blob: e5cd5ed4bf0109be324d02e3c0179664ecc7bbea [file] [log] [blame]
// Derived from Inferno utils/6c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "../../runtime/funcdata.h"
// TODO(rsc): Can make this bigger if we move
// the text segment up higher in 6l for all GOOS.
// At the same time, can raise StackBig in ../../runtime/stack.h.
vlong unmappedzero = 4096;
void
clearp(Prog *p)
{
*p = zprog;
p->as = AEND;
p->pc = pcloc;
pcloc++;
}
static int ddumped;
static Prog *dfirst;
static Prog *dpc;
/*
* generate and return proc with p->as = as,
* linked into program. pc is next instruction.
*/
Prog*
prog(int as)
{
Prog *p;
if(as == ADATA || as == AGLOBL) {
if(ddumped)
fatal("already dumped data");
if(dpc == nil) {
dpc = mal(sizeof(*dpc));
dfirst = dpc;
}
p = dpc;
dpc = mal(sizeof(*dpc));
p->link = dpc;
p->reg = 0; // used for flags
} else {
p = pc;
pc = mal(sizeof(*pc));
clearp(pc);
p->link = pc;
}
if(lineno == 0) {
if(debug['K'])
warn("prog: line 0");
}
p->as = as;
p->lineno = lineno;
return p;
}
void
dumpdata(void)
{
ddumped = 1;
if(dfirst == nil)
return;
newplist();
*pc = *dfirst;
pc = dpc;
clearp(pc);
}
/*
* generate a branch.
* t is ignored.
* likely values are for branch prediction:
* -1 unlikely
* 0 no opinion
* +1 likely
*/
Prog*
gbranch(int as, Type *t, int likely)
{
Prog *p;
USED(t);
p = prog(as);
p->to.type = D_BRANCH;
p->to.u.branch = P;
// TODO(minux): Enable this code.
// Note: liblink used Bcc CR0, label form, so we need another way
// to set likely/unlikely flag. Also note the y bit is not exactly
// likely/unlikely bit.
if(0 && as != ABR && likely != 0) {
p->from.type = D_CONST;
p->from.offset = likely > 0;
}
return p;
}
/*
* patch previous branch to jump to to.
*/
void
patch(Prog *p, Prog *to)
{
if(p->to.type != D_BRANCH)
fatal("patch: not a branch");
p->to.u.branch = to;
p->to.offset = to->pc;
}
Prog*
unpatch(Prog *p)
{
Prog *q;
if(p->to.type != D_BRANCH)
fatal("unpatch: not a branch");
q = p->to.u.branch;
p->to.u.branch = P;
p->to.offset = 0;
return q;
}
/*
* start a new Prog list.
*/
Plist*
newplist(void)
{
Plist *pl;
pl = linknewplist(ctxt);
pc = mal(sizeof(*pc));
clearp(pc);
pl->firstpc = pc;
return pl;
}
void
gused(Node *n)
{
gins(ANOP, n, N); // used
}
Prog*
gjmp(Prog *to)
{
Prog *p;
p = gbranch(ABR, T, 0);
if(to != P)
patch(p, to);
return p;
}
void
ggloblnod(Node *nam)
{
Prog *p;
p = gins(AGLOBL, nam, N);
p->lineno = nam->lineno;
p->from.sym->gotype = linksym(ngotype(nam));
p->to.sym = nil;
p->to.type = D_CONST;
p->to.offset = nam->type->width;
if(nam->readonly)
p->reg = RODATA;
if(nam->type != T && !haspointers(nam->type))
p->reg |= NOPTR;
}
void
gtrack(Sym *s)
{
Prog *p;
p = gins(AUSEFIELD, N, N);
p->from.type = D_OREG;
p->from.name = D_EXTERN;
p->from.sym = linksym(s);
}
void
ggloblsym(Sym *s, int32 width, int8 flags)
{
Prog *p;
p = gins(AGLOBL, N, N);
p->from.type = D_OREG;
p->from.name = D_EXTERN;
p->from.sym = linksym(s);
p->to.type = D_CONST;
p->to.name = D_NONE;
p->to.offset = width;
p->reg = flags;
}
int
isfat(Type *t)
{
if(t != T)
switch(t->etype) {
case TSTRUCT:
case TARRAY:
case TSTRING:
case TINTER: // maybe remove later
return 1;
}
return 0;
}
/*
* naddr of func generates code for address of func.
* if using opcode that can take address implicitly,
* call afunclit to fix up the argument.
*/
void
afunclit(Addr *a, Node *n)
{
if(a->type == D_CONST && a->name == D_EXTERN) {
a->type = D_OREG;
a->sym = linksym(n->sym);
}
}
static int resvd[] =
{
REGZERO,
REGSP, // reserved for SP, XXX: not reserved in 9c.
