| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package strings implements simple functions to manipulate UTF-8 encoded strings. | 
 | // | 
 | // For information about UTF-8 strings in Go, see https://blog.golang.org/strings. | 
 | package strings | 
 |  | 
 | import ( | 
 | 	"internal/bytealg" | 
 | 	"unicode" | 
 | 	"unicode/utf8" | 
 | ) | 
 |  | 
 | // explode splits s into a slice of UTF-8 strings, | 
 | // one string per Unicode character up to a maximum of n (n < 0 means no limit). | 
 | // Invalid UTF-8 sequences become correct encodings of U+FFFD. | 
 | func explode(s string, n int) []string { | 
 | 	l := utf8.RuneCountInString(s) | 
 | 	if n < 0 || n > l { | 
 | 		n = l | 
 | 	} | 
 | 	a := make([]string, n) | 
 | 	for i := 0; i < n-1; i++ { | 
 | 		ch, size := utf8.DecodeRuneInString(s) | 
 | 		a[i] = s[:size] | 
 | 		s = s[size:] | 
 | 		if ch == utf8.RuneError { | 
 | 			a[i] = string(utf8.RuneError) | 
 | 		} | 
 | 	} | 
 | 	if n > 0 { | 
 | 		a[n-1] = s | 
 | 	} | 
 | 	return a | 
 | } | 
 |  | 
 | // primeRK is the prime base used in Rabin-Karp algorithm. | 
 | const primeRK = 16777619 | 
 |  | 
 | // hashStr returns the hash and the appropriate multiplicative | 
 | // factor for use in Rabin-Karp algorithm. | 
 | func hashStr(sep string) (uint32, uint32) { | 
 | 	hash := uint32(0) | 
 | 	for i := 0; i < len(sep); i++ { | 
 | 		hash = hash*primeRK + uint32(sep[i]) | 
 | 	} | 
 | 	var pow, sq uint32 = 1, primeRK | 
 | 	for i := len(sep); i > 0; i >>= 1 { | 
 | 		if i&1 != 0 { | 
 | 			pow *= sq | 
 | 		} | 
 | 		sq *= sq | 
 | 	} | 
 | 	return hash, pow | 
 | } | 
 |  | 
 | // hashStrRev returns the hash of the reverse of sep and the | 
 | // appropriate multiplicative factor for use in Rabin-Karp algorithm. | 
 | func hashStrRev(sep string) (uint32, uint32) { | 
 | 	hash := uint32(0) | 
 | 	for i := len(sep) - 1; i >= 0; i-- { | 
 | 		hash = hash*primeRK + uint32(sep[i]) | 
 | 	} | 
 | 	var pow, sq uint32 = 1, primeRK | 
 | 	for i := len(sep); i > 0; i >>= 1 { | 
 | 		if i&1 != 0 { | 
 | 			pow *= sq | 
 | 		} | 
 | 		sq *= sq | 
 | 	} | 
 | 	return hash, pow | 
 | } | 
 |  | 
 | // Count counts the number of non-overlapping instances of substr in s. | 
 | // If substr is an empty string, Count returns 1 + the number of Unicode code points in s. | 
 | func Count(s, substr string) int { | 
 | 	// special case | 
 | 	if len(substr) == 0 { | 
 | 		return utf8.RuneCountInString(s) + 1 | 
 | 	} | 
 | 	if len(substr) == 1 { | 
 | 		return bytealg.CountString(s, substr[0]) | 
 | 	} | 
 | 	n := 0 | 
 | 	for { | 
 | 		i := Index(s, substr) | 
 | 		if i == -1 { | 
 | 			return n | 
 | 		} | 
 | 		n++ | 
 | 		s = s[i+len(substr):] | 
 | 	} | 
 | } | 
 |  | 
 | // Contains reports whether substr is within s. | 
 | func Contains(s, substr string) bool { | 
 | 	return Index(s, substr) >= 0 | 
 | } | 
 |  | 
 | // ContainsAny reports whether any Unicode code points in chars are within s. | 
 | func ContainsAny(s, chars string) bool { | 
 | 	return IndexAny(s, chars) >= 0 | 
 | } | 
 |  | 
 | // ContainsRune reports whether the Unicode code point r is within s. | 
 | func ContainsRune(s string, r rune) bool { | 
 | 	return IndexRune(s, r) >= 0 | 
 | } | 
 |  | 
 | // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s. | 
 | func LastIndex(s, substr string) int { | 
 | 	n := len(substr) | 
 | 	switch { | 
 | 	case n == 0: | 
 | 		return len(s) | 
 | 	case n == 1: | 
 | 		return LastIndexByte(s, substr[0]) | 
 | 	case n == len(s): | 
 | 		if substr == s { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	case n > len(s): | 
 | 		return -1 | 
 | 	} | 
 | 	// Rabin-Karp search from the end of the string | 
 | 	hashss, pow := hashStrRev(substr) | 
 | 	last := len(s) - n | 
 | 	var h uint32 | 
 | 	for i := len(s) - 1; i >= last; i-- { | 
 | 		h = h*primeRK + uint32(s[i]) | 
 | 	} | 
 | 	if h == hashss && s[last:] == substr { | 
 | 		return last | 
 | 	} | 
 | 	for i := last - 1; i >= 0; i-- { | 
 | 		h *= primeRK | 
 | 		h += uint32(s[i]) | 
 | 		h -= pow * uint32(s[i+n]) | 
 | 		if h == hashss && s[i:i+n] == substr { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s. | 
 | func IndexByte(s string, c byte) int { | 
 | 	return bytealg.IndexByteString(s, c) | 
