
adddwarfref(Ctxt, s, abbrevsym, 4)
Adduint8(Ctxt, s, uint8(SysArch.PtrSize)) // address_size
prev = putdie(prev, compunit)
cusize := s.Size - 4 // exclude the length field.
for child := s.Next; child != nil; child = child.Next {
cusize += child.Size
}
setuint32(Ctxt, s, 0, uint32(cusize))
newattr(compunit, DW_AT_byte_size, DW_CLS_CONSTANT, cusize, 0)
}
return prev
}
/*
* Emit .debug_pubnames/_types. _info must have been written before,
* because we need die->offs and infoo/infosize;
*/
func ispubname(die *DWDie) bool {
switch die.abbrev {
case DW_ABRV_FUNCTION, DW_ABRV_VARIABLE:
a := getattr(die, DW_AT_external)
return a != nil && a.value != 0
}
return false
}
func ispubtype(die *DWDie) bool {
return die.abbrev >= DW_ABRV_NULLTYPE
}
func writepub(sname string, ispub func(*DWDie) bool, prev *LSym) *LSym {
s := Linklookup(Ctxt, sname, 0)
s.Type = obj.SDWARFSECT
prev.Next = s
for compunit := dwroot.child; compunit != nil; compunit = compunit.link {
sectionstart := s.Size
culength := uint32(getattr(compunit, DW_AT_byte_size).value) + 4
// Write .debug_pubnames/types Header (sec 6.1.1)
Adduint32(Ctxt, s, 0) // unit_length (*), will be filled in later.
Adduint16(Ctxt, s, 2) // dwarf version (appendix F)
adddwarfref(Ctxt, s, compunit.sym, 4) // debug_info_offset (of the Comp unit Header)
Adduint32(Ctxt, s, culength) // debug_info_length
for die := compunit.child; die != nil; die = die.link {
if !ispub(die) {
continue
}
dwa := getattr(die, DW_AT_name)
name := dwa.data.(string)
if die.sym == nil {
fmt.Println("Missing sym for ", name)
}
adddwarfref(Ctxt, s, die.sym, 4)
Addstring(s, name)
}
Adduint32(Ctxt, s, 0)
setuint32(Ctxt, s, sectionstart, uint32(s.Size-sectionstart)-4) // exclude the length field.
}
return s
}
/*
* emit .debug_aranges. _info must have been written before,
* because we need die->offs of dw_globals.
*/
func writearanges(prev *LSym) *LSym {
s := Linklookup(Ctxt, ".debug_aranges", 0)
s.Type = obj.SDWARFSECT
// The first tuple is aligned to a multiple of the size of a single tuple
// (twice the size of an address)
headersize := int(Rnd(4+2+4+1+1, int64(SysArch.PtrSize*2))) // don't count unit_length field itself
for compunit := dwroot.child; compunit != nil; compunit = compunit.link {
b := getattr(compunit, DW_AT_low_pc)
if b == nil {
continue
}
e := getattr(compunit, DW_AT_high_pc)
if e == nil {
continue
}
// Write .debug_aranges Header + entry (sec 6.1.2)
unitlength := uint32(headersize) + 4*uint32(SysArch.PtrSize) - 4
Adduint32(Ctxt, s, unitlength) // unit_length (*)
Adduint16(Ctxt, s, 2) // dwarf version (appendix F)
adddwarfref(Ctxt, s, compunit.sym, 4)
Adduint8(Ctxt, s, uint8(SysArch.PtrSize)) // address_size
Adduint8(Ctxt, s, 0) // segment_size
padding := headersize - (4 + 2 + 4 + 1 + 1)
for i := 0; i < padding; i++ {
Adduint8(Ctxt, s, 0)
}
Addaddrplus(Ctxt, s, b.data.(*LSym), b.value-(b.data.(*LSym)).Value)
addrput(s, e.value-b.value)
addrput(s, 0)
addrput(s, 0)
}
if s.Size > 0 {
prev.Next = s
prev = s
}
return prev
}
func writegdbscript(prev *LSym) *LSym {
if gdbscript != "" {
s := Linklookup(Ctxt, ".debug_gdb_scripts", 0)
s.Type = obj.SDWARFSECT
prev.Next = s
prev = s
Adduint8(Ctxt, s, 1) // magic 1 byte?
Addstring(s, gdbscript)
}
return prev
}
var prototypedies map[string]*DWDie
/*
* This is the main entry point for generating dwarf. After emitting
* the mandatory debug_abbrev section, it calls writelines() to set up
* the per-compilation unit part of the DIE tree, while simultaneously
* emitting the debug_line section. When the final tree contains
* forward references, it will write the debug_info section in 2
* passes.
