| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package jpeg |
| |
| // This is a Go translation of idct.c from |
| // |
| // http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz |
| // |
| // which carries the following notice: |
| |
| /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */ |
| |
| /* |
| * Disclaimer of Warranty |
| * |
| * These software programs are available to the user without any license fee or |
| * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims |
| * any and all warranties, whether express, implied, or statuary, including any |
| * implied warranties or merchantability or of fitness for a particular |
| * purpose. In no event shall the copyright-holder be liable for any |
| * incidental, punitive, or consequential damages of any kind whatsoever |
| * arising from the use of these programs. |
| * |
| * This disclaimer of warranty extends to the user of these programs and user's |
| * customers, employees, agents, transferees, successors, and assigns. |
| * |
| * The MPEG Software Simulation Group does not represent or warrant that the |
| * programs furnished hereunder are free of infringement of any third-party |
| * patents. |
| * |
| * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware, |
| * are subject to royalty fees to patent holders. Many of these patents are |
| * general enough such that they are unavoidable regardless of implementation |
| * design. |
| * |
| */ |
| |
| const ( |
| w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16) |
| w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16) |
| w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16) |
| w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16) |
| w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16) |
| w7 = 565 // 2048*sqrt(2)*cos(7*pi/16) |
| |
| w1pw7 = w1 + w7 |
| w1mw7 = w1 - w7 |
| w2pw6 = w2 + w6 |
| w2mw6 = w2 - w6 |
| w3pw5 = w3 + w5 |
| w3mw5 = w3 - w5 |
| |
| r2 = 181 // 256/sqrt(2) |
| ) |
| |
| // idct performs a 2-D Inverse Discrete Cosine Transformation, followed by a |
| // +128 level shift and a clip to [0, 255], writing the results to dst. |
| // stride is the number of elements between successive rows of dst. |
| // |
| // The input coefficients should already have been multiplied by the |
| // appropriate quantization table. We use fixed-point computation, with the |
| // number of bits for the fractional component varying over the intermediate |
| // stages. |
| // |
| // For more on the actual algorithm, see Z. Wang, "Fast algorithms for the |
| // discrete W transform and for the discrete Fourier transform", IEEE Trans. on |
| // ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984. |
| func idct(dst []byte, stride int, src *block) { |
| // Horizontal 1-D IDCT. |
| for y := 0; y < 8; y++ { |
| // If all the AC components are zero, then the IDCT is trivial. |
| if src[y*8+1] == 0 && src[y*8+2] == 0 && src[y*8+3] == 0 && |
| src[y*8+4] == 0 && src[y*8+5] == 0 && src[y*8+6] == 0 && src[y*8+7] == 0 { |
| dc := src[y*8+0] << 3 |
| src[y*8+0] = dc |
| src[y*8+1] = dc |
| src[y*8+2] = dc |
| src[y*8+3] = dc |
| src[y*8+4] = dc |
| src[y*8+5] = dc |
| src[y*8+6] = dc |
| src[y*8+7] = dc |
| continue |
| } |
| |
| // Prescale. |
| x0 := (src[y*8+0] << 11) + 128 |
| x1 := src[y*8+4] << 11 |
| x2 := src[y*8+6] |
| x3 := src[y*8+2] |
| x4 := src[y*8+1] |
| x5 := src[y*8+7] |
| x6 := src[y*8+5] |
| x7 := src[y*8+3] |
| |
| // Stage 1. |
| x8 := w7 * (x4 + x5) |
| x4 = x8 + w1mw7*x4 |
| x5 = x8 - w1pw7*x5 |
| x8 = w3 * (x6 + x7) |
| x6 = x8 - w3mw5*x6 |
| x7 = x8 - w3pw5*x7 |
| |
| // Stage 2. |
| x8 = x0 + x1 |
| x0 -= x1 |
| x1 = w6 * (x3 + x2) |
| x2 = x1 - w2pw6*x2 |
| x3 = x1 + w2mw6*x3 |
| x1 = x4 + x6 |
| x4 -= x6 |
| x6 = x5 + x7 |
| x5 -= x7 |
| |
| // Stage 3. |
| x7 = x8 + x3 |
| x8 -= x3 |
| x3 = x0 + x2 |
| x0 -= x2 |
| x2 = (r2*(x4+x5) + 128) >> 8 |
| x4 = (r2*(x4-x5) + 128) >> 8 |
| |
| // Stage 4. |
| src[8*y+0] = (x7 + x1) >> 8 |
| src[8*y+1] = (x3 + x2) >> 8 |
| src[8*y+2] = (x0 + x4) >> 8 |
| src[8*y+3] = (x8 + x6) >> 8 |
| src[8*y+4] = (x8 - x6) >> 8 |
| src[8*y+5] = (x0 - x4) >> 8 |
| src[8*y+6] = (x3 - x2) >> 8 |
| src[8*y+7] = (x7 - x1) >> 8 |
| } |
| |
| // Vertical 1-D IDCT. |
| for x := 0; x < 8; x++ { |
| // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial. |
| // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so |
| // we do not bother to check for the all-zero case. |
| |
| // Prescale. |
| y0 := (src[8*0+x] << 8) + 8192 |
| y1 := src[8*4+x] << 8 |
| y2 := src[8*6+x] |
| y3 := src[8*2+x] |
| y4 := src[8*1+x] |
| y5 := src[8*7+x] |
| y6 := src[8*5+x] |
| y7 := src[8*3+x] |
| |
| // Stage 1. |
| y8 := w7*(y4+y5) + 4 |
| y4 = (y8 + w1mw7*y4) >> 3 |
| y5 = (y8 - w1pw7*y5) >> 3 |
| y8 = w3*(y6+y7) + 4 |
| y6 = (y8 - w3mw5*y6) >> 3 |
| y7 = (y8 - w3pw5*y7) >> 3 |
| |
| // Stage 2. |
| y8 = y0 + y1 |
| y0 -= y1 |
| y1 = w6*(y3+y2) + 4 |
| y2 = (y1 - w2pw6*y2) >> 3 |
| y3 = (y1 + w2mw6*y3) >> 3 |
| y1 = y4 + y6 |
| y4 -= y6 |
| y6 = y5 + y7 |
| y5 -= y7 |
| |
| // Stage 3. |
| y7 = y8 + y3 |
| y8 -= y3 |
| y3 = y0 + y2 |
| y0 -= y2 |
| y2 = (r2*(y4+y5) + 128) >> 8 |
| y4 = (r2*(y4-y5) + 128) >> 8 |
| |
| // Stage 4. |
| src[8*0+x] = (y7 + y1) >> 14 |
| src[8*1+x] = (y3 + y2) >> 14 |
| src[8*2+x] = (y0 + y4) >> 14 |
| src[8*3+x] = (y8 + y6) >> 14 |
| src[8*4+x] = (y8 - y6) >> 14 |
| src[8*5+x] = (y0 - y4) >> 14 |
| src[8*6+x] = (y3 - y2) >> 14 |
| src[8*7+x] = (y7 - y1) >> 14 |
| } |
| |
| // Level shift by +128, clip to [0, 255], and write to dst. |
| for y := 0; y < 8; y++ { |
| for x := 0; x < 8; x++ { |
| c := src[y*8+x] |
| if c < -128 { |
| c = 0 |
| } else if c > 127 { |
| c = 255 |
| } else { |
| c += 128 |
| } |
| dst[y*stride+x] = uint8(c) |
| } |
| } |
| } |