| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package big |
| |
| import ( |
| "bytes" |
| "encoding/gob" |
| "encoding/json" |
| "encoding/xml" |
| "fmt" |
| "math" |
| "strconv" |
| "strings" |
| "testing" |
| ) |
| |
| func TestZeroRat(t *testing.T) { |
| var x, y, z Rat |
| y.SetFrac64(0, 42) |
| |
| if x.Cmp(&y) != 0 { |
| t.Errorf("x and y should be both equal and zero") |
| } |
| |
| if s := x.String(); s != "0/1" { |
| t.Errorf("got x = %s, want 0/1", s) |
| } |
| |
| if s := x.RatString(); s != "0" { |
| t.Errorf("got x = %s, want 0", s) |
| } |
| |
| z.Add(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x+y = %s, want 0", s) |
| } |
| |
| z.Sub(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x-y = %s, want 0", s) |
| } |
| |
| z.Mul(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x*y = %s, want 0", s) |
| } |
| |
| // check for division by zero |
| defer func() { |
| if s := recover(); s == nil || s.(string) != "division by zero" { |
| panic(s) |
| } |
| }() |
| z.Quo(&x, &y) |
| } |
| |
| var setStringTests = []struct { |
| in, out string |
| ok bool |
| }{ |
| {"0", "0", true}, |
| {"-0", "0", true}, |
| {"1", "1", true}, |
| {"-1", "-1", true}, |
| {"1.", "1", true}, |
| {"1e0", "1", true}, |
| {"1.e1", "10", true}, |
| {in: "1e", ok: false}, |
| {in: "1.e", ok: false}, |
| {in: "1e+14e-5", ok: false}, |
| {in: "1e4.5", ok: false}, |
| {in: "r", ok: false}, |
| {in: "a/b", ok: false}, |
| {in: "a.b", ok: false}, |
| {"-0.1", "-1/10", true}, |
| {"-.1", "-1/10", true}, |
| {"2/4", "1/2", true}, |
| {".25", "1/4", true}, |
| {"-1/5", "-1/5", true}, |
| {"8129567.7690E14", "812956776900000000000", true}, |
| {"78189e+4", "781890000", true}, |
| {"553019.8935e+8", "55301989350000", true}, |
| {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true}, |
| {"9877861857500000E-7", "3951144743/4", true}, |
| {"2169378.417e-3", "2169378417/1000000", true}, |
| {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true}, |
| {"53/70893980658822810696", "53/70893980658822810696", true}, |
| {"106/141787961317645621392", "53/70893980658822810696", true}, |
| {"204211327800791583.81095", "4084226556015831676219/20000", true}, |
| {in: "1/0", ok: false}, |
| } |
| |
| func TestRatSetString(t *testing.T) { |
| for i, test := range setStringTests { |
| x, ok := new(Rat).SetString(test.in) |
| |
| if ok { |
| if !test.ok { |
| t.Errorf("#%d SetString(%q) expected failure", i, test.in) |
| } else if x.RatString() != test.out { |
| t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out) |
| } |
| } else if x != nil { |
| t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x) |
| } |
| } |
| } |
| |
| func TestRatScan(t *testing.T) { |
| var buf bytes.Buffer |
| for i, test := range setStringTests { |
| x := new(Rat) |
| buf.Reset() |
| buf.WriteString(test.in) |
| |
| _, err := fmt.Fscanf(&buf, "%v", x) |
| if err == nil != test.ok { |
| if test.ok { |
| t.Errorf("#%d error: %s", i, err) |
| } else { |
| t.Errorf("#%d expected error", i) |
| } |
| continue |
| } |
| if err == nil && x.RatString() != test.out { |
| t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) |
| } |
| } |
| } |
| |
| var floatStringTests = []struct { |
| in string |
| prec int |
| out string |
| }{ |
| {"0", 0, "0"}, |
| {"0", 4, "0.0000"}, |
| {"1", 0, "1"}, |
| {"1", 2, "1.00"}, |
| {"-1", 0, "-1"}, |
| {".25", 2, "0.25"}, |
| {".25", 1, "0.3"}, |
| {".25", 3, "0.250"}, |
| {"-1/3", 3, "-0.333"}, |
| {"-2/3", 4, "-0.6667"}, |
| {"0.96", 1, "1.0"}, |
| {"0.999", 2, "1.00"}, |
| {"0.9", 0, "1"}, |
| {".25", -1, "0"}, |
| {".55", -1, "1"}, |
| } |
| |
| func TestFloatString(t *testing.T) { |
| for i, test := range floatStringTests { |