30, // for g
REGTMP, // REGTMP
FREGCVI+NREG,
FREGZERO+NREG,
FREGHALF+NREG,
FREGONE+NREG,
FREGTWO+NREG,
};
void
ginit(void)
{
int i;
for(i=0; i<nelem(reg); i++)
reg[i] = 1;
for(i=0; i<NREG; i++)
reg[i] = 0;
for(i=NREG; i<NREG+NREG; i++)
reg[i] = 0;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]++;
}
static uintptr regpc[nelem(reg)];
void
gclean(void)
{
int i;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]--;
for(i=0; i<nelem(reg); i++)
if(reg[i])
yyerror("reg %R left allocated, %p\n", i, regpc[i]);
}
int32
anyregalloc(void)
{
int i, j;
for(i=0; i<nelem(reg); i++) {
if(reg[i] == 0)
goto ok;
for(j=0; j<nelem(resvd); j++)
if(resvd[j] == i)
goto ok;
return 1;
ok:;
}
return 0;
}
/*
* allocate register of type t, leave in n.
* if o != N, o is desired fixed register.
* caller must regfree(n).
*/
void
regalloc(Node *n, Type *t, Node *o)
{
int i, et;
int fixfree, fltfree;
if(t == T)
fatal("regalloc: t nil");
et = simtype[t->etype];
if(debug['r']) {
fixfree = 0;
fltfree = 0;
for(i = D_R0; i < D_F0+NREG; i++)
if(reg[i] == 0) {
if(i < D_F0)
fixfree++;
else
fltfree++;
}
print("regalloc fix %d flt %d free\n", fixfree, fltfree);
}
switch(et) {
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT64:
case TUINT64:
case TPTR32:
case TPTR64:
case TBOOL:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= D_R0+REGMIN && i <= D_R0+REGMAX)
goto out;
}
for(i=D_R0+REGMIN; i<=D_R0+REGMAX; i++)
if(reg[i] == 0) {
regpc[i] = (uintptr)getcallerpc(&n);
goto out;
}
flusherrors();
for(i=D_R0; i<D_R0+NREG; i++)
print("R%d %p\n", i, regpc[i]);
fatal("out of fixed registers");
case TFLOAT32:
case TFLOAT64:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= D_F0+FREGMIN && i <= D_F0+FREGMAX)
goto out;
}
for(i=D_F0+FREGMIN; i<=D_F0+FREGMAX; i++)
if(reg[i] == 0) {
regpc[i] = (uintptr)getcallerpc(&n);
goto out;
}
flusherrors();
for(i=D_F0; i<D_F0+NREG; i++)
print("F%d %p\n", i, regpc[i]);
fatal("out of floating registers");
case TCOMPLEX64:
case TCOMPLEX128:
tempname(n, t);
return;
}
fatal("regalloc: unknown type %T", t);
return;
out:
reg[i]++;
nodreg(n, t, i);
}
void
regfree(Node *n)
{
int i;
if(n->op == ONAME)
return;
if(n->op != OREGISTER && n->op != OINDREG)
fatal("regfree: not a register");
i = n->val.u.reg;
if(i == D_R0 + REGSP)
return;
if(i < 0 || i >= nelem(reg))
fatal("regfree: reg out of range");
if(reg[i] <= 0)
fatal("regfree: reg not allocated");
reg[i]--;
if(reg[i] == 0)
regpc[i] = 0;
}
/*
* initialize n to be register r of type t.
*/
void
nodreg(Node *n, Type *t, int r)
{
if(t == T)
fatal("nodreg: t nil");
memset(n, 0, sizeof(*n));
n->op = OREGISTER;
n->addable = 1;
ullmancalc(n);
n->val.u.reg = r;
n->type = t;
}
/*
* initialize n to be indirect of register r; n is type t.
*/
void
nodindreg(Node *n, Type *t, int r)
{
nodreg(n, t, r);
n->op = OINDREG;
}
Node*
nodarg(Type *t, int fp)
{
Node *n;
NodeList *l;
Type *first;
Iter savet;
// entire argument struct, not just one arg
if(t->etype == TSTRUCT && t->funarg) {
n = nod(ONAME, N, N);
n->sym = lookup(".args");
n->type = t;
first = structfirst(&savet, &t);
if(first == nil)
fatal("nodarg: bad struct");
if(first->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = first->width;
n->addable = 1;
goto fp;
}
if(t->etype != TFIELD)
fatal("nodarg: not field %T", t);
if(fp == 1) {
for(l=curfn->dcl; l; l=l->next) {
n = l->n;
if((n->class == PPARAM || n->class == PPARAMOUT) && !isblanksym(t->sym) && n->sym == t->sym)
return n;
}
}
n = nod(ONAME, N, N);
n->type = t->type;
n->sym = t->sym;
if(t->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = t->width;
n->addable = 1;
n->orig = t->nname;
fp:
// Rewrite argument named _ to __,
// or else the assignment to _ will be
// discarded during code generation.
if(isblank(n))
n->sym = lookup("__");
switch(fp) {
default:
fatal("nodarg %T %d", t, fp);
case 0: // output arg for calling another function
n->op = OINDREG;
n->val.u.reg = D_R0+REGSP;
n->xoffset += 8;
break;
case 1: // input arg to current function
n->class = PPARAM;
break;
case 2: // offset output arg
fatal("shouldn't be used");
n->op = OINDREG;
n->val.u.reg = D_R0 + REGSP;
n->xoffset += types[tptr]->width;
break;
}
n->typecheck = 1;
return n;
}
/*
* generate
* as $c, n
*/
void
ginscon(int as, vlong c, Node *n2)
{
Node n1, ntmp;
nodconst(&n1, types[TINT64], c);
if(as != AMOVD && (c < -BIG || c > BIG)) {
// cannot have more than 16-bit of immediate in ADD, etc.
