blob: 354c54c865fbe9c91c2419d92a8eecc1a48d3dcd [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "type.h"
#include "typekind.h"
#include "malloc.h"
#include "race.h"
static bool debug = 0;
static void makeslice1(SliceType*, intgo, intgo, Slice*);
static void growslice1(SliceType*, Slice, intgo, Slice *);
void runtime·copy(Slice to, Slice fm, uintptr width, intgo ret);
// see also unsafe·NewArray
// makeslice(typ *Type, len, cap int64) (ary []any);
void
runtime·makeslice(SliceType *t, int64 len, int64 cap, Slice ret)
{
// NOTE: The len > MaxMem/elemsize check here is not strictly necessary,
// but it produces a 'len out of range' error instead of a 'cap out of range' error
// when someone does make([]T, bignumber). 'cap out of range' is true too,
// but since the cap is only being supplied implicitly, saying len is clearer.
// See issue 4085.
if(len < 0 || (intgo)len != len || t->elem->size > 0 && len > MaxMem / t->elem->size)
runtime·panicstring("makeslice: len out of range");
if(cap < len || (intgo)cap != cap || t->elem->size > 0 && cap > MaxMem / t->elem->size)
runtime·panicstring("makeslice: cap out of range");
makeslice1(t, len, cap, &ret);
if(debug) {
runtime·printf("makeslice(%S, %D, %D); ret=",
*t->string, len, cap);
runtime·printslice(ret);
}
}
// Dummy word to use as base pointer for make([]T, 0).
// Since you cannot take the address of such a slice,
// you can't tell that they all have the same base pointer.
uintptr runtime·zerobase;
static void
makeslice1(SliceType *t, intgo len, intgo cap, Slice *ret)
{
uintptr size;
size = cap*t->elem->size;
ret->len = len;
ret->cap = cap;
if(size == 0)
ret->array = (byte*)&runtime·zerobase;
else if((t->elem->kind&KindNoPointers))
ret->array = runtime·mallocgc(size, FlagNoPointers, 1, 1);
else {
ret->array = runtime·mallocgc(size, 0, 1, 1);
if(UseSpanType) {
if(false) {
runtime·printf("new slice [%D]%S: %p\n", (int64)cap, *t->elem->string, ret->array);
}
runtime·settype(ret->array, (uintptr)t->elem | TypeInfo_Array);
}
}
}
// appendslice(type *Type, x, y, []T) []T
#pragma textflag 7
void
runtime·appendslice(SliceType *t, Slice x, Slice y, Slice ret)
{
intgo m;
uintptr w;
void *pc;
uint8 *p, *q;
m = x.len+y.len;
w = t->elem->size;
if(m < x.len)
runtime·throw("append: slice overflow");
if(m > x.cap)
growslice1(t, x, m, &ret);
else
ret = x;
if(raceenabled) {
// Don't mark read/writes on the newly allocated slice.
pc = runtime·getcallerpc(&t);
// read x[:len]
if(m > x.cap)
runtime·racereadrangepc(x.array, x.len*w, w, pc, runtime·appendslice);
// read y
runtime·racereadrangepc(y.array, y.len*w, w, pc, runtime·appendslice);
// write x[len(x):len(x)+len(y)]
if(m <= x.cap)
runtime·racewriterangepc(ret.array+ret.len*w, y.len*w, w, pc, runtime·appendslice);
}
// A very common case is appending bytes. Small appends can avoid the overhead of memmove.
// We can generalize a bit here, and just pick small-sized appends.
p = ret.array+ret.len*w;
q = y.array;
w *= y.len;
if(w <= appendCrossover) {
if(p <= q || w <= p-q) // No overlap.
while(w-- > 0)
*p++ = *q++;
else {
p += w;
q += w;
while(w-- > 0)
*--p = *--q;
}
} else {
runtime·memmove(p, q, w);
}
ret.len += y.len;
FLUSH(&ret);
}
// appendstr([]byte, string) []byte
#pragma textflag 7
void
runtime·appendstr(SliceType *t, Slice x, String y, Slice ret)
{
intgo m;
void *pc;
uintptr w;
uint8 *p, *q;
m = x.len+y.len;
if(m < x.len)
runtime·throw("append: string overflow");
if(m > x.cap)
growslice1(t, x, m, &ret);
else
ret = x;
if(raceenabled) {
// Don't mark read/writes on the newly allocated slice.