| x, _ := new(Rat).SetString(test.in) |
| |
| if x.FloatString(test.prec) != test.out { |
| t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out) |
| } |
| } |
| } |
| |
| func TestRatSign(t *testing.T) { |
| zero := NewRat(0, 1) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| s := x.Sign() |
| e := x.Cmp(zero) |
| if s != e { |
| t.Errorf("got %d; want %d for z = %v", s, e, &x) |
| } |
| } |
| } |
| |
| var ratCmpTests = []struct { |
| rat1, rat2 string |
| out int |
| }{ |
| {"0", "0/1", 0}, |
| {"1/1", "1", 0}, |
| {"-1", "-2/2", 0}, |
| {"1", "0", 1}, |
| {"0/1", "1/1", -1}, |
| {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, |
| {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, |
| {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, |
| {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, |
| } |
| |
| func TestRatCmp(t *testing.T) { |
| for i, test := range ratCmpTests { |
| x, _ := new(Rat).SetString(test.rat1) |
| y, _ := new(Rat).SetString(test.rat2) |
| |
| out := x.Cmp(y) |
| if out != test.out { |
| t.Errorf("#%d got out = %v; want %v", i, out, test.out) |
| } |
| } |
| } |
| |
| func TestIsInt(t *testing.T) { |
| one := NewInt(1) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| i := x.IsInt() |
| e := x.Denom().Cmp(one) == 0 |
| if i != e { |
| t.Errorf("got IsInt(%v) == %v; want %v", x, i, e) |
| } |
| } |
| } |
| |
| func TestRatAbs(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| e := new(Rat).Set(x) |
| if e.Cmp(zero) < 0 { |
| e.Sub(zero, e) |
| } |
| z := new(Rat).Abs(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Abs(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| func TestRatNeg(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| e := new(Rat).Sub(zero, x) |
| z := new(Rat).Neg(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Neg(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| func TestRatInv(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| if x.Cmp(zero) == 0 { |
| continue // avoid division by zero |
| } |
| e := new(Rat).SetFrac(x.Denom(), x.Num()) |
| z := new(Rat).Inv(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Inv(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| type ratBinFun func(z, x, y *Rat) *Rat |
| type ratBinArg struct { |
| x, y, z string |
| } |
| |
| func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { |
| x, _ := new(Rat).SetString(a.x) |
| y, _ := new(Rat).SetString(a.y) |
| z, _ := new(Rat).SetString(a.z) |
| out := f(new(Rat), x, y) |
| |
| if out.Cmp(z) != 0 { |
| t.Errorf("%s #%d got %s want %s", name, i, out, z) |
| } |
| } |
| |
| var ratBinTests = []struct { |
| x, y string |
| sum, prod string |
| }{ |
| {"0", "0", "0", "0"}, |
| {"0", "1", "1", "0"}, |
| {"-1", "0", "-1", "0"}, |
| {"-1", "1", "0", "-1"}, |
| {"1", "1", "2", "1"}, |
| {"1/2", "1/2", "1", "1/4"}, |
| {"1/4", "1/3", "7/12", "1/12"}, |
| {"2/5", "-14/3", "-64/15", "-28/15"}, |
| {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, |
| {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, |
| {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, |
| {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, |
| {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, |
| {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, |
| {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, |
| {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, |
| {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, |
| {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, |
| } |
| |
| func TestRatBin(t *testing.T) { |
| for i, test := range ratBinTests { |
| arg := ratBinArg{test.x, test.y, test.sum} |
| testRatBin(t, i, "Add", (*Rat).Add, arg) |
| |