// instead, MOV into register first.
regalloc(&ntmp, types[TINT64], N);
gins(AMOVD, &n1, &ntmp);
gins(as, &ntmp, n2);
regfree(&ntmp);
return;
}
gins(as, &n1, n2);
}
/*
* generate
* as n, $c (CMP/CMPU)
*/
void
ginscon2(int as, Node *n2, vlong c)
{
Node n1, ntmp;
nodconst(&n1, types[TINT64], c);
switch(as) {
default:
fatal("ginscon2");
case ACMP:
if(-BIG <= c && c <= BIG) {
gins(as, n2, &n1);
return;
}
break;
case ACMPU:
if(0 <= c && c <= 2*BIG) {
gins(as, n2, &n1);
return;
}
break;
}
// MOV n1 into register first
regalloc(&ntmp, types[TINT64], N);
gins(AMOVD, &n1, &ntmp);
gins(as, n2, &ntmp);
regfree(&ntmp);
}
#define CASE(a,b) (((a)<<16)|((b)<<0))
/*c2go int CASE(int, int); */
/*
* Is this node a memory operand?
*/
int
ismem(Node *n)
{
switch(n->op) {
case OITAB:
case OSPTR:
case OLEN:
case OCAP:
case OINDREG:
case ONAME:
case OPARAM:
case OCLOSUREVAR:
case OADDR:
return 1;
}
return 0;
}
/*
* set up nodes representing 2^63
*/
Node bigi;
Node bigf;
void
bignodes(void)
{
static int did;
if(did)
return;
did = 1;
nodconst(&bigi, types[TUINT64], 1);
mpshiftfix(bigi.val.u.xval, 63);
bigf = bigi;
bigf.type = types[TFLOAT64];
bigf.val.ctype = CTFLT;
bigf.val.u.fval = mal(sizeof *bigf.val.u.fval);
mpmovefixflt(bigf.val.u.fval, bigi.val.u.xval);
}
/*
* generate move:
* t = f
* hard part is conversions.
*/
void
gmove(Node *f, Node *t)
{
int a, ft, tt;
Type *cvt;
Node r1, r2, r3, con;
Prog *p1, *p2;
if(debug['M'])
print("gmove %lN -> %lN\n", f, t);
ft = simsimtype(f->type);
tt = simsimtype(t->type);
cvt = t->type;
if(iscomplex[ft] || iscomplex[tt]) {
complexmove(f, t);
return;
}
// cannot have two memory operands
if(ismem(f) && ismem(t))
goto hard;
// convert constant to desired type
if(f->op == OLITERAL) {
switch(tt) {
default:
convconst(&con, t->type, &f->val);
break;
case TINT32:
case TINT16:
case TINT8:
convconst(&con, types[TINT64], &f->val);
regalloc(&r1, con.type, t);
gins(AMOVD, &con, &r1);
gmove(&r1, t);
regfree(&r1);
return;
case TUINT32:
case TUINT16:
case TUINT8:
convconst(&con, types[TUINT64], &f->val);
regalloc(&r1, con.type, t);
gins(AMOVD, &con, &r1);
gmove(&r1, t);
regfree(&r1);
return;
}
f = &con;
ft = tt; // so big switch will choose a simple mov
// constants can't move directly to memory.
if(ismem(t)) {
goto hard;
// float constants come from memory.
//if(isfloat[tt])
// goto hard;
// 64-bit immediates are also from memory.
//if(isint[tt])
// goto hard;
//// 64-bit immediates are really 32-bit sign-extended
//// unless moving into a register.