 | } | 
 |  | 
 | // IndexRune returns the index of the first instance of the Unicode code point | 
 | // r, or -1 if rune is not present in s. | 
 | // If r is utf8.RuneError, it returns the first instance of any | 
 | // invalid UTF-8 byte sequence. | 
 | func IndexRune(s string, r rune) int { | 
 | 	switch { | 
 | 	case 0 <= r && r < utf8.RuneSelf: | 
 | 		return IndexByte(s, byte(r)) | 
 | 	case r == utf8.RuneError: | 
 | 		for i, r := range s { | 
 | 			if r == utf8.RuneError { | 
 | 				return i | 
 | 			} | 
 | 		} | 
 | 		return -1 | 
 | 	case !utf8.ValidRune(r): | 
 | 		return -1 | 
 | 	default: | 
 | 		return Index(s, string(r)) | 
 | 	} | 
 | } | 
 |  | 
 | // IndexAny returns the index of the first instance of any Unicode code point | 
 | // from chars in s, or -1 if no Unicode code point from chars is present in s. | 
 | func IndexAny(s, chars string) int { | 
 | 	if chars == "" { | 
 | 		// Avoid scanning all of s. | 
 | 		return -1 | 
 | 	} | 
 | 	if len(s) > 8 { | 
 | 		if as, isASCII := makeASCIISet(chars); isASCII { | 
 | 			for i := 0; i < len(s); i++ { | 
 | 				if as.contains(s[i]) { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 	} | 
 | 	for i, c := range s { | 
 | 		for _, m := range chars { | 
 | 			if c == m { | 
 | 				return i | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // LastIndexAny returns the index of the last instance of any Unicode code | 
 | // point from chars in s, or -1 if no Unicode code point from chars is | 
 | // present in s. | 
 | func LastIndexAny(s, chars string) int { | 
 | 	if chars == "" { | 
 | 		// Avoid scanning all of s. | 
 | 		return -1 | 
 | 	} | 
 | 	if len(s) > 8 { | 
 | 		if as, isASCII := makeASCIISet(chars); isASCII { | 
 | 			for i := len(s) - 1; i >= 0; i-- { | 
 | 				if as.contains(s[i]) { | 
 | 					return i | 
 | 				} | 
 | 			} | 
 | 			return -1 | 
 | 		} | 
 | 	} | 
 | 	for i := len(s); i > 0; { | 
 | 		r, size := utf8.DecodeLastRuneInString(s[:i]) | 
 | 		i -= size | 
 | 		for _, c := range chars { | 
 | 			if r == c { | 
 | 				return i | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. | 
 | func LastIndexByte(s string, c byte) int { | 
 | 	for i := len(s) - 1; i >= 0; i-- { | 
 | 		if s[i] == c { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // Generic split: splits after each instance of sep, | 
 | // including sepSave bytes of sep in the subarrays. | 
 | func genSplit(s, sep string, sepSave, n int) []string { | 
 | 	if n == 0 { | 
 | 		return nil | 
 | 	} | 
 | 	if sep == "" { | 
 | 		return explode(s, n) | 
 | 	} | 
 | 	if n < 0 { | 
 | 		n = Count(s, sep) + 1 | 
 | 	} | 
 |  | 
 | 	a := make([]string, n) | 
 | 	n-- | 
 | 	i := 0 | 
 | 	for i < n { | 
 | 		m := Index(s, sep) | 
 | 		if m < 0 { | 
 | 			break | 
 | 		} | 
 | 		a[i] = s[:m+sepSave] | 
 | 		s = s[m+len(sep):] | 
 | 		i++ | 
 | 	} | 
 | 	a[i] = s | 
 | 	return a[:i+1] | 
 | } | 
 |  | 
 | // SplitN slices s into substrings separated by sep and returns a slice of | 
 | // the substrings between those separators. | 
 | // | 
 | // The count determines the number of substrings to return: | 
 | //   n > 0: at most n substrings; the last substring will be the unsplit remainder. | 
 | //   n == 0: the result is nil (zero substrings) | 
 | //   n < 0: all substrings | 
 | // | 
 | // Edge cases for s and sep (for example, empty strings) are handled | 
 | // as described in the documentation for Split. | 
 | func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } | 
 |  | 
 | // SplitAfterN slices s into substrings after each instance of sep and | 
 | // returns a slice of those substrings. | 
 | // | 
 | // The count determines the number of substrings to return: | 
 | //   n > 0: at most n substrings; the last substring will be the unsplit remainder. | 
 | //   n == 0: the result is nil (zero substrings) | 
 | //   n < 0: all substrings | 
 | // | 
 | // Edge cases for s and sep (for example, empty strings) are handled | 
 | // as described in the documentation for SplitAfter. | 
 | func SplitAfterN(s, sep string, n int) []string { | 
 | 	return genSplit(s, sep, len(sep), n) | 
 | } | 
 |  | 
 | // Split slices s into all substrings separated by sep and returns a slice of | 