| arg = ratBinArg{test.y, test.x, test.sum} |
| testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) |
| |
| arg = ratBinArg{test.sum, test.x, test.y} |
| testRatBin(t, i, "Sub", (*Rat).Sub, arg) |
| |
| arg = ratBinArg{test.sum, test.y, test.x} |
| testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) |
| |
| arg = ratBinArg{test.x, test.y, test.prod} |
| testRatBin(t, i, "Mul", (*Rat).Mul, arg) |
| |
| arg = ratBinArg{test.y, test.x, test.prod} |
| testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) |
| |
| if test.x != "0" { |
| arg = ratBinArg{test.prod, test.x, test.y} |
| testRatBin(t, i, "Quo", (*Rat).Quo, arg) |
| } |
| |
| if test.y != "0" { |
| arg = ratBinArg{test.prod, test.y, test.x} |
| testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) |
| } |
| } |
| } |
| |
| func TestIssue820(t *testing.T) { |
| x := NewRat(3, 1) |
| y := NewRat(2, 1) |
| z := y.Quo(x, y) |
| q := NewRat(3, 2) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| |
| y = NewRat(3, 1) |
| x = NewRat(2, 1) |
| z = y.Quo(x, y) |
| q = NewRat(2, 3) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| |
| x = NewRat(3, 1) |
| z = x.Quo(x, x) |
| q = NewRat(3, 3) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| } |
| |
| var setFrac64Tests = []struct { |
| a, b int64 |
| out string |
| }{ |
| {0, 1, "0"}, |
| {0, -1, "0"}, |
| {1, 1, "1"}, |
| {-1, 1, "-1"}, |
| {1, -1, "-1"}, |
| {-1, -1, "1"}, |
| {-9223372036854775808, -9223372036854775808, "1"}, |
| } |
| |
| func TestRatSetFrac64Rat(t *testing.T) { |
| for i, test := range setFrac64Tests { |
| x := new(Rat).SetFrac64(test.a, test.b) |
| if x.RatString() != test.out { |
| t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) |
| } |
| } |
| } |
| |
| func TestRatGobEncoding(t *testing.T) { |
| var medium bytes.Buffer |
| enc := gob.NewEncoder(&medium) |
| dec := gob.NewDecoder(&medium) |
| for _, test := range encodingTests { |
| medium.Reset() // empty buffer for each test case (in case of failures) |
| var tx Rat |
| tx.SetString(test + ".14159265") |
| if err := enc.Encode(&tx); err != nil { |
| t.Errorf("encoding of %s failed: %s", &tx, err) |
| } |
| var rx Rat |
| if err := dec.Decode(&rx); err != nil { |
| t.Errorf("decoding of %s failed: %s", &tx, err) |
| } |
| if rx.Cmp(&tx) != 0 { |
| t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx) |
| } |
| } |
| } |
| |
| // Sending a nil Rat pointer (inside a slice) on a round trip through gob should yield a zero. |
| // TODO: top-level nils. |
| func TestGobEncodingNilRatInSlice(t *testing.T) { |
| buf := new(bytes.Buffer) |
| enc := gob.NewEncoder(buf) |
| dec := gob.NewDecoder(buf) |
| |
| var in = make([]*Rat, 1) |
| err := enc.Encode(&in) |
| if err != nil { |
| t.Errorf("gob encode failed: %q", err) |
| } |
| var out []*Rat |
| err = dec.Decode(&out) |
| if err != nil { |
| t.Fatalf("gob decode failed: %q", err) |
| } |
| if len(out) != 1 { |
| t.Fatalf("wrong len; want 1 got %d", len(out)) |
| } |
| var zero Rat |
| if out[0].Cmp(&zero) != 0 { |
| t.Errorf("transmission of (*Int)(nill) failed: got %s want 0", out) |
| } |
| } |
| |
| var ratNums = []string{ |
| "-141592653589793238462643383279502884197169399375105820974944592307816406286", |
| "-1415926535897932384626433832795028841971", |
| "-141592653589793", |
| "-1", |
| "0", |
| "1", |
| "141592653589793", |
| "1415926535897932384626433832795028841971", |
| "141592653589793238462643383279502884197169399375105820974944592307816406286", |
| } |
| |
| var ratDenoms = []string{ |
| "1", |
| "718281828459045", |
| "7182818284590452353602874713526624977572", |
| "718281828459045235360287471352662497757247093699959574966967627724076630353", |
| } |
| |
| func TestRatJSONEncoding(t *testing.T) { |
