|  | // Copyright 2014 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | import ( | 
|  | "internal/abi" | 
|  | "internal/goarch" | 
|  | "runtime/internal/atomic" | 
|  | "unsafe" | 
|  | ) | 
|  |  | 
|  | const itabInitSize = 512 | 
|  |  | 
|  | var ( | 
|  | itabLock      mutex                               // lock for accessing itab table | 
|  | itabTable     = &itabTableInit                    // pointer to current table | 
|  | itabTableInit = itabTableType{size: itabInitSize} // starter table | 
|  | ) | 
|  |  | 
|  | // Note: change the formula in the mallocgc call in itabAdd if you change these fields. | 
|  | type itabTableType struct { | 
|  | size    uintptr             // length of entries array. Always a power of 2. | 
|  | count   uintptr             // current number of filled entries. | 
|  | entries [itabInitSize]*itab // really [size] large | 
|  | } | 
|  |  | 
|  | func itabHashFunc(inter *interfacetype, typ *_type) uintptr { | 
|  | // compiler has provided some good hash codes for us. | 
|  | return uintptr(inter.Type.Hash ^ typ.Hash) | 
|  | } | 
|  |  | 
|  | func getitab(inter *interfacetype, typ *_type, canfail bool) *itab { | 
|  | if len(inter.Methods) == 0 { | 
|  | throw("internal error - misuse of itab") | 
|  | } | 
|  |  | 
|  | // easy case | 
|  | if typ.TFlag&abi.TFlagUncommon == 0 { | 
|  | if canfail { | 
|  | return nil | 
|  | } | 
|  | name := toRType(&inter.Type).nameOff(inter.Methods[0].Name) | 
|  | panic(&TypeAssertionError{nil, typ, &inter.Type, name.Name()}) | 
|  | } | 
|  |  | 
|  | var m *itab | 
|  |  | 
|  | // First, look in the existing table to see if we can find the itab we need. | 
|  | // This is by far the most common case, so do it without locks. | 
|  | // Use atomic to ensure we see any previous writes done by the thread | 
|  | // that updates the itabTable field (with atomic.Storep in itabAdd). | 
|  | t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) | 
|  | if m = t.find(inter, typ); m != nil { | 
|  | goto finish | 
|  | } | 
|  |  | 
|  | // Not found.  Grab the lock and try again. | 
|  | lock(&itabLock) | 
|  | if m = itabTable.find(inter, typ); m != nil { | 
|  | unlock(&itabLock) | 
|  | goto finish | 
|  | } | 
|  |  | 
|  | // Entry doesn't exist yet. Make a new entry & add it. | 
|  | m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.Methods)-1)*goarch.PtrSize, 0, &memstats.other_sys)) | 
|  | m.inter = inter | 
|  | m._type = typ | 
|  | // The hash is used in type switches. However, compiler statically generates itab's | 
|  | // for all interface/type pairs used in switches (which are added to itabTable | 
|  | // in itabsinit). The dynamically-generated itab's never participate in type switches, | 
|  | // and thus the hash is irrelevant. | 
|  | // Note: m.hash is _not_ the hash used for the runtime itabTable hash table. | 
|  | m.hash = 0 | 
|  | m.init() | 
|  | itabAdd(m) | 
|  | unlock(&itabLock) | 
|  | finish: | 
|  | if m.fun[0] != 0 { | 
|  | return m | 
|  | } | 
|  | if canfail { | 
|  | return nil | 
|  | } | 
|  | // this can only happen if the conversion | 
|  | // was already done once using the , ok form | 
|  | // and we have a cached negative result. | 
|  | // The cached result doesn't record which | 
|  | // interface function was missing, so initialize | 
|  | // the itab again to get the missing function name. | 
|  | panic(&TypeAssertionError{concrete: typ, asserted: &inter.Type, missingMethod: m.init()}) | 
|  | } | 
|  |  | 
|  | // find finds the given interface/type pair in t. | 
|  | // Returns nil if the given interface/type pair isn't present. | 
|  | func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab { | 
|  | // Implemented using quadratic probing. | 
|  | // Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. | 
|  | // We're guaranteed to hit all table entries using this probe sequence. | 
|  | mask := t.size - 1 | 
|  | h := itabHashFunc(inter, typ) & mask | 
|  | for i := uintptr(1); ; i++ { | 
|  | p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) | 
|  | // Use atomic read here so if we see m != nil, we also see | 
|  | // the initializations of the fields of m. | 
|  | // m := *p | 
|  | m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) | 