//if(isint[tt]) {
// if(mpcmpfixfix(con.val.u.xval, minintval[TINT32]) < 0)
// goto hard;
// if(mpcmpfixfix(con.val.u.xval, maxintval[TINT32]) > 0)
// goto hard;
//}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch(CASE(ft, tt)) {
default:
fatal("gmove %lT -> %lT", f->type, t->type);
/*
* integer copy and truncate
*/
case CASE(TINT8, TINT8): // same size
case CASE(TUINT8, TINT8):
case CASE(TINT16, TINT8): // truncate
case CASE(TUINT16, TINT8):
case CASE(TINT32, TINT8):
case CASE(TUINT32, TINT8):
case CASE(TINT64, TINT8):
case CASE(TUINT64, TINT8):
a = AMOVB;
break;
case CASE(TINT8, TUINT8): // same size
case CASE(TUINT8, TUINT8):
case CASE(TINT16, TUINT8): // truncate
case CASE(TUINT16, TUINT8):
case CASE(TINT32, TUINT8):
case CASE(TUINT32, TUINT8):
case CASE(TINT64, TUINT8):
case CASE(TUINT64, TUINT8):
a = AMOVBZ;
break;
case CASE(TINT16, TINT16): // same size
case CASE(TUINT16, TINT16):
case CASE(TINT32, TINT16): // truncate
case CASE(TUINT32, TINT16):
case CASE(TINT64, TINT16):
case CASE(TUINT64, TINT16):
a = AMOVH;
break;
case CASE(TINT16, TUINT16): // same size
case CASE(TUINT16, TUINT16):
case CASE(TINT32, TUINT16): // truncate
case CASE(TUINT32, TUINT16):
case CASE(TINT64, TUINT16):
case CASE(TUINT64, TUINT16):
a = AMOVHZ;
break;
case CASE(TINT32, TINT32): // same size
case CASE(TUINT32, TINT32):
case CASE(TINT64, TINT32): // truncate
case CASE(TUINT64, TINT32):
a = AMOVW;
break;
case CASE(TINT32, TUINT32): // same size
case CASE(TUINT32, TUINT32):
case CASE(TINT64, TUINT32):
case CASE(TUINT64, TUINT32):
a = AMOVWZ;
break;
case CASE(TINT64, TINT64): // same size
case CASE(TINT64, TUINT64):
case CASE(TUINT64, TINT64):
case CASE(TUINT64, TUINT64):
a = AMOVD;
break;
/*
* integer up-conversions
*/
case CASE(TINT8, TINT16): // sign extend int8
case CASE(TINT8, TUINT16):
case CASE(TINT8, TINT32):
case CASE(TINT8, TUINT32):
case CASE(TINT8, TINT64):
case CASE(TINT8, TUINT64):
a = AMOVB;
goto rdst;
case CASE(TUINT8, TINT16): // zero extend uint8
case CASE(TUINT8, TUINT16):
case CASE(TUINT8, TINT32):
case CASE(TUINT8, TUINT32):
case CASE(TUINT8, TINT64):
case CASE(TUINT8, TUINT64):
a = AMOVBZ;
goto rdst;
case CASE(TINT16, TINT32): // sign extend int16
case CASE(TINT16, TUINT32):
case CASE(TINT16, TINT64):
case CASE(TINT16, TUINT64):
a = AMOVH;
goto rdst;
case CASE(TUINT16, TINT32): // zero extend uint16
case CASE(TUINT16, TUINT32):
case CASE(TUINT16, TINT64):
case CASE(TUINT16, TUINT64):
a = AMOVHZ;
goto rdst;
case CASE(TINT32, TINT64): // sign extend int32
case CASE(TINT32, TUINT64):
a = AMOVW;
goto rdst;
case CASE(TUINT32, TINT64): // zero extend uint32
case CASE(TUINT32, TUINT64):
a = AMOVWZ;
goto rdst;
/*
* float to integer
*/
case CASE(TFLOAT32, TINT32):
case CASE(TFLOAT64, TINT32):
case CASE(TFLOAT32, TINT64):
case CASE(TFLOAT64, TINT64):
case CASE(TFLOAT32, TINT16):
case CASE(TFLOAT32, TINT8):
case CASE(TFLOAT32, TUINT16):
case CASE(TFLOAT32, TUINT8):
case CASE(TFLOAT64, TINT16):
case CASE(TFLOAT64, TINT8):
case CASE(TFLOAT64, TUINT16):
case CASE(TFLOAT64, TUINT8):
case CASE(TFLOAT32, TUINT32):
case CASE(TFLOAT64, TUINT32):
case CASE(TFLOAT32, TUINT64):
case CASE(TFLOAT64, TUINT64):
//warn("gmove: convert float to int not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
bignodes();
regalloc(&r1, types[ft], f);
gmove(f, &r1);
if(tt == TUINT64) {
regalloc(&r2, types[TFLOAT64], N);
gmove(&bigf, &r2);
gins(AFCMPU, &r1, &r2);
p1 = gbranch(optoas(OLT, types[TFLOAT64]), T, +1);
gins(AFSUB, &r2, &r1);
patch(p1, pc);
regfree(&r2);
}
regalloc(&r2, types[TFLOAT64], N);
regalloc(&r3, types[TINT64], t);
gins(AFCTIDZ, &r1, &r2);
p1 = gins(AFMOVD, &r2, N);
p1->to.type = D_OREG;
p1->to.reg = REGSP;
p1->to.offset = -8;
p1 = gins(AMOVD, N, &r3);
p1->from.type = D_OREG;
p1->from.reg = REGSP;
p1->from.offset = -8;
regfree(&r2);
regfree(&r1);
if(tt == TUINT64) {
p1 = gbranch(optoas(OLT, types[TFLOAT64]), T, +1); // use CR0 here again
nodreg(&r1, types[TINT64], D_R0+REGTMP);
gins(AMOVD, &bigi, &r1);
gins(AADD, &r1, &r3);
patch(p1, pc);
}
gmove(&r3, t);
regfree(&r3);
return;
/*
* integer to float
*/
case CASE(TINT32, TFLOAT32):
case CASE(TINT32, TFLOAT64):
case CASE(TINT64, TFLOAT32):
case CASE(TINT64, TFLOAT64):
case CASE(TINT16, TFLOAT32):
case CASE(TINT16, TFLOAT64):
case CASE(TINT8, TFLOAT32):
case CASE(TINT8, TFLOAT64):
case CASE(TUINT16, TFLOAT32):
case CASE(TUINT16, TFLOAT64):
case CASE(TUINT8, TFLOAT32):
case CASE(TUINT8, TFLOAT64):
case CASE(TUINT32, TFLOAT32):
case CASE(TUINT32, TFLOAT64):
case CASE(TUINT64, TFLOAT32):
case CASE(TUINT64, TFLOAT64):
//warn("gmove: convert int to float not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native int64 -> uint64 conversion.
// otherwise, halve (rounding to odd?), convert, and double.
bignodes();
regalloc(&r1, types[TINT64], N);
gmove(f, &r1);
if(ft == TUINT64) {
nodreg(&r2, types[TUINT64], D_R0+REGTMP);
gmove(&bigi, &r2);
gins(ACMPU, &r1, &r2);
p1 = gbranch(optoas(OLT, types[TUINT64]), T, +1);
p2 = gins(ASRD, N, &r1);
p2->from.type = D_CONST;
p2->from.offset = 1;
patch(p1, pc);
}
regalloc(&r2, types[TFLOAT64], t);
p1 = gins(AMOVD, &r1, N);
p1->to.type = D_OREG;
p1->to.reg = REGSP;
p1->to.offset = -8;
p1 = gins(AFMOVD, N, &r2);
p1->from.type = D_OREG;
p1->from.reg = REGSP;
p1->from.offset = -8;
gins(AFCFID, &r2, &r2);
regfree(&r1);
if(ft == TUINT64) {
p1 = gbranch(optoas(OLT, types[TUINT64]), T, +1); // use CR0 here again
nodreg(&r1, types[TFLOAT64], D_F0+FREGTWO);
gins(AFMUL, &r1, &r2);
patch(p1, pc);
}
gmove(&r2, t);
regfree(&r2);
return;
/*
* float to float
*/
case CASE(TFLOAT32, TFLOAT32):
a = AFMOVS;
break;
case CASE(TFLOAT64, TFLOAT64):
a = AFMOVD;
break;
case CASE(TFLOAT32, TFLOAT64):
a = AFMOVS;
goto rdst;
case CASE(TFLOAT64, TFLOAT32):
a = AFRSP;
goto rdst;
}
gins(a, f, t);
return;
rdst:
// requires register destination
regalloc(&r1, t->type, t);
gins(a, f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
hard:
// requires register intermediate
regalloc(&r1, cvt, t);
gmove(f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
}
/*
* generate one instruction:
* as f, t
*/
Prog*
gins(int as, Node *f, Node *t)
{
int32 w;
Prog *p;
Addr af, at;
// TODO(austin): Add self-move test like in 6g (but be careful
// of truncation moves)
memset(&af, 0, sizeof af);
memset(&at, 0, sizeof at);
if(f != N)
naddr(f, &af, 1);
if(t != N)
naddr(t, &at, 1);
p = prog(as);
if(f != N)
p->from = af;
if(t != N)
p->to = at;
if(as == ATEXT)
p->reg = 0;
if(debug['g'])
print("%P\n", p);
w = 0;
switch(as) {
case AMOVB:
case AMOVBU:
case AMOVBZ:
case AMOVBZU:
w = 1;
break;
case AMOVH:
case AMOVHU:
case AMOVHZ:
case AMOVHZU:
w = 2;
break;
case AMOVW:
case AMOVWU:
case AMOVWZ:
case AMOVWZU:
w = 4;
break;
case AMOVD:
case AMOVDU:
if(af.type == D_CONST)
break;
w = 8;
break;
}
if(w != 0 && ((f != N && af.width < w) || (t != N && at.type != D_REG && at.width > w))) {
dump("f", f);
dump("t", t);
fatal("bad width: %P (%d, %d)\n", p, af.width, at.width);
}
return p;
}
void
fixlargeoffset(Node *n)
{
Node a;
if(n == N)
return;
if(n->op != OINDREG)
return;
if(n->val.u.reg == D_R0+REGSP) // stack offset cannot be large
return;
if(n->xoffset != (int32)n->xoffset) {
// TODO(minux): offset too large, move into R31 and add to R31 instead.
// this is used only in test/fixedbugs/issue6036.go.
print("offset too large: %N\n", n);
noimpl;
a = *n;
a.op = OREGISTER;
a.type = types[tptr];
a.xoffset = 0;
cgen_checknil(&a);
ginscon(optoas(OADD, types[tptr]), n->xoffset, &a);
n->xoffset = 0;
}
}
/*
* generate code to compute n;
* make a refer to result.
*/
void
naddr(Node *n, Addr *a, int canemitcode)
{
Sym *s;
a->type = D_NONE;
a->name = D_NONE;
a->reg = NREG;
a->gotype = nil;
a->node = N;
a->etype = 0;
a->width = 0;
if(n == N)
return;
if(n->type != T && n->type->etype != TIDEAL) {
dowidth(n->type);
a->width = n->type->width;
}
switch(n->op) {
default:
fatal("naddr: bad %O %D", n->op, a);
break;
case ONAME:
a->etype = 0;
a->reg = NREG;
if(n->type != T)
a->etype = simtype[n->type->etype];
a->offset = n->xoffset;
s = n->sym;
a->node = n->orig;
//if(a->node >= (Node*)&n)
// fatal("stack node");
if(s == S)
s = lookup(".noname");
if(n->method) {
if(n->type != T)
if(n->type->sym != S)
if(n->type->sym->pkg != nil)
s = pkglookup(s->name, n->type->sym->pkg);
}
a->type = D_OREG;
switch(n->class) {
default:
fatal("naddr: ONAME class %S %d\n", n->sym, n->class);
case PEXTERN:
a->name = D_EXTERN;
break;
case PAUTO:
a->name = D_AUTO;
break;
case PPARAM:
case PPARAMOUT:
a->name = D_PARAM;
break;
case PFUNC:
a->name = D_EXTERN;
a->type = D_CONST;
a->width = widthptr;
s = funcsym(s);
break;
}
a->sym = linksym(s);
break;
case OLITERAL:
switch(n->val.ctype) {
default:
fatal("naddr: const %lT", n->type);
break;
case CTFLT:
a->type = D_FCONST;
a->u.dval = mpgetflt(n->val.u.fval);
break;
case CTINT:
case CTRUNE:
a->sym = nil;
a->type = D_CONST;
a->offset = mpgetfix(n->val.u.xval);
break;
case CTSTR:
datagostring(n->val.u.sval, a);
break;
case CTBOOL:
a->sym = nil;
a->type = D_CONST;
a->offset = n->val.u.bval;
break;
case CTNIL:
a->sym = nil;
a->type = D_CONST;
a->offset = 0;
break;
}
break;
case OREGISTER:
if(n->val.u.reg < D_F0) {
a->type = D_REG;
a->reg = n->val.u.reg;
} else {
a->type = D_FREG;
a->reg = n->val.u.reg - D_F0;
}
a->sym = nil;
break;
case OINDREG:
a->type = D_OREG;
a->reg = n->val.u.reg;
a->sym = linksym(n->sym);
a->offset = n->xoffset;
if(a->offset != (int32)a->offset)
yyerror("offset %lld too large for OINDREG", a->offset);
break;
case OPARAM:
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
a->etype = simtype[n->left->type->etype];
a->width = n->left->type->width;
a->offset = n->xoffset;
a->sym = linksym(n->left->sym);
a->type = D_OREG;
a->name = D_PARAM;
a->node = n->left->orig;
break;
case OCLOSUREVAR:
if(!curfn->needctxt)
fatal("closurevar without needctxt");
a->type = D_OREG;
a->reg = REGENV;
a->offset = n->xoffset;
a->sym = nil;
break;
case OCFUNC:
naddr(n->left, a, canemitcode);
a->sym = linksym(n->left->sym);
break;
case OITAB:
// itable of interface value
naddr(n->left, a, canemitcode);
a->etype = simtype[tptr];
if(a->type == D_CONST && a->offset == 0)
break; // itab(nil)
a->width = widthptr;
break;
case OSPTR:
// pointer in a string or slice
naddr(n->left, a, canemitcode);
a->etype = simtype[tptr];
if(a->type == D_CONST && a->offset == 0)
break; // ptr(nil)
a->offset += Array_array;
a->width = widthptr;
break;
case OLEN:
// len of string or slice
naddr(n->left, a, canemitcode);
a->etype = simtype[TINT];
if(a->type == D_CONST && a->offset == 0)
break; // len(nil)
a->offset += Array_nel;
a->width = widthint;
break;
case OCAP:
// cap of string or slice
naddr(n->left, a, canemitcode);
a->etype = simtype[TINT];
if(a->type == D_CONST && a->offset == 0)
break; // cap(nil)
a->offset += Array_cap;
a->width = widthint;
break;
case OADDR:
naddr(n->left, a, canemitcode);
a->etype = tptr;
switch(a->type) {
case D_OREG:
a->type = D_CONST;
break;
case D_REG:
case D_CONST:
break;
default:
fatal("naddr: OADDR %d\n", a->type);
}
break;
}
}
/*
* return Axxx for Oxxx on type t.