| for _, num := range ratNums { |
| for _, denom := range ratDenoms { |
| var tx Rat |
| tx.SetString(num + "/" + denom) |
| b, err := json.Marshal(&tx) |
| if err != nil { |
| t.Errorf("marshaling of %s failed: %s", &tx, err) |
| continue |
| } |
| var rx Rat |
| if err := json.Unmarshal(b, &rx); err != nil { |
| t.Errorf("unmarshaling of %s failed: %s", &tx, err) |
| continue |
| } |
| if rx.Cmp(&tx) != 0 { |
| t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx) |
| } |
| } |
| } |
| } |
| |
| func TestRatXMLEncoding(t *testing.T) { |
| for _, num := range ratNums { |
| for _, denom := range ratDenoms { |
| var tx Rat |
| tx.SetString(num + "/" + denom) |
| b, err := xml.Marshal(&tx) |
| if err != nil { |
| t.Errorf("marshaling of %s failed: %s", &tx, err) |
| continue |
| } |
| var rx Rat |
| if err := xml.Unmarshal(b, &rx); err != nil { |
| t.Errorf("unmarshaling of %s failed: %s", &tx, err) |
| continue |
| } |
| if rx.Cmp(&tx) != 0 { |
| t.Errorf("XML encoding of %s failed: got %s want %s", &tx, &rx, &tx) |
| } |
| } |
| } |
| } |
| |
| func TestIssue2379(t *testing.T) { |
| // 1) no aliasing |
| q := NewRat(3, 2) |
| x := new(Rat) |
| x.SetFrac(NewInt(3), NewInt(2)) |
| if x.Cmp(q) != 0 { |
| t.Errorf("1) got %s want %s", x, q) |
| } |
| |
| // 2) aliasing of numerator |
| x = NewRat(2, 3) |
| x.SetFrac(NewInt(3), x.Num()) |
| if x.Cmp(q) != 0 { |
| t.Errorf("2) got %s want %s", x, q) |
| } |
| |
| // 3) aliasing of denominator |
| x = NewRat(2, 3) |
| x.SetFrac(x.Denom(), NewInt(2)) |
| if x.Cmp(q) != 0 { |
| t.Errorf("3) got %s want %s", x, q) |
| } |
| |
| // 4) aliasing of numerator and denominator |
| x = NewRat(2, 3) |
| x.SetFrac(x.Denom(), x.Num()) |
| if x.Cmp(q) != 0 { |
| t.Errorf("4) got %s want %s", x, q) |
| } |
| |
| // 5) numerator and denominator are the same |
| q = NewRat(1, 1) |
| x = new(Rat) |
| n := NewInt(7) |
| x.SetFrac(n, n) |
| if x.Cmp(q) != 0 { |
| t.Errorf("5) got %s want %s", x, q) |
| } |
| } |
| |
| func TestIssue3521(t *testing.T) { |
| a := new(Int) |
| b := new(Int) |
| a.SetString("64375784358435883458348587", 0) |
| b.SetString("4789759874531", 0) |
| |
| // 0) a raw zero value has 1 as denominator |
| zero := new(Rat) |
| one := NewInt(1) |
| if zero.Denom().Cmp(one) != 0 { |
| t.Errorf("0) got %s want %s", zero.Denom(), one) |
| } |
| |
| // 1a) a zero value remains zero independent of denominator |
| x := new(Rat) |
| x.Denom().Set(new(Int).Neg(b)) |
| if x.Cmp(zero) != 0 { |
| t.Errorf("1a) got %s want %s", x, zero) |
| } |
| |
| // 1b) a zero value may have a denominator != 0 and != 1 |
| x.Num().Set(a) |
| qab := new(Rat).SetFrac(a, b) |
| if x.Cmp(qab) != 0 { |
| t.Errorf("1b) got %s want %s", x, qab) |
| } |
| |
| // 2a) an integral value becomes a fraction depending on denominator |
| x.SetFrac64(10, 2) |
| x.Denom().SetInt64(3) |
| q53 := NewRat(5, 3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("2a) got %s want %s", x, q53) |
| } |
| |
| // 2b) an integral value becomes a fraction depending on denominator |
| x = NewRat(10, 2) |
| x.Denom().SetInt64(3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("2b) got %s want %s", x, q53) |
| } |
| |
| // 3) changing the numerator/denominator of a Rat changes the Rat |
| x.SetFrac(a, b) |
| a = x.Num() |
| b = x.Denom() |
| a.SetInt64(5) |
| b.SetInt64(3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("3) got %s want %s", x, q53) |
| } |
| } |
| |
| // Test inputs to Rat.SetString. The prefix "long:" causes the test |
| // to be skipped in --test.short mode. (The threshold is about 500us.) |
| var float64inputs = []string{ |
| // Constants plundered from strconv/testfp.txt. |
| |
| // Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP |
| "5e+125", |
| "69e+267", |
| "999e-026", |
| "7861e-034", |
| "75569e-254", |
| "928609e-261", |
| "9210917e+080", |
| "84863171e+114", |
| "653777767e+273", |
| "5232604057e-298", |
| "27235667517e-109", |
| "653532977297e-123", |
| "3142213164987e-294", |
| "46202199371337e-072", |
| "231010996856685e-073", |
| "9324754620109615e+212", |
| "78459735791271921e+049", |
| "272104041512242479e+200", |
| "6802601037806061975e+198", |
| "20505426358836677347e-221", |
| "836168422905420598437e-234", |
| "4891559871276714924261e+222", |
| |
| // Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP |
| "9e-265", |
| "85e-037", |
| "623e+100", |
| "3571e+263", |
| "81661e+153", |
| "920657e-023", |
| "4603285e-024", |
| "87575437e-309", |
| "245540327e+122", |
| "6138508175e+120", |
| "83356057653e+193", |
| "619534293513e+124", |
| "2335141086879e+218", |
| "36167929443327e-159", |
| "609610927149051e-255", |
| "3743626360493413e-165", |
| "94080055902682397e-242", |
| "899810892172646163e+283", |
| "7120190517612959703e+120", |
| "25188282901709339043e-252", |
| "308984926168550152811e-052", |
| "6372891218502368041059e+064", |
| |
| // Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP |
| "5e-20", |
| "67e+14", |
| "985e+15", |
| "7693e-42", |
| "55895e-16", |
| "996622e-44", |
| "7038531e-32", |
| "60419369e-46", |
| "702990899e-20", |
| "6930161142e-48", |
| "25933168707e+13", |
| "596428896559e+20", |
| |
| // Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP |
| "3e-23", |
| "57e+18", |
| "789e-35", |
| "2539e-18", |
| "76173e+28", |
| "887745e-11", |
| "5382571e-37", |
| "82381273e-35", |
| "750486563e-38", |
| "3752432815e-39", |
| "75224575729e-45", |
| "459926601011e+15", |
| |
| // Constants plundered from strconv/atof_test.go. |
| |
| "0", |
| "1", |
| "+1", |
| "1e23", |
| "1E23", |
| "100000000000000000000000", |
| "1e-100", |
| "123456700", |
| "99999999999999974834176", |
| "100000000000000000000001", |
| "100000000000000008388608", |
| "100000000000000016777215", |
| "100000000000000016777216", |
| "-1", |
| "-0.1", |
| "-0", // NB: exception made for this input |
| "1e-20", |
| "625e-3", |
| |
| // largest float64 |
| "1.7976931348623157e308", |
| "-1.7976931348623157e308", |
| // next float64 - too large |
| "1.7976931348623159e308", |
| "-1.7976931348623159e308", |
| // the border is ...158079 |
| // borderline - okay |
| "1.7976931348623158e308", |
| "-1.7976931348623158e308", |
| // borderline - too large |
| "1.797693134862315808e308", |
| "-1.797693134862315808e308", |
| |
| // a little too large |
| "1e308", |
| "2e308", |
| "1e309", |
| |
| // way too large |
| "1e310", |
| "-1e310", |
| "1e400", |
| "-1e400", |
| "long:1e400000", |
| "long:-1e400000", |
| |
| // denormalized |
| "1e-305", |
| "1e-306", |
| "1e-307", |
| "1e-308", |
| "1e-309", |
| "1e-310", |
| "1e-322", |
| // smallest denormal |
| "5e-324", |
| "4e-324", |
| "3e-324", |
| // too small |
| "2e-324", |
| // way too small |
| "1e-350", |
| "long:1e-400000", |
| // way too small, negative |
| "-1e-350", |
| "long:-1e-400000", |
| |
| // try to overflow exponent |
| // [Disabled: too slow and memory-hungry with rationals.] |
| // "1e-4294967296", |
| // "1e+4294967296", |
| // "1e-18446744073709551616", |
| // "1e+18446744073709551616", |
| |
| // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ |
| "2.2250738585072012e-308", |
| // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ |
| "2.2250738585072011e-308", |
| |
| // A very large number (initially wrongly parsed by the fast algorithm). |
| "4.630813248087435e+307", |
| |
| // A different kind of very large number. |
| "22.222222222222222", |