*
*/
func dwarfgeneratedebugsyms() {
if Debug['w'] != 0 { // disable dwarf
return
}
if Debug['s'] != 0 && HEADTYPE != obj.Hdarwin {
return
}
if HEADTYPE == obj.Hplan9 {
return
}
if Linkmode == LinkExternal {
if !Iself && HEADTYPE != obj.Hdarwin {
return
}
}
if Debug['v'] != 0 {
fmt.Fprintf(Bso, "%5.2f dwarf\n", obj.Cputime())
}
// For diagnostic messages.
newattr(&dwtypes, DW_AT_name, DW_CLS_STRING, int64(len("dwtypes")), "dwtypes")
// Some types that must exist to define other ones.
newdie(&dwtypes, DW_ABRV_NULLTYPE, "<unspecified>", 0)
newdie(&dwtypes, DW_ABRV_NULLTYPE, "void", 0)
newdie(&dwtypes, DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer", 0)
die := newdie(&dwtypes, DW_ABRV_BASETYPE, "uintptr", 0) // needed for array size
newattr(die, DW_AT_encoding, DW_CLS_CONSTANT, DW_ATE_unsigned, 0)
newattr(die, DW_AT_byte_size, DW_CLS_CONSTANT, int64(SysArch.PtrSize), 0)
newattr(die, DW_AT_go_kind, DW_CLS_CONSTANT, obj.KindUintptr, 0)
// Prototypes needed for type synthesis.
prototypedies = map[string]*DWDie{
"type.runtime.stringStructDWARF": nil,
"type.runtime.slice": nil,
"type.runtime.hmap": nil,
"type.runtime.bmap": nil,
"type.runtime.sudog": nil,
"type.runtime.waitq": nil,
"type.runtime.hchan": nil,
}
// Needed by the prettyprinter code for interface inspection.
defgotype(lookup_or_diag("type.runtime._type"))
defgotype(lookup_or_diag("type.runtime.interfacetype"))
defgotype(lookup_or_diag("type.runtime.itab"))
genasmsym(defdwsymb)
dwarfp = writeabbrev()
last := dwarfp
last = writelines(last)
last = writeframes(last)
synthesizestringtypes(dwtypes.child)
synthesizeslicetypes(dwtypes.child)
synthesizemaptypes(dwtypes.child)
synthesizechantypes(dwtypes.child)
reversetree(&dwroot.child)
reversetree(&dwtypes.child)
reversetree(&dwglobals.child)
movetomodule(&dwtypes)
movetomodule(&dwglobals)
// Need to reorder symbols so SDWARFINFO is after all SDWARFSECT
// (but we need to generate dies before writepub)
writeinfo(last)
infosyms := last.Next
last = writepub(".debug_pubnames", ispubname, last)
last = writepub(".debug_pubtypes", ispubtype, last)
last = writearanges(last)
last = writegdbscript(last)
last.Next = infosyms
}
/*
* Elf.
*/
func dwarfaddshstrings(shstrtab *LSym) {
if Debug['w'] != 0 { // disable dwarf
return
}
Addstring(shstrtab, ".debug_abbrev")
Addstring(shstrtab, ".debug_aranges")
Addstring(shstrtab, ".debug_frame")
Addstring(shstrtab, ".debug_info")
Addstring(shstrtab, ".debug_line")
Addstring(shstrtab, ".debug_pubnames")
Addstring(shstrtab, ".debug_pubtypes")
Addstring(shstrtab, ".debug_gdb_scripts")
if Linkmode == LinkExternal {
Addstring(shstrtab, elfRelType+".debug_info")
Addstring(shstrtab, elfRelType+".debug_aranges")
Addstring(shstrtab, elfRelType+".debug_line")
Addstring(shstrtab, elfRelType+".debug_frame")
Addstring(shstrtab, elfRelType+".debug_pubnames")
Addstring(shstrtab, elfRelType+".debug_pubtypes")
}
}
// Add section symbols for DWARF debug info. This is called before
// dwarfaddelfheaders.
func dwarfaddelfsectionsyms() {
if Debug['w'] != 0 { // disable dwarf
return
}
if Linkmode != LinkExternal {
return
}
sym := Linklookup(Ctxt, ".debug_info", 0)
putelfsectionsym(sym, sym.Sect.Elfsect.shnum)
sym = Linklookup(Ctxt, ".debug_abbrev", 0)
putelfsectionsym(sym, sym.Sect.Elfsect.shnum)
sym = Linklookup(Ctxt, ".debug_line", 0)
putelfsectionsym(sym, sym.Sect.Elfsect.shnum)
sym = Linklookup(Ctxt, ".debug_frame", 0)
putelfsectionsym(sym, sym.Sect.Elfsect.shnum)
}
/*
* Windows PE
*/
func dwarfaddpeheaders() {
if Debug['w'] != 0 { // disable dwarf
return
}
for sect := Segdwarf.Sect; sect != nil; sect = sect.Next {
h := newPEDWARFSection(sect.Name, int64(sect.Length))
fileoff := sect.Vaddr - Segdwarf.Vaddr + Segdwarf.Fileoff
if uint64(h.PointerToRawData) != fileoff {
Diag("%s.PointerToRawData = %#x, want %#x", sect.Name, h.PointerToRawData, fileoff)
errorexit()
}
}
}