|  | if m == nil { | 
|  | return nil | 
|  | } | 
|  | if m.inter == inter && m._type == typ { | 
|  | return m | 
|  | } | 
|  | h += i | 
|  | h &= mask | 
|  | } | 
|  | } | 
|  |  | 
|  | // itabAdd adds the given itab to the itab hash table. | 
|  | // itabLock must be held. | 
|  | func itabAdd(m *itab) { | 
|  | // Bugs can lead to calling this while mallocing is set, | 
|  | // typically because this is called while panicking. | 
|  | // Crash reliably, rather than only when we need to grow | 
|  | // the hash table. | 
|  | if getg().m.mallocing != 0 { | 
|  | throw("malloc deadlock") | 
|  | } | 
|  |  | 
|  | t := itabTable | 
|  | if t.count >= 3*(t.size/4) { // 75% load factor | 
|  | // Grow hash table. | 
|  | // t2 = new(itabTableType) + some additional entries | 
|  | // We lie and tell malloc we want pointer-free memory because | 
|  | // all the pointed-to values are not in the heap. | 
|  | t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true)) | 
|  | t2.size = t.size * 2 | 
|  |  | 
|  | // Copy over entries. | 
|  | // Note: while copying, other threads may look for an itab and | 
|  | // fail to find it. That's ok, they will then try to get the itab lock | 
|  | // and as a consequence wait until this copying is complete. | 
|  | iterate_itabs(t2.add) | 
|  | if t2.count != t.count { | 
|  | throw("mismatched count during itab table copy") | 
|  | } | 
|  | // Publish new hash table. Use an atomic write: see comment in getitab. | 
|  | atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) | 
|  | // Adopt the new table as our own. | 
|  | t = itabTable | 
|  | // Note: the old table can be GC'ed here. | 
|  | } | 
|  | t.add(m) | 
|  | } | 
|  |  | 
|  | // add adds the given itab to itab table t. | 
|  | // itabLock must be held. | 
|  | func (t *itabTableType) add(m *itab) { | 
|  | // See comment in find about the probe sequence. | 
|  | // Insert new itab in the first empty spot in the probe sequence. | 
|  | mask := t.size - 1 | 
|  | h := itabHashFunc(m.inter, m._type) & mask | 
|  | for i := uintptr(1); ; i++ { | 
|  | p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) | 
|  | m2 := *p | 
|  | if m2 == m { | 
|  | // A given itab may be used in more than one module | 
|  | // and thanks to the way global symbol resolution works, the | 
|  | // pointed-to itab may already have been inserted into the | 
|  | // global 'hash'. | 
|  | return | 
|  | } | 
|  | if m2 == nil { | 
|  | // Use atomic write here so if a reader sees m, it also | 
|  | // sees the correctly initialized fields of m. | 
|  | // NoWB is ok because m is not in heap memory. | 
|  | // *p = m | 
|  | atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m)) | 
|  | t.count++ | 
|  | return | 
|  | } | 
|  | h += i | 
|  | h &= mask | 
|  | } | 
|  | } | 
|  |  | 
|  | // init fills in the m.fun array with all the code pointers for | 
|  | // the m.inter/m._type pair. If the type does not implement the interface, | 
|  | // it sets m.fun[0] to 0 and returns the name of an interface function that is missing. | 
|  | // It is ok to call this multiple times on the same m, even concurrently. | 
|  | func (m *itab) init() string { | 
|  | inter := m.inter | 
|  | typ := m._type | 
|  | x := typ.Uncommon() | 
|  |  | 
|  | // both inter and typ have method sorted by name, | 
|  | // and interface names are unique, | 
|  | // so can iterate over both in lock step; | 
|  | // the loop is O(ni+nt) not O(ni*nt). | 
|  | ni := len(inter.Methods) | 
|  | nt := int(x.Mcount) | 
|  | xmhdr := (*[1 << 16]abi.Method)(add(unsafe.Pointer(x), uintptr(x.Moff)))[:nt:nt] | 
|  | j := 0 | 
|  | methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.fun[0]))[:ni:ni] | 
|  | var fun0 unsafe.Pointer | 
|  | imethods: | 
|  | for k := 0; k < ni; k++ { | 
|  | i := &inter.Methods[k] | 
|  | itype := toRType(&inter.Type).typeOff(i.Typ) | 
|  | name := toRType(&inter.Type).nameOff(i.Name) | 
|  | iname := name.Name() | 
|  | ipkg := pkgPath(name) | 
|  | if ipkg == "" { | 
|  | ipkg = inter.PkgPath.Name() | 
|  | } | 
|  | for ; j < nt; j++ { | 
|  | t := &xmhdr[j] | 
|  | rtyp := toRType(typ) | 
|  | tname := rtyp.nameOff(t.Name) | 