pc = runtime·getcallerpc(&t);
// read x[:len]
if(m > x.cap)
runtime·racereadrangepc(x.array, x.len, 1, pc, runtime·appendstr);
// write x[len(x):len(x)+len(y)]
if(m <= x.cap)
runtime·racewriterangepc(ret.array+ret.len, y.len, 1, pc, runtime·appendstr);
}
// Small appends can avoid the overhead of memmove.
w = y.len;
p = ret.array+ret.len;
q = y.str;
if(w <= appendCrossover) {
while(w-- > 0)
*p++ = *q++;
} else {
runtime·memmove(p, q, w);
}
ret.len += y.len;
FLUSH(&ret);
}
// growslice(type *Type, x, []T, n int64) []T
void
runtime·growslice(SliceType *t, Slice old, int64 n, Slice ret)
{
int64 cap;
void *pc;
if(n < 1)
runtime·panicstring("growslice: invalid n");
cap = old.cap + n;
if((intgo)cap != cap || cap < old.cap || (t->elem->size > 0 && cap > MaxMem/t->elem->size))
runtime·panicstring("growslice: cap out of range");
if(raceenabled) {
pc = runtime·getcallerpc(&t);
runtime·racereadrangepc(old.array, old.len*t->elem->size, t->elem->size, pc, runtime·growslice);
}
growslice1(t, old, cap, &ret);
FLUSH(&ret);
if(debug) {
runtime·printf("growslice(%S,", *t->string);
runtime·printslice(old);
runtime·printf(", new cap=%D) =", cap);
runtime·printslice(ret);
}
}
static void
growslice1(SliceType *t, Slice x, intgo newcap, Slice *ret)
{
intgo m;
m = x.cap;
// Using newcap directly for m+m < newcap handles
// both the case where m == 0 and also the case where
// m+m/4 wraps around, in which case the loop
// below might never terminate.
if(m+m < newcap)
m = newcap;
else {
do {
if(x.len < 1024)
m += m;
else
m += m/4;
} while(m < newcap);
}
makeslice1(t, x.len, m, ret);
runtime·memmove(ret->array, x.array, ret->len * t->elem->size);
}
// copy(to any, fr any, wid uintptr) int
#pragma textflag 7
void
runtime·copy(Slice to, Slice fm, uintptr width, intgo ret)
{
void *pc;
if(fm.len == 0 || to.len == 0 || width == 0) {
ret = 0;
goto out;
}
ret = fm.len;
if(to.len < ret)
ret = to.len;
if(raceenabled) {
pc = runtime·getcallerpc(&to);
runtime·racewriterangepc(to.array, ret*width, width, pc, runtime·copy);
runtime·racereadrangepc(fm.array, ret*width, width, pc, runtime·copy);
}
if(ret == 1 && width == 1) { // common case worth about 2x to do here
*to.array = *fm.array; // known to be a byte pointer
} else {
runtime·memmove(to.array, fm.array, ret*width);
}
out:
FLUSH(&ret);
if(debug) {
runtime·prints("main·copy: to=");
runtime·printslice(to);
runtime·prints("; fm=");
runtime·printslice(fm);
runtime·prints("; width=");
runtime·printint(width);
runtime·prints("; ret=");
runtime·printint(ret);
runtime·prints("\n");
}
}
#pragma textflag 7
void
runtime·slicestringcopy(Slice to, String fm, intgo ret)
{
void *pc;
if(fm.len == 0 || to.len == 0) {
ret = 0;
goto out;
}
ret = fm.len;
if(to.len < ret)
ret = to.len;
if(raceenabled) {
pc = runtime·getcallerpc(&to);
runtime·racewriterangepc(to.array, ret, 1, pc, runtime·slicestringcopy);
}
runtime·memmove(to.array, fm.str, ret);
out:
FLUSH(&ret);
}
void
runtime·printslice(Slice a)
{
runtime·prints("[");
runtime·printint(a.len);
runtime·prints("/");
runtime·printint(a.cap);
runtime·prints("]");
runtime·printpointer(a.array);
}