| "long:2." + strings.Repeat("2", 4000) + "e+1", |
| |
| // Exactly halfway between 1 and math.Nextafter(1, 2). |
| // Round to even (down). |
| "1.00000000000000011102230246251565404236316680908203125", |
| // Slightly lower; still round down. |
| "1.00000000000000011102230246251565404236316680908203124", |
| // Slightly higher; round up. |
| "1.00000000000000011102230246251565404236316680908203126", |
| // Slightly higher, but you have to read all the way to the end. |
| "long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1", |
| |
| // Smallest denormal, 2^(-1022-52) |
| "4.940656458412465441765687928682213723651e-324", |
| // Half of smallest denormal, 2^(-1022-53) |
| "2.470328229206232720882843964341106861825e-324", |
| // A little more than the exact half of smallest denormal |
| // 2^-1075 + 2^-1100. (Rounds to 1p-1074.) |
| "2.470328302827751011111470718709768633275e-324", |
| // The exact halfway between smallest normal and largest denormal: |
| // 2^-1022 - 2^-1075. (Rounds to 2^-1022.) |
| "2.225073858507201136057409796709131975935e-308", |
| |
| "1152921504606846975", // 1<<60 - 1 |
| "-1152921504606846975", // -(1<<60 - 1) |
| "1152921504606846977", // 1<<60 + 1 |
| "-1152921504606846977", // -(1<<60 + 1) |
| |
| "1/3", |
| } |
| |
| // isFinite reports whether f represents a finite rational value. |
| // It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0). |
| func isFinite(f float64) bool { |
| return math.Abs(f) <= math.MaxFloat64 |
| } |
| |
| func TestFloat32SpecialCases(t *testing.T) { |
| for _, input := range float64inputs { |
| if strings.HasPrefix(input, "long:") { |
| if testing.Short() { |
| continue |
| } |
| input = input[len("long:"):] |
| } |
| |
| r, ok := new(Rat).SetString(input) |
| if !ok { |
| t.Errorf("Rat.SetString(%q) failed", input) |
| continue |
| } |
| f, exact := r.Float32() |
| |
| // 1. Check string -> Rat -> float32 conversions are |
| // consistent with strconv.ParseFloat. |
| // Skip this check if the input uses "a/b" rational syntax. |
| if !strings.Contains(input, "/") { |
| e64, _ := strconv.ParseFloat(input, 32) |
| e := float32(e64) |
| |
| // Careful: negative Rats too small for |
| // float64 become -0, but Rat obviously cannot |
| // preserve the sign from SetString("-0"). |
| switch { |
| case math.Float32bits(e) == math.Float32bits(f): |
| // Ok: bitwise equal. |
| case f == 0 && r.Num().BitLen() == 0: |
| // Ok: Rat(0) is equivalent to both +/- float64(0). |
| default: |
| t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) |
| } |
| } |
| |
| if !isFinite(float64(f)) { |
| continue |
| } |
| |
| // 2. Check f is best approximation to r. |
| if !checkIsBestApprox32(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was %q)", input) |
| } |
| |
| // 3. Check f->R->f roundtrip is non-lossy. |
| checkNonLossyRoundtrip32(t, f) |
| |
| // 4. Check exactness using slow algorithm. |
| if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact { |
| t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact) |
| } |
| } |
| } |
| |
| func TestFloat64SpecialCases(t *testing.T) { |
| for _, input := range float64inputs { |
| if strings.HasPrefix(input, "long:") { |
| if testing.Short() { |
| continue |
| } |
| input = input[len("long:"):] |
| } |
| |
| r, ok := new(Rat).SetString(input) |
| if !ok { |
| t.Errorf("Rat.SetString(%q) failed", input) |
| continue |
| } |
| f, exact := r.Float64() |
| |
| // 1. Check string -> Rat -> float64 conversions are |
| // consistent with strconv.ParseFloat. |
| // Skip this check if the input uses "a/b" rational syntax. |
| if !strings.Contains(input, "/") { |
| e, _ := strconv.ParseFloat(input, 64) |
| |
| // Careful: negative Rats too small for |
| // float64 become -0, but Rat obviously cannot |
| // preserve the sign from SetString("-0"). |
| switch { |
| case math.Float64bits(e) == math.Float64bits(f): |
| // Ok: bitwise equal. |
| case f == 0 && r.Num().BitLen() == 0: |
| // Ok: Rat(0) is equivalent to both +/- float64(0). |
| default: |
| t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e) |
| } |
| } |
| |
| if !isFinite(f) { |
| continue |
| } |
| |
| // 2. Check f is best approximation to r. |
| if !checkIsBestApprox64(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was %q)", input) |
| } |
| |
| // 3. Check f->R->f roundtrip is non-lossy. |
| checkNonLossyRoundtrip64(t, f) |
| |
| // 4. Check exactness using slow algorithm. |
| if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact { |
| t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact) |
| } |
| } |
| } |
| |
| func TestFloat32Distribution(t *testing.T) { |
| // Generate a distribution of (sign, mantissa, exp) values |
| // broader than the float32 range, and check Rat.Float32() |
| // always picks the closest float32 approximation. |
| var add = []int64{ |
| 0, |
| 1, |
| 3, |
| 5, |
| 7, |
| 9, |
| 11, |
| } |
| var winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) |
| if testing.Short() { |
| winc, einc = 5, 15 // quick test (~60ms on x86-64) |
| } |
| |
| for _, sign := range "+-" { |
| for _, a := range add { |
| for wid := uint64(0); wid < 30; wid += winc { |
| b := 1<<wid + a |
| if sign == '-' { |
| b = -b |
| } |
| for exp := -150; exp < 150; exp += einc { |
| num, den := NewInt(b), NewInt(1) |
| if exp > 0 { |
| num.Lsh(num, uint(exp)) |
| } else { |
| den.Lsh(den, uint(-exp)) |
| } |
| r := new(Rat).SetFrac(num, den) |
| f, _ := r.Float32() |
| |
| if !checkIsBestApprox32(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", |
| b, exp, f, f, math.Ldexp(float64(b), exp), r) |
| } |
| |
| checkNonLossyRoundtrip32(t, f) |
| } |
| } |
| } |
| } |
| } |
| |
| func TestFloat64Distribution(t *testing.T) { |
| // Generate a distribution of (sign, mantissa, exp) values |
| // broader than the float64 range, and check Rat.Float64() |
| // always picks the closest float64 approximation. |
| var add = []int64{ |
| 0, |
| 1, |
| 3, |
| 5, |
| 7, |
| 9, |
| 11, |
| } |
| var winc, einc = uint64(1), 1 // soak test (~75s on x86-64) |
| if testing.Short() { |
| winc, einc = 10, 500 // quick test (~12ms on x86-64) |
| } |
| |
| for _, sign := range "+-" { |
| for _, a := range add { |
| for wid := uint64(0); wid < 60; wid += winc { |
| b := 1<<wid + a |
| if sign == '-' { |
| b = -b |
| } |
| for exp := -1100; exp < 1100; exp += einc { |
| num, den := NewInt(b), NewInt(1) |
| if exp > 0 { |
| num.Lsh(num, uint(exp)) |
| } else { |
| den.Lsh(den, uint(-exp)) |
| } |
| r := new(Rat).SetFrac(num, den) |
| f, _ := r.Float64() |
| |
| if !checkIsBestApprox64(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", |
| b, exp, f, f, math.Ldexp(float64(b), exp), r) |
| } |
| |
| checkNonLossyRoundtrip64(t, f) |
| } |
| } |
| } |
| } |
| } |
| |
| // TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value |
| // returns nil. |
| func TestSetFloat64NonFinite(t *testing.T) { |
| for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { |
| var r Rat |
| if r2 := r.SetFloat64(f); r2 != nil { |
| t.Errorf("SetFloat64(%g) was %v, want nil", f, r2) |
| } |
| } |
| } |
| |
| // checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is |
| // non-lossy for finite f. |
| func checkNonLossyRoundtrip32(t *testing.T, f float32) { |
| if !isFinite(float64(f)) { |
| return |
| } |
| r := new(Rat).SetFloat64(float64(f)) |
| if r == nil { |
| t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) |
| return |
| } |