|  | if rtyp.typeOff(t.Mtyp) == itype && tname.Name() == iname { | 
|  | pkgPath := pkgPath(tname) | 
|  | if pkgPath == "" { | 
|  | pkgPath = rtyp.nameOff(x.PkgPath).Name() | 
|  | } | 
|  | if tname.IsExported() || pkgPath == ipkg { | 
|  | if m != nil { | 
|  | ifn := rtyp.textOff(t.Ifn) | 
|  | if k == 0 { | 
|  | fun0 = ifn // we'll set m.fun[0] at the end | 
|  | } else { | 
|  | methods[k] = ifn | 
|  | } | 
|  | } | 
|  | continue imethods | 
|  | } | 
|  | } | 
|  | } | 
|  | // didn't find method | 
|  | m.fun[0] = 0 | 
|  | return iname | 
|  | } | 
|  | m.fun[0] = uintptr(fun0) | 
|  | return "" | 
|  | } | 
|  |  | 
|  | func itabsinit() { | 
|  | lockInit(&itabLock, lockRankItab) | 
|  | lock(&itabLock) | 
|  | for _, md := range activeModules() { | 
|  | for _, i := range md.itablinks { | 
|  | itabAdd(i) | 
|  | } | 
|  | } | 
|  | unlock(&itabLock) | 
|  | } | 
|  |  | 
|  | // panicdottypeE is called when doing an e.(T) conversion and the conversion fails. | 
|  | // have = the dynamic type we have. | 
|  | // want = the static type we're trying to convert to. | 
|  | // iface = the static type we're converting from. | 
|  | func panicdottypeE(have, want, iface *_type) { | 
|  | panic(&TypeAssertionError{iface, have, want, ""}) | 
|  | } | 
|  |  | 
|  | // panicdottypeI is called when doing an i.(T) conversion and the conversion fails. | 
|  | // Same args as panicdottypeE, but "have" is the dynamic itab we have. | 
|  | func panicdottypeI(have *itab, want, iface *_type) { | 
|  | var t *_type | 
|  | if have != nil { | 
|  | t = have._type | 
|  | } | 
|  | panicdottypeE(t, want, iface) | 
|  | } | 
|  |  | 
|  | // panicnildottype is called when doing an i.(T) conversion and the interface i is nil. | 
|  | // want = the static type we're trying to convert to. | 
|  | func panicnildottype(want *_type) { | 
|  | panic(&TypeAssertionError{nil, nil, want, ""}) | 
|  | // TODO: Add the static type we're converting from as well. | 
|  | // It might generate a better error message. | 
|  | // Just to match other nil conversion errors, we don't for now. | 
|  | } | 
|  |  | 
|  | // The specialized convTx routines need a type descriptor to use when calling mallocgc. | 
|  | // We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness. | 
|  | // However, when debugging, it'd be nice to have some indication in mallocgc where the types came from, | 
|  | // so we use named types here. | 
|  | // We then construct interface values of these types, | 
|  | // and then extract the type word to use as needed. | 
|  | type ( | 
|  | uint16InterfacePtr uint16 | 
|  | uint32InterfacePtr uint32 | 
|  | uint64InterfacePtr uint64 | 
|  | stringInterfacePtr string | 
|  | sliceInterfacePtr  []byte | 
|  | ) | 
|  |  | 
|  | var ( | 
|  | uint16Eface any = uint16InterfacePtr(0) | 
|  | uint32Eface any = uint32InterfacePtr(0) | 
|  | uint64Eface any = uint64InterfacePtr(0) | 
|  | stringEface any = stringInterfacePtr("") | 
|  | sliceEface  any = sliceInterfacePtr(nil) | 
|  |  | 
|  | uint16Type *_type = efaceOf(&uint16Eface)._type | 
|  | uint32Type *_type = efaceOf(&uint32Eface)._type | 
|  | uint64Type *_type = efaceOf(&uint64Eface)._type | 
|  | stringType *_type = efaceOf(&stringEface)._type | 
|  | sliceType  *_type = efaceOf(&sliceEface)._type | 
|  | ) | 
|  |  | 
|  | // The conv and assert functions below do very similar things. | 
|  | // The convXXX functions are guaranteed by the compiler to succeed. | 
|  | // The assertXXX functions may fail (either panicking or returning false, | 
|  | // depending on whether they are 1-result or 2-result). | 
|  | // The convXXX functions succeed on a nil input, whereas the assertXXX | 
|  | // functions fail on a nil input. | 
|  |  | 
|  | // convT converts a value of type t, which is pointed to by v, to a pointer that can | 
|  | // be used as the second word of an interface value. | 
|  | func convT(t *_type, v unsafe.Pointer) unsafe.Pointer { | 
|  | if raceenabled { | 
|  | raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convT)) | 
|  | } | 
|  | if msanenabled { | 
|  | msanread(v, t.Size_) | 
|  | } | 
|  | if asanenabled { | 
|  | asanread(v, t.Size_) | 
|  | } | 
|  | x := mallocgc(t.Size_, t, true) | 
|  | typedmemmove(t, x, