blob: 9d574b9bdef3f3bfe782b19ad450c8d13c109a23 [file] [log] [blame] [edit]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bzip2
import "sort"
// A huffmanTree is a binary tree which is navigated, bit-by-bit to reach a
// symbol.
type huffmanTree struct {
// nodes contains all the non-leaf nodes in the tree. nodes[0] is the
// root of the tree and nextNode contains the index of the next element
// of nodes to use when the tree is being constructed.
nodes []huffmanNode
nextNode int
}
// A huffmanNode is a node in the tree. left and right contain indexes into the
// nodes slice of the tree. If left or right is invalidNodeValue then the child
// is a left node and its value is in leftValue/rightValue.
//
// The symbols are uint16s because bzip2 encodes not only MTF indexes in the
// tree, but also two magic values for run-length encoding and an EOF symbol.
// Thus there are more than 256 possible symbols.
type huffmanNode struct {
left, right uint16
leftValue, rightValue uint16
}
// invalidNodeValue is an invalid index which marks a leaf node in the tree.
const invalidNodeValue = 0xffff
// Decode reads bits from the given bitReader and navigates the tree until a
// symbol is found.
func (t *huffmanTree) Decode(br *bitReader) (v uint16) {
nodeIndex := uint16(0) // node 0 is the root of the tree.
for {
node := &t.nodes[nodeIndex]
var bit uint16
if br.bits > 0 {
// Get next bit - fast path.
br.bits--
bit = 0 - (uint16(br.n>>br.bits) & 1)
} else {
// Get next bit - slow path.
// Use ReadBits to retrieve a single bit
// from the underling io.ByteReader.
bit = 0 - uint16(br.ReadBits(1))
}
// now
// bit = 0xffff if the next bit was 1
// bit = 0x0000 if the next bit was 0
// 1 means left, 0 means right.
//
// if bit == 0xffff {
// nodeIndex = node.left
// } else {
// nodeIndex = node.right
// }
nodeIndex = (bit & node.left) | (^bit & node.right)
if nodeIndex == invalidNodeValue {
// We found a leaf. Use the value of bit to decide
// whether is a left or a right value.
return (bit & node.leftValue) | (^bit & node.rightValue)
}
}
}
// newHuffmanTree builds a Huffman tree from a slice containing the code
// lengths of each symbol. The maximum code length is 32 bits.
func newHuffmanTree(lengths []uint8) (huffmanTree, error) {
// There are many possible trees that assign the same code length to
// each symbol (consider reflecting a tree down the middle, for
// example). Since the code length assignments determine the
// efficiency of the tree, each of these trees is equally good. In
// order to minimize the amount of information needed to build a tree
// bzip2 uses a canonical tree so that it can be reconstructed given
// only the code length assignments.
if len(lengths) < 2 {
panic("newHuffmanTree: too few symbols")
}
var t huffmanTree
// First we sort the code length assignments by ascending code length,
// using the symbol value to break ties.
pairs := huffmanSymbolLengthPairs(make([]huffmanSymbolLengthPair, len(lengths)))
for i, length := range lengths {
pairs[i].value = uint16(i)
pairs[i].length = length
}
sort.Sort(pairs)
// Now we assign codes to the symbols, starting with the longest code.
// We keep the codes packed into a uint32, at the most-significant end.
// So branches are taken from the MSB downwards. This makes it easy to
// sort them later.
code := uint32(0)
length := uint8(32)
codes := huffmanCodes(make([]huffmanCode, len(lengths)))
for i := len(pairs) - 1; i >= 0; i-- {
if length > pairs[i].length {
// If the code length decreases we shift in order to
// zero any bits beyond the end of the code.
length >>= 32 - pairs[i].length
length <<= 32 - pairs[i].length
length = pairs[i].length
}
codes[i].code = code
codes[i].codeLen = length
codes[i].value = pairs[i].value
// We need to 'increment' the code, which means treating |code|
// like a |length| bit number.
code += 1 << (32 - length)
}
// Now we can sort by the code so that the left half of each branch are
// grouped together, recursively.
sort.Sort(codes)
t.nodes = make([]huffmanNode, len(codes))
_, err := buildHuffmanNode(&t, codes, 0)
return t, err
}
// huffmanSymbolLengthPair contains a symbol and its code length.
type huffmanSymbolLengthPair struct {
value uint16
length uint8
}
// huffmanSymbolLengthPair is used to provide an interface for sorting.
type huffmanSymbolLengthPairs []huffmanSymbolLengthPair
func (h huffmanSymbolLengthPairs) Len() int {
return len(h)
}
func (h huffmanSymbolLengthPairs) Less(i, j int) bool {
if h[i].length < h[j].length {
return true
}
if h[i].length > h[j].length {
return false
}
if h[i].value < h[j].value {
return true
}
return false
}
func (h huffmanSymbolLengthPairs) Swap(i, j int) {
h[i], h[j] = h[j], h[i]
}
// huffmanCode contains a symbol, its code and code length.
type huffmanCode struct {
code uint32
codeLen uint8
value uint16
}
// huffmanCodes is used to provide an interface for sorting.
type huffmanCodes []huffmanCode
func (n huffmanCodes) Len() int {
return len(n)
}
func (n huffmanCodes) Less(i, j int) bool {
return n[i].code < n[j].code
}
func (n huffmanCodes) Swap(i, j int) {
n[i], n[j] = n[j], n[i]
}
// buildHuffmanNode takes a slice of sorted huffmanCodes and builds a node in
// the Huffman tree at the given level. It returns the index of the newly
// constructed node.
func buildHuffmanNode(t *huffmanTree, codes []huffmanCode, level uint32) (nodeIndex uint16, err error) {
test := uint32(1) << (31 - level)
// We have to search the list of codes to find the divide between the left and right sides.
firstRightIndex := len(codes)
for i, code := range codes {
if code.code&test != 0 {
firstRightIndex = i
break
}
}
left := codes[:firstRightIndex]
right := codes[firstRightIndex:]
if len(left) == 0 || len(right) == 0 {
// There is a superfluous level in the Huffman tree indicating
// a bug in the encoder. However, this bug has been observed in
// the wild so we handle it.
// If this function was called recursively then we know that
// len(codes) >= 2 because, otherwise, we would have hit the
// "leaf node" case, below, and not recursed.
//
// However, for the initial call it's possible that len(codes)
// is zero or one. Both cases are invalid because a zero length
// tree cannot encode anything and a length-1 tree can only
// encode EOF and so is superfluous. We reject both.
if len(codes) < 2 {
return 0, StructuralError("empty Huffman tree")
}
// In this case the recursion doesn't always reduce the length
// of codes so we need to ensure termination via another
// mechanism.
if level == 31 {
// Since len(codes) >= 2 the only way that the values
// can match at all 32 bits is if they are equal, which
// is invalid. This ensures that we never enter
// infinite recursion.
return 0, StructuralError("equal symbols in Huffman tree")
}
if len(left) == 0 {
return buildHuffmanNode(t, right, level+1)
}
return buildHuffmanNode(t, left, level+1)
}
nodeIndex = uint16(t.nextNode)
node := &t.nodes[t.nextNode]
t.nextNode++
if len(left) == 1 {
// leaf node
node.left = invalidNodeValue
node.leftValue = left[0].value
} else {
node.left, err = buildHuffmanNode(t, left, level+1)
}
if err != nil {
return
}
if len(right) == 1 {
// leaf node
node.right = invalidNodeValue
node.rightValue = right[0].value
} else {
node.right, err = buildHuffmanNode(t, right, level+1)
}
return
}