*/
int
optoas(int op, Type *t)
{
int a;
if(t == T)
fatal("optoas: t is nil");
a = AGOK;
switch(CASE(op, simtype[t->etype])) {
default:
fatal("optoas: no entry for op=%O type=%T", op, t);
break;
case CASE(OEQ, TBOOL):
case CASE(OEQ, TINT8):
case CASE(OEQ, TUINT8):
case CASE(OEQ, TINT16):
case CASE(OEQ, TUINT16):
case CASE(OEQ, TINT32):
case CASE(OEQ, TUINT32):
case CASE(OEQ, TINT64):
case CASE(OEQ, TUINT64):
case CASE(OEQ, TPTR32):
case CASE(OEQ, TPTR64):
case CASE(OEQ, TFLOAT32):
case CASE(OEQ, TFLOAT64):
a = ABEQ;
break;
case CASE(ONE, TBOOL):
case CASE(ONE, TINT8):
case CASE(ONE, TUINT8):
case CASE(ONE, TINT16):
case CASE(ONE, TUINT16):
case CASE(ONE, TINT32):
case CASE(ONE, TUINT32):
case CASE(ONE, TINT64):
case CASE(ONE, TUINT64):
case CASE(ONE, TPTR32):
case CASE(ONE, TPTR64):
case CASE(ONE, TFLOAT32):
case CASE(ONE, TFLOAT64):
a = ABNE;
break;
case CASE(OLT, TINT8): // ACMP
case CASE(OLT, TINT16):
case CASE(OLT, TINT32):
case CASE(OLT, TINT64):
case CASE(OLT, TUINT8): // ACMPU
case CASE(OLT, TUINT16):
case CASE(OLT, TUINT32):
case CASE(OLT, TUINT64):
case CASE(OLT, TFLOAT32): // AFCMPU
case CASE(OLT, TFLOAT64):
a = ABLT;
break;
case CASE(OLE, TINT8): // ACMP
case CASE(OLE, TINT16):
case CASE(OLE, TINT32):
case CASE(OLE, TINT64):
case CASE(OLE, TUINT8): // ACMPU
case CASE(OLE, TUINT16):
case CASE(OLE, TUINT32):
case CASE(OLE, TUINT64):
case CASE(OLE, TFLOAT32): // AFCMPU
case CASE(OLE, TFLOAT64):
a = ABLE;
break;
case CASE(OGT, TINT8):
case CASE(OGT, TINT16):
case CASE(OGT, TINT32):
case CASE(OGT, TINT64):
case CASE(OGT, TUINT8):
case CASE(OGT, TUINT16):
case CASE(OGT, TUINT32):
case CASE(OGT, TUINT64):
case CASE(OGT, TFLOAT32):
case CASE(OGT, TFLOAT64):
a = ABGT;
break;
case CASE(OGE, TINT8):
case CASE(OGE, TINT16):
case CASE(OGE, TINT32):
case CASE(OGE, TINT64):
case CASE(OGE, TUINT8):
case CASE(OGE, TUINT16):
case CASE(OGE, TUINT32):
case CASE(OGE, TUINT64):
case CASE(OGE, TFLOAT32):
case CASE(OGE, TFLOAT64):
a = ABGE;
break;
case CASE(OCMP, TBOOL):
case CASE(OCMP, TINT8):
case CASE(OCMP, TINT16):
case CASE(OCMP, TINT32):
case CASE(OCMP, TPTR32):
case CASE(OCMP, TINT64):
a = ACMP;
break;
case CASE(OCMP, TUINT8):
case CASE(OCMP, TUINT16):
case CASE(OCMP, TUINT32):
case CASE(OCMP, TUINT64):
case CASE(OCMP, TPTR64):
a = ACMPU;
break;
case CASE(OCMP, TFLOAT32):
case CASE(OCMP, TFLOAT64):
a = AFCMPU;
break;
case CASE(OAS, TBOOL):
case CASE(OAS, TINT8):
a = AMOVB;
break;
case CASE(OAS, TUINT8):
a = AMOVBZ;
break;
case CASE(OAS, TINT16):
a = AMOVH;
break;
case CASE(OAS, TUINT16):
a = AMOVHZ;
break;
case CASE(OAS, TINT32):
a = AMOVW;
break;
case CASE(OAS, TUINT32):
case CASE(OAS, TPTR32):
a = AMOVWZ;
break;
case CASE(OAS, TINT64):
case CASE(OAS, TUINT64):
case CASE(OAS, TPTR64):
a = AMOVD;
break;
case CASE(OAS, TFLOAT32):
a = AFMOVS;
break;
case CASE(OAS, TFLOAT64):
a = AFMOVD;
break;
case CASE(OADD, TINT8):
case CASE(OADD, TUINT8):
case CASE(OADD, TINT16):
case CASE(OADD, TUINT16):
case CASE(OADD, TINT32):
case CASE(OADD, TUINT32):
case CASE(OADD, TPTR32):
case CASE(OADD, TINT64):
case CASE(OADD, TUINT64):
case CASE(OADD, TPTR64):
a = AADD;
break;
case CASE(OADD, TFLOAT32):
a = AFADDS;
break;
case CASE(OADD, TFLOAT64):
a = AFADD;
break;
case CASE(OSUB, TINT8):
case CASE(OSUB, TUINT8):
case CASE(OSUB, TINT16):
case CASE(OSUB, TUINT16):
case CASE(OSUB, TINT32):
case CASE(OSUB, TUINT32):
case CASE(OSUB, TPTR32):
case CASE(OSUB, TINT64):
case CASE(OSUB, TUINT64):
case CASE(OSUB, TPTR64):
a = ASUB;
break;
case CASE(OSUB, TFLOAT32):
a = AFSUBS;
break;
case CASE(OSUB, TFLOAT64):
a = AFSUB;
break;
case CASE(OMINUS, TINT8):
case CASE(OMINUS, TUINT8):
case CASE(OMINUS, TINT16):
case CASE(OMINUS, TUINT16):
case CASE(OMINUS, TINT32):
case CASE(OMINUS, TUINT32):
case CASE(OMINUS, TPTR32):
case CASE(OMINUS, TINT64):
case CASE(OMINUS, TUINT64):
case CASE(OMINUS, TPTR64):
a = ANEG;
break;
case CASE(OAND, TINT8):
case CASE(OAND, TUINT8):
case CASE(OAND, TINT16):
case CASE(OAND, TUINT16):
case CASE(OAND, TINT32):
case CASE(OAND, TUINT32):
case CASE(OAND, TPTR32):
case CASE(OAND, TINT64):
case CASE(OAND, TUINT64):
case CASE(OAND, TPTR64):
a = AAND;
break;
case CASE(OOR, TINT8):
case CASE(OOR, TUINT8):
case CASE(OOR, TINT16):
case CASE(OOR, TUINT16):
case CASE(OOR, TINT32):
case CASE(OOR, TUINT32):
case CASE(OOR, TPTR32):
case CASE(OOR, TINT64):
case CASE(OOR, TUINT64):
case CASE(OOR, TPTR64):
a = AOR;
break;
case CASE(OXOR, TINT8):
case CASE(OXOR, TUINT8):
case CASE(OXOR, TINT16):
case CASE(OXOR, TUINT16):
case CASE(OXOR, TINT32):
case CASE(OXOR, TUINT32):
case CASE(OXOR, TPTR32):
case CASE(OXOR, TINT64):
case CASE(OXOR, TUINT64):
case CASE(OXOR, TPTR64):
a = AXOR;
break;
// TODO(minux): handle rotates
//case CASE(OLROT, TINT8):
//case CASE(OLROT, TUINT8):
//case CASE(OLROT, TINT16):
//case CASE(OLROT, TUINT16):
//case CASE(OLROT, TINT32):
//case CASE(OLROT, TUINT32):
//case CASE(OLROT, TPTR32):
//case CASE(OLROT, TINT64):
//case CASE(OLROT, TUINT64):
//case CASE(OLROT, TPTR64):
// a = 0//???; RLDC?
// break;
case CASE(OLSH, TINT8):
case CASE(OLSH, TUINT8):
case CASE(OLSH, TINT16):
case CASE(OLSH, TUINT16):
case CASE(OLSH, TINT32):
case CASE(OLSH, TUINT32):
case CASE(OLSH, TPTR32):
case CASE(OLSH, TINT64):
case CASE(OLSH, TUINT64):
case CASE(OLSH, TPTR64):
a = ASLD;
break;
case CASE(ORSH, TUINT8):
case CASE(ORSH, TUINT16):
case CASE(ORSH, TUINT32):
case CASE(ORSH, TPTR32):
case CASE(ORSH, TUINT64):
case CASE(ORSH, TPTR64):
a = ASRD;
break;
case CASE(ORSH, TINT8):
case CASE(ORSH, TINT16):
case CASE(ORSH, TINT32):
case CASE(ORSH, TINT64):
a = ASRAD;
break;
// TODO(minux): handle rotates
//case CASE(ORROTC, TINT8):
//case CASE(ORROTC, TUINT8):
//case CASE(ORROTC, TINT16):
//case CASE(ORROTC, TUINT16):
//case CASE(ORROTC, TINT32):
//case CASE(ORROTC, TUINT32):
//case CASE(ORROTC, TINT64):
//case CASE(ORROTC, TUINT64):
// a = 0//??? RLDC??
// break;
case CASE(OHMUL, TINT64):
a = AMULHD;
break;
case CASE(OHMUL, TUINT64):
case CASE(OHMUL, TPTR64):
a = AMULHDU;
break;
case CASE(OMUL, TINT8):
case CASE(OMUL, TINT16):
case CASE(OMUL, TINT32):
case CASE(OMUL, TINT64):
a = AMULLD;
break;
case CASE(OMUL, TUINT8):
case CASE(OMUL, TUINT16):
case CASE(OMUL, TUINT32):
case CASE(OMUL, TPTR32):
// don't use word multiply, the high 32-bit are undefined.
// fallthrough
case CASE(OMUL, TUINT64):
case CASE(OMUL, TPTR64):
a = AMULLD; // for 64-bit multiplies, signedness doesn't matter.
break;
case CASE(OMUL, TFLOAT32):
a = AFMULS;
break;
case CASE(OMUL, TFLOAT64):
a = AFMUL;
break;
case CASE(ODIV, TINT8):
case CASE(ODIV, TINT16):
case CASE(ODIV, TINT32):
case CASE(ODIV, TINT64):
a = ADIVD;
break;
case CASE(ODIV, TUINT8):
case CASE(ODIV, TUINT16):
case CASE(ODIV, TUINT32):
case CASE(ODIV, TPTR32):
case CASE(ODIV, TUINT64):
case CASE(ODIV, TPTR64):
a = ADIVDU;
break;
case CASE(ODIV, TFLOAT32):
a = AFDIVS;
break;
case CASE(ODIV, TFLOAT64):
a = AFDIV;
break;
}
return a;
}
enum
{
ODynam = 1<<0,
OAddable = 1<<1,
};
int
xgen(Node *n, Node *a, int o)
{
// TODO(minux)
USED(n); USED(a); USED(o);
return -1;
}
void
sudoclean(void)
{
return;
}
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
int
sudoaddable(int as, Node *n, Addr *a)
{
// TODO(minux)
USED(as); USED(n); USED(a);
return 0;
}