| f2, exact := r.Float32() |
| if f != f2 || !exact { |
| t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", |
| f, f2, f2, exact, f, f, true, f2-f) |
| } |
| } |
| |
| // checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is |
| // non-lossy for finite f. |
| func checkNonLossyRoundtrip64(t *testing.T, f float64) { |
| if !isFinite(f) { |
| return |
| } |
| r := new(Rat).SetFloat64(f) |
| if r == nil { |
| t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f) |
| return |
| } |
| f2, exact := r.Float64() |
| if f != f2 || !exact { |
| t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b", |
| f, f2, f2, exact, f, f, true, f2-f) |
| } |
| } |
| |
| // delta returns the absolute difference between r and f. |
| func delta(r *Rat, f float64) *Rat { |
| d := new(Rat).Sub(r, new(Rat).SetFloat64(f)) |
| return d.Abs(d) |
| } |
| |
| // checkIsBestApprox32 checks that f is the best possible float32 |
| // approximation of r. |
| // Returns true on success. |
| func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { |
| if math.Abs(float64(f)) >= math.MaxFloat32 { |
| // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). |
| // But we have tests for these special cases. |
| return true |
| } |
| |
| // r must be strictly between f0 and f1, the floats bracketing f. |
| f0 := math.Nextafter32(f, float32(math.Inf(-1))) |
| f1 := math.Nextafter32(f, float32(math.Inf(+1))) |
| |
| // For f to be correct, r must be closer to f than to f0 or f1. |
| df := delta(r, float64(f)) |
| df0 := delta(r, float64(f0)) |
| df1 := delta(r, float64(f1)) |
| if df.Cmp(df0) > 0 { |
| t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) > 0 { |
| t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) |
| return false |
| } |
| if df.Cmp(df0) == 0 && !isEven32(f) { |
| t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) == 0 && !isEven32(f) { |
| t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) |
| return false |
| } |
| return true |
| } |
| |
| // checkIsBestApprox64 checks that f is the best possible float64 |
| // approximation of r. |
| // Returns true on success. |
| func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { |
| if math.Abs(f) >= math.MaxFloat64 { |
| // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). |
| // But we have tests for these special cases. |
| return true |
| } |
| |
| // r must be strictly between f0 and f1, the floats bracketing f. |
| f0 := math.Nextafter(f, math.Inf(-1)) |
| f1 := math.Nextafter(f, math.Inf(+1)) |
| |
| // For f to be correct, r must be closer to f than to f0 or f1. |
| df := delta(r, f) |
| df0 := delta(r, f0) |
| df1 := delta(r, f1) |
| if df.Cmp(df0) > 0 { |
| t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) > 0 { |
| t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) |
| return false |
| } |
| if df.Cmp(df0) == 0 && !isEven64(f) { |
| t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) == 0 && !isEven64(f) { |
| t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) |
| return false |
| } |
| return true |
| } |
| |
| func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } |
| func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } |
| |
| func TestIsFinite(t *testing.T) { |
| finites := []float64{ |
| 1.0 / 3, |
| 4891559871276714924261e+222, |
| math.MaxFloat64, |
| math.SmallestNonzeroFloat64, |
| -math.MaxFloat64, |
| -math.SmallestNonzeroFloat64, |
| } |
| for _, f := range finites { |
| if !isFinite(f) { |
| t.Errorf("!IsFinite(%g (%b))", f, f) |
| } |
| } |
| nonfinites := []float64{ |
| math.NaN(), |
| math.Inf(-1), |
| math.Inf(+1), |
| } |
| for _, f := range nonfinites { |
| if isFinite(f) { |
| t.Errorf("IsFinite(%g, (%b))", f, f) |
| } |
| } |
| } |