 | // the substrings between those separators. | 
 | // | 
 | // If s does not contain sep and sep is not empty, Split returns a | 
 | // slice of length 1 whose only element is s. | 
 | // | 
 | // If sep is empty, Split splits after each UTF-8 sequence. If both s | 
 | // and sep are empty, Split returns an empty slice. | 
 | // | 
 | // It is equivalent to SplitN with a count of -1. | 
 | func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } | 
 |  | 
 | // SplitAfter slices s into all substrings after each instance of sep and | 
 | // returns a slice of those substrings. | 
 | // | 
 | // If s does not contain sep and sep is not empty, SplitAfter returns | 
 | // a slice of length 1 whose only element is s. | 
 | // | 
 | // If sep is empty, SplitAfter splits after each UTF-8 sequence. If | 
 | // both s and sep are empty, SplitAfter returns an empty slice. | 
 | // | 
 | // It is equivalent to SplitAfterN with a count of -1. | 
 | func SplitAfter(s, sep string) []string { | 
 | 	return genSplit(s, sep, len(sep), -1) | 
 | } | 
 |  | 
 | var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} | 
 |  | 
 | // Fields splits the string s around each instance of one or more consecutive white space | 
 | // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an | 
 | // empty slice if s contains only white space. | 
 | func Fields(s string) []string { | 
 | 	// First count the fields. | 
 | 	// This is an exact count if s is ASCII, otherwise it is an approximation. | 
 | 	n := 0 | 
 | 	wasSpace := 1 | 
 | 	// setBits is used to track which bits are set in the bytes of s. | 
 | 	setBits := uint8(0) | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		r := s[i] | 
 | 		setBits |= r | 
 | 		isSpace := int(asciiSpace[r]) | 
 | 		n += wasSpace & ^isSpace | 
 | 		wasSpace = isSpace | 
 | 	} | 
 |  | 
 | 	if setBits >= utf8.RuneSelf { | 
 | 		// Some runes in the input string are not ASCII. | 
 | 		return FieldsFunc(s, unicode.IsSpace) | 
 | 	} | 
 | 	// ASCII fast path | 
 | 	a := make([]string, n) | 
 | 	na := 0 | 
 | 	fieldStart := 0 | 
 | 	i := 0 | 
 | 	// Skip spaces in the front of the input. | 
 | 	for i < len(s) && asciiSpace[s[i]] != 0 { | 
 | 		i++ | 
 | 	} | 
 | 	fieldStart = i | 
 | 	for i < len(s) { | 
 | 		if asciiSpace[s[i]] == 0 { | 
 | 			i++ | 
 | 			continue | 
 | 		} | 
 | 		a[na] = s[fieldStart:i] | 
 | 		na++ | 
 | 		i++ | 
 | 		// Skip spaces in between fields. | 
 | 		for i < len(s) && asciiSpace[s[i]] != 0 { | 
 | 			i++ | 
 | 		} | 
 | 		fieldStart = i | 
 | 	} | 
 | 	if fieldStart < len(s) { // Last field might end at EOF. | 
 | 		a[na] = s[fieldStart:] | 
 | 	} | 
 | 	return a | 
 | } | 
 |  | 
 | // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) | 
 | // and returns an array of slices of s. If all code points in s satisfy f(c) or the | 
 | // string is empty, an empty slice is returned. | 
 | // FieldsFunc makes no guarantees about the order in which it calls f(c). | 
 | // If f does not return consistent results for a given c, FieldsFunc may crash. | 
 | func FieldsFunc(s string, f func(rune) bool) []string { | 
 | 	// A span is used to record a slice of s of the form s[start:end]. | 
 | 	// The start index is inclusive and the end index is exclusive. | 
 | 	type span struct { | 
 | 		start int | 
 | 		end   int | 
 | 	} | 
 | 	spans := make([]span, 0, 32) | 
 |  | 
 | 	// Find the field start and end indices. | 
 | 	wasField := false | 
 | 	fromIndex := 0 | 
 | 	for i, rune := range s { | 
 | 		if f(rune) { | 
 | 			if wasField { | 
 | 				spans = append(spans, span{start: fromIndex, end: i}) | 
 | 				wasField = false | 
 | 			} | 
 | 		} else { | 
 | 			if !wasField { | 
 | 				fromIndex = i | 
 | 				wasField = true | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Last field might end at EOF. | 
 | 	if wasField { | 
 | 		spans = append(spans, span{fromIndex, len(s)}) | 
 | 	} | 
 |  | 
 | 	// Create strings from recorded field indices. | 
 | 	a := make([]string, len(spans)) | 
 | 	for i, span := range spans { | 
 | 		a[i] = s[span.start:span.end] | 
 | 	} | 
 |  | 
 | 	return a | 
 | } | 
 |  | 
 | // Join concatenates the elements of its first argument to create a single string. The separator | 
 | // string sep is placed between elements in the resulting string. | 
 | func Join(elems []string, sep string) string { | 
 | 	switch len(elems) { | 
 | 	case 0: | 
 | 		return "" | 
 | 	case 1: | 
 | 		return elems[0] | 
 | 	} | 
 | 	n := len(sep) * (len(elems) - 1) | 
 | 	for i := 0; i < len(elems); i++ { | 
 | 		n += len(elems[i]) | 
 | 	} | 
 |  | 
 | 	var b Builder | 
 | 	b.Grow(n) | 
 | 	b.WriteString(elems[0]) | 
 | 	for _, s := range elems[1:] { | 
 | 		b.WriteString(sep) | 
 | 		b.WriteString(s) | 
 | 	} | 
 | 	return b.String() | 
 | } | 
 |  | 
 | // HasPrefix tests whether the string s begins with prefix. | 
 | func HasPrefix(s, prefix string) bool { | 
 | 	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix | 
 | } | 
 |  | 
 | // HasSuffix tests whether the string s ends with suffix. | 
 | func HasSuffix(s, suffix string) bool { | 
 | 	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix | 
 | } | 
 |  | 
 | // Map returns a copy of the string s with all its characters modified | 
 | // according to the mapping function. If mapping returns a negative value, the character is | 
 | // dropped from the string with no replacement. | 
 | func Map(mapping func(rune) rune, s string) string { | 
 | 	// In the worst case, the string can grow when mapped, making | 
 | 	// things unpleasant. But it's so rare we barge in assuming it's | 
 | 	// fine. It could also shrink but that falls out naturally. | 
 |  | 
 | 	// The output buffer b is initialized on demand, the first | 
 | 	// time a character differs. | 
 | 	var b Builder | 
 |  | 
 | 	for i, c := range s { | 
 | 		r := mapping(c) | 
 | 		if r == c && c != utf8.RuneError { | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		var width int | 
 | 		if c == utf8.RuneError { | 
 | 			c, width = utf8.DecodeRuneInString(s[i:]) | 
 | 			if width != 1 && r == c { | 
 | 				continue | 
 | 			} | 
 | 		} else { | 
 | 			width = utf8.RuneLen(c) | 
 | 		} | 
 |  | 
 | 		b.Grow(len(s) + utf8.UTFMax) | 
 | 		b.WriteString(s[:i]) | 
 | 		if r >= 0 { | 
 | 			b.WriteRune(r) | 
 | 		} | 
 |  | 
 | 		s = s[i+width:] | 
 | 		break | 
 | 	} | 
 |  | 
 | 	// Fast path for unchanged input | 
 | 	if b.Cap() == 0 { // didn't call b.Grow above | 
 | 		return s | 
 | 	} | 
 |  | 
 | 	for _, c := range s { | 
 | 		r := mapping(c) | 
 |  | 
 | 		if r >= 0 { | 
 | 			// common case | 
 | 			// Due to inlining, it is more performant to determine if WriteByte should be | 
 | 			// invoked rather than always call WriteRune | 
 | 			if r < utf8.RuneSelf { | 
 | 				b.WriteByte(byte(r)) | 
 | 			} else { | 
 | 				// r is not a ASCII rune. | 
 | 				b.WriteRune(r) | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return b.String() | 
 | } | 
 |  | 
 | // Repeat returns a new string consisting of count copies of the string s. | 
 | // | 
 | // It panics if count is negative or if | 
 | // the result of (len(s) * count) overflows. | 
 | func Repeat(s string, count int) string { | 
 | 	if count == 0 { | 
 | 		return "" | 
 | 	} | 
 |  | 
 | 	// Since we cannot return an error on overflow, | 
 | 	// we should panic if the repeat will generate | 
 | 	// an overflow. | 
 | 	// See Issue golang.org/issue/16237 | 
 | 	if count < 0 { | 
 | 		panic("strings: negative Repeat count") | 
 | 	} else if len(s)*count/count != len(s) { | 
 | 		panic("strings: Repeat count causes overflow") | 
 | 	} | 
 |  | 
 | 	n := len(s) * count | 
 | 	var b Builder | 
 | 	b.Grow(n) | 
 | 	b.WriteString(s) | 
 | 	for b.Len() < n { | 
 | 		if b.Len() <= n/2 { | 
 | 			b.WriteString(b.String()) | 
 | 		} else { | 
 | 			b.WriteString(b.String()[:n-b.Len()]) | 
 | 			break | 
 | 		} | 
 | 	} | 
 | 	return b.String() | 
 | } | 
 |  | 
 | // ToUpper returns s with all Unicode letters mapped to their upper case. | 
 | func ToUpper(s string) string { | 
 | 	isASCII, hasLower := true, false | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		c := s[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			isASCII = false | 
 | 			break | 
 | 		} | 
 | 		hasLower = hasLower || ('a' <= c && c <= 'z') | 
 | 	} | 
 |  | 
 | 	if isASCII { // optimize for ASCII-only strings. | 
 | 		if !hasLower { | 
 | 			return s | 
 | 		} | 
 | 		var b Builder | 
 | 		b.Grow(len(s)) | 
 | 		for i := 0; i < len(s); i++ { | 
 | 			c := s[i] | 
 | 			if 'a' <= c && c <= 'z' { | 
 | 				c -= 'a' - 'A' | 
 | 			} | 
 | 			b.WriteByte(c) | 
 | 		} | 
 | 		return b.String() | 
 | 	} | 
 | 	return Map(unicode.ToUpper, s) | 
 | } | 
 |  | 
 | // ToLower returns s with all Unicode letters mapped to their lower case. | 
 | func ToLower(s string) string { | 
 | 	isASCII, hasUpper := true, false | 
 | 	for i := 0; i < len(s); i++ { | 
 | 		c := s[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			isASCII = false | 
 | 			break | 
 | 		} | 
 | 		hasUpper = hasUpper || ('A' <= c && c <= 'Z') | 
 | 	} | 
 |  | 
 | 	if isASCII { // optimize for ASCII-only strings. | 
 | 		if !hasUpper { | 
 | 			return s | 
 | 		} | 
 | 		var b Builder | 
 | 		b.Grow(len(s)) | 
 | 		for i := 0; i < len(s); i++ { | 
 | 			c := s[i] | 
 | 			if 'A' <= c && c <= 'Z' { | 
 | 				c += 'a' - 'A' | 
 | 			} | 
 | 			b.WriteByte(c) | 
 | 		} | 
 | 		return b.String() | 
 | 	} | 
 | 	return Map(unicode.ToLower, s) | 
 | } | 
 |  | 
 | // ToTitle returns a copy of the string s with all Unicode letters mapped to | 
 | // their Unicode title case. | 
 | func ToTitle(s string) string { return Map(unicode.ToTitle, s) } | 
 |  | 
 | // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their | 
 | // upper case using the case mapping specified by c. | 
 | func ToUpperSpecial(c unicode.SpecialCase, s string) string { | 
 | 	return Map(c.ToUpper, s) | 
 | } | 
 |  | 
 | // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their | 
 | // lower case using the case mapping specified by c. | 
 | func ToLowerSpecial(c unicode.SpecialCase, s string) string { | 
 | 	return Map(c.ToLower, s) | 
 | } | 
 |  | 
 | // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their | 
 | // Unicode title case, giving priority to the special casing rules. | 
 | func ToTitleSpecial(c unicode.SpecialCase, s string) string { | 
 | 	return Map(c.ToTitle, s) | 
 | } | 
 |  | 
 | // ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences | 
 | // replaced by the replacement string, which may be empty. | 
 | func ToValidUTF8(s, replacement string) string { | 
 | 	var b Builder | 
 |  | 
 | 	for i, c := range s { | 
 | 		if c != utf8.RuneError { | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		_, wid := utf8.DecodeRuneInString(s[i:]) | 
 | 		if wid == 1 { | 
 | 			b.Grow(len(s) + len(replacement)) | 
 | 			b.WriteString(s[:i]) | 
 | 			s = s[i:] | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Fast path for unchanged input | 
 | 	if b.Cap() == 0 { // didn't call b.Grow above | 
 | 		return s | 
 | 	} | 
 |  | 
 | 	invalid := false // previous byte was from an invalid UTF-8 sequence | 
 | 	for i := 0; i < len(s); { | 
 | 		c := s[i] | 
 | 		if c < utf8.RuneSelf { | 
 | 			i++ | 
 | 			invalid = false | 
 | 			b.WriteByte(c) | 
 | 			continue | 
 | 		} | 
 | 		_, wid := utf8.DecodeRuneInString(s[i:]) | 
 | 		if wid == 1 { | 
 | 			i++ | 
 | 			if !invalid { | 
 | 				invalid = true | 
 | 				b.WriteString(replacement) | 
 | 			} | 
 | 			continue | 
 | 		} | 
 | 		invalid = false | 
 | 		b.WriteString(s[i : i+wid]) | 
 | 		i += wid | 
 | 	} | 
 |  | 
 | 	return b.String() | 
 | } | 
 |  | 
 | // isSeparator reports whether the rune could mark a word boundary. | 
 | // TODO: update when package unicode captures more of the properties. | 
 | func isSeparator(r rune) bool { | 
 | 	// ASCII alphanumerics and underscore are not separators | 
 | 	if r <= 0x7F { | 
 | 		switch { | 
 | 		case '0' <= r && r <= '9': | 
 | 			return false | 
 | 		case 'a' <= r && r <= 'z': | 
 | 			return false | 
 | 		case 'A' <= r && r <= 'Z': | 
 | 			return false | 
 | 		case r == '_': | 
 | 			return false | 
 | 		} | 
 | 		return true | 
 | 	} | 
 | 	// Letters and digits are not separators | 
 | 	if unicode.IsLetter(r) || unicode.IsDigit(r) { | 
 | 		return false | 
 | 	} | 
 | 	// Otherwise, all we can do for now is treat spaces as separators. | 
 | 	return unicode.IsSpace(r) | 
 | } | 
 |  | 
 | // Title returns a copy of the string s with all Unicode letters that begin words | 
 | // mapped to their Unicode title case. | 
 | // | 
 | // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly. | 
 | func Title(s string) string { | 
 | 	// Use a closure here to remember state. | 
 | 	// Hackish but effective. Depends on Map scanning in order and calling | 
 | 	// the closure once per rune. | 
 | 	prev := ' ' | 
 | 	return Map( | 
 | 		func(r rune) rune { | 
 | 			if isSeparator(prev) { | 
 | 				prev = r | 
 | 				return unicode.ToTitle(r) | 
 | 			} | 
 | 			prev = r | 
 | 			return r | 
 | 		}, | 
 | 		s) | 
 | } | 
 |  | 
 | // TrimLeftFunc returns a slice of the string s with all leading | 
 | // Unicode code points c satisfying f(c) removed. | 
 | func TrimLeftFunc(s string, f func(rune) bool) string { | 
 | 	i := indexFunc(s, f, false) | 
 | 	if i == -1 { | 
 | 		return "" | 
 | 	} | 
 | 	return s[i:] | 
 | } | 
 |  | 
 | // TrimRightFunc returns a slice of the string s with all trailing | 
 | // Unicode code points c satisfying f(c) removed. | 
 | func TrimRightFunc(s string, f func(rune) bool) string { | 
 | 	i := lastIndexFunc(s, f, false) | 
 | 	if i >= 0 && s[i] >= utf8.RuneSelf { | 
 | 		_, wid := utf8.DecodeRuneInString(s[i:]) | 
 | 		i += wid | 
 | 	} else { | 
 | 		i++ | 
 | 	} | 
 | 	return s[0:i] | 
 | } | 
 |  | 
 | // TrimFunc returns a slice of the string s with all leading | 
 | // and trailing Unicode code points c satisfying f(c) removed. | 
 | func TrimFunc(s string, f func(rune) bool) string { | 
 | 	return TrimRightFunc(TrimLeftFunc(s, f), f) | 
 | } | 
 |  | 
 | // IndexFunc returns the index into s of the first Unicode | 
 | // code point satisfying f(c), or -1 if none do. | 
 | func IndexFunc(s string, f func(rune) bool) int { | 
 | 	return indexFunc(s, f, true) | 
 | } | 
 |  | 
 | // LastIndexFunc returns the index into s of the last | 
 | // Unicode code point satisfying f(c), or -1 if none do. | 
 | func LastIndexFunc(s string, f func(rune) bool) int { | 
 | 	return lastIndexFunc(s, f, true) | 
 | } | 
 |  | 
 | // indexFunc is the same as IndexFunc except that if | 
 | // truth==false, the sense of the predicate function is | 
 | // inverted. | 
 | func indexFunc(s string, f func(rune) bool, truth bool) int { | 
 | 	for i, r := range s { | 
 | 		if f(r) == truth { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // lastIndexFunc is the same as LastIndexFunc except that if | 
 | // truth==false, the sense of the predicate function is | 
 | // inverted. | 
 | func lastIndexFunc(s string, f func(rune) bool, truth bool) int { | 
 | 	for i := len(s); i > 0; { | 
 | 		r, size := utf8.DecodeLastRuneInString(s[0:i]) | 
 | 		i -= size | 
 | 		if f(r) == truth { | 
 | 			return i | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | // asciiSet is a 32-byte value, where each bit represents the presence of a | 
 | // given ASCII character in the set. The 128-bits of the lower 16 bytes, | 
 | // starting with the least-significant bit of the lowest word to the | 
 | // most-significant bit of the highest word, map to the full range of all | 
 | // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, | 
 | // ensuring that any non-ASCII character will be reported as not in the set. | 
 | type asciiSet [8]uint32 | 
 |  | 
 | // makeASCIISet creates a set of ASCII characters and reports whether all | 
 | // characters in chars are ASCII. | 
 | func makeASCIISet(chars string) (as asciiSet, ok bool) { | 
 | 	for i := 0; i < len(chars); i++ { | 
 | 		c := chars[i] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			return as, false | 
 | 		} | 
 | 		as[c>>5] |= 1 << uint(c&31) | 
 | 	} | 
 | 	return as, true | 
 | } | 
 |  | 
 | // contains reports whether c is inside the set. | 
 | func (as *asciiSet) contains(c byte) bool { | 
 | 	return (as[c>>5] & (1 << uint(c&31))) != 0 | 
 | } | 
 |  | 
 | func makeCutsetFunc(cutset string) func(rune) bool { | 
 | 	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { | 
 | 		return func(r rune) bool { | 
 | 			return r == rune(cutset[0]) | 
 | 		} | 
 | 	} | 
 | 	if as, isASCII := makeASCIISet(cutset); isASCII { | 
 | 		return func(r rune) bool { | 
 | 			return r < utf8.RuneSelf && as.contains(byte(r)) | 
 | 		} | 
 | 	} | 
 | 	return func(r rune) bool { return IndexRune(cutset, r) >= 0 } | 
 | } | 
 |  | 
 | // Trim returns a slice of the string s with all leading and | 
 | // trailing Unicode code points contained in cutset removed. | 
 | func Trim(s string, cutset string) string { | 
 | 	if s == "" || cutset == "" { | 
 | 		return s | 
 | 	} | 
 | 	return TrimFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimLeft returns a slice of the string s with all leading | 
 | // Unicode code points contained in cutset removed. | 
 | // | 
 | // To remove a prefix, use TrimPrefix instead. | 
 | func TrimLeft(s string, cutset string) string { | 
 | 	if s == "" || cutset == "" { | 
 | 		return s | 
 | 	} | 
 | 	return TrimLeftFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimRight returns a slice of the string s, with all trailing | 
 | // Unicode code points contained in cutset removed. | 
 | // | 
 | // To remove a suffix, use TrimSuffix instead. | 
 | func TrimRight(s string, cutset string) string { | 
 | 	if s == "" || cutset == "" { | 
 | 		return s | 
 | 	} | 
 | 	return TrimRightFunc(s, makeCutsetFunc(cutset)) | 
 | } | 
 |  | 
 | // TrimSpace returns a slice of the string s, with all leading | 
 | // and trailing white space removed, as defined by Unicode. | 
 | func TrimSpace(s string) string { | 
 | 	// Fast path for ASCII: look for the first ASCII non-space byte | 
 | 	start := 0 | 
 | 	for ; start < len(s); start++ { | 
 | 		c := s[start] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			// If we run into a non-ASCII byte, fall back to the | 
 | 			// slower unicode-aware method on the remaining bytes | 
 | 			return TrimFunc(s[start:], unicode.IsSpace) | 
 | 		} | 
 | 		if asciiSpace[c] == 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Now look for the first ASCII non-space byte from the end | 
 | 	stop := len(s) | 
 | 	for ; stop > start; stop-- { | 
 | 		c := s[stop-1] | 
 | 		if c >= utf8.RuneSelf { | 
 | 			return TrimFunc(s[start:stop], unicode.IsSpace) | 
 | 		} | 
 | 		if asciiSpace[c] == 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// At this point s[start:stop] starts and ends with an ASCII | 
 | 	// non-space bytes, so we're done. Non-ASCII cases have already | 
 | 	// been handled above. | 
 | 	return s[start:stop] | 
 | } | 
 |  | 
 | // TrimPrefix returns s without the provided leading prefix string. | 
 | // If s doesn't start with prefix, s is returned unchanged. | 
 | func TrimPrefix(s, prefix string) string { | 
 | 	if HasPrefix(s, prefix) { | 
 | 		return s[len(prefix):] | 
 | 	} | 
 | 	return s | 
 | } | 
 |  | 
 | // TrimSuffix returns s without the provided trailing suffix string. | 
 | // If s doesn't end with suffix, s is returned unchanged. | 
 | func TrimSuffix(s, suffix string) string { | 
 | 	if HasSuffix(s, suffix) { | 
 | 		return s[:len(s)-len(suffix)] | 
 | 	} | 
 | 	return s | 
 | } | 
 |  | 
 | // Replace returns a copy of the string s with the first n | 
 | // non-overlapping instances of old replaced by new. | 
 | // If old is empty, it matches at the beginning of the string | 
 | // and after each UTF-8 sequence, yielding up to k+1 replacements | 
 | // for a k-rune string. | 
 | // If n < 0, there is no limit on the number of replacements. | 
 | func Replace(s, old, new string, n int) string { | 
 | 	if old == new || n == 0 { | 
 | 		return s // avoid allocation | 
 | 	} | 
 |  | 
 | 	// Compute number of replacements. | 
 | 	if m := Count(s, old); m == 0 { | 
 | 		return s // avoid allocation | 
 | 	} else if n < 0 || m < n { | 
 | 		n = m | 
 | 	} | 
 |  | 
 | 	// Apply replacements to buffer. | 
 | 	t := make([]byte, len(s)+n*(len(new)-len(old))) | 
 | 	w := 0 | 
 | 	start := 0 | 
 | 	for i := 0; i < n; i++ { | 
 | 		j := start | 
 | 		if len(old) == 0 { | 
 | 			if i > 0 { | 
 | 				_, wid := utf8.DecodeRuneInString(s[start:]) | 
 | 				j += wid | 
 | 			} | 
 | 		} else { | 
 | 			j += Index(s[start:], old) | 
 | 		} | 
 | 		w += copy(t[w:], s[start:j]) | 
 | 		w += copy(t[w:], new) | 
 | 		start = j + len(old) | 
 | 	} | 
 | 	w += copy(t[w:], s[start:]) | 
 | 	return string(t[0:w]) | 
 | } | 
 |  | 
 | // ReplaceAll returns a copy of the string s with all | 
 | // non-overlapping instances of old replaced by new. | 
 | // If old is empty, it matches at the beginning of the string | 
 | // and after each UTF-8 sequence, yielding up to k+1 replacements | 
 | // for a k-rune string. | 
 | func ReplaceAll(s, old, new string) string { | 
 | 	return Replace(s, old, new, -1) | 
 | } | 
 |  | 
 | // EqualFold reports whether s and t, interpreted as UTF-8 strings, | 
 | // are equal under Unicode case-folding, which is a more general | 
 | // form of case-insensitivity. | 
 | func EqualFold(s, t string) bool { | 
 | 	for s != "" && t != "" { | 
 | 		// Extract first rune from each string. | 
 | 		var sr, tr rune | 
 | 		if s[0] < utf8.RuneSelf { | 
 | 			sr, s = rune(s[0]), s[1:] | 
 | 		} else { | 
 | 			r, size := utf8.DecodeRuneInString(s) | 
 | 			sr, s = r, s[size:] | 
 | 		} | 
 | 		if t[0] < utf8.RuneSelf { | 
 | 			tr, t = rune(t[0]), t[1:] | 
 | 		} else { | 
 | 			r, size := utf8.DecodeRuneInString(t) | 
 | 			tr, t = r, t[size:] | 
 | 		} | 
 |  | 
 | 		// If they match, keep going; if not, return false. | 
 |  | 
 | 		// Easy case. | 
 | 		if tr == sr { | 
 | 			continue | 
 | 		} | 
 |  | 
 | 		// Make sr < tr to simplify what follows. | 
 | 		if tr < sr { | 
 | 			tr, sr = sr, tr | 
 | 		} | 
 | 		// Fast check for ASCII. | 
 | 		if tr < utf8.RuneSelf { | 
 | 			// ASCII only, sr/tr must be upper/lower case | 
 | 			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { | 
 | 				continue | 
 | 			} | 
 | 			return false | 
 | 		} | 
 |  | 
 | 		// General case. SimpleFold(x) returns the next equivalent rune > x | 
 | 		// or wraps around to smaller values. | 
 | 		r := unicode.SimpleFold(sr) | 
 | 		for r != sr && r < tr { | 
 | 			r = unicode.SimpleFold(r) | 
 | 		} | 
 | 		if r == tr { | 
 | 			continue | 
 | 		} | 
 | 		return false | 
 | 	} | 
 |  | 
 | 	// One string is empty. Are both? | 
 | 	return s == t | 
 | } | 
 |  | 
 | // Index returns the index of the first instance of substr in s, or -1 if substr is not present in s. | 
 | func Index(s, substr string) int { | 
 | 	n := len(substr) | 
 | 	switch { | 
 | 	case n == 0: | 
 | 		return 0 | 
 | 	case n == 1: | 
 | 		return IndexByte(s, substr[0]) | 
 | 	case n == len(s): | 
 | 		if substr == s { | 
 | 			return 0 | 
 | 		} | 
 | 		return -1 | 
 | 	case n > len(s): | 
 | 		return -1 | 
 | 	case n <= bytealg.MaxLen: | 
 | 		// Use brute force when s and substr both are small | 
 | 		if len(s) <= bytealg.MaxBruteForce { | 
 | 			return bytealg.IndexString(s, substr) | 
 | 		} | 
 | 		c0 := substr[0] | 
 | 		c1 := substr[1] | 
 | 		i := 0 | 
 | 		t := len(s) - n + 1 | 
 | 		fails := 0 | 
 | 		for i < t { | 
 | 			if s[i] != c0 { | 
 | 				// IndexByte is faster than bytealg.IndexString, so use it as long as | 
 | 				// we're not getting lots of false positives. | 
 | 				o := IndexByte(s[i:t], c0) | 
 | 				if o < 0 { | 
 | 					return -1 | 
 | 				} | 
 | 				i += o | 
 | 			} | 
 | 			if s[i+1] == c1 && s[i:i+n] == substr { | 
 | 				return i | 
 | 			} | 
 | 			fails++ | 
 | 			i++ | 
 | 			// Switch to bytealg.IndexString when IndexByte produces too many false positives. | 
 | 			if fails > bytealg.Cutover(i) { | 
 | 				r := bytealg.IndexString(s[i:], substr) | 
 | 				if r >= 0 { | 
 | 					return r + i | 
 | 				} | 
 | 				return -1 | 
 | 			} | 
 | 		} | 
 | 		return -1 | 
 | 	} | 
 | 	c0 := substr[0] | 
 | 	c1 := substr[1] | 
 | 	i := 0 | 
 | 	t := len(s) - n + 1 | 
 | 	fails := 0 | 
 | 	for i < t { | 
 | 		if s[i] != c0 { | 
 | 			o := IndexByte(s[i:t], c0) | 
 | 			if o < 0 { | 
 | 				return -1 | 
 | 			} | 
 | 			i += o | 
 | 		} | 
 | 		if s[i+1] == c1 && s[i:i+n] == substr { | 
 | 			return i | 
 | 		} | 
 | 		i++ | 
 | 		fails++ | 
 | 		if fails >= 4+i>>4 && i < t { | 
 | 			// See comment in ../bytes/bytes.go. | 
 | 			j := indexRabinKarp(s[i:], substr) | 
 | 			if j < 0 { | 
 | 				return -1 | 
 | 			} | 
 | 			return i + j | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } | 
 |  | 
 | func indexRabinKarp(s, substr string) int { | 
 | 	// Rabin-Karp search | 
 | 	hashss, pow := hashStr(substr) | 
 | 	n := len(substr) | 
 | 	var h uint32 | 
 | 	for i := 0; i < n; i++ { | 
 | 		h = h*primeRK + uint32(s[i]) | 
 | 	} | 
 | 	if h == hashss && s[:n] == substr { | 
 | 		return 0 | 
 | 	} | 
 | 	for i := n; i < len(s); { | 
 | 		h *= primeRK | 
 | 		h += uint32(s[i]) | 
 | 		h -= pow * uint32(s[i-n]) | 
 | 		i++ | 
 | 		if h == hashss && s[i-n:i] == substr { | 
 | 			return i - n | 
 | 		} | 
 | 	} | 
 | 	return -1 | 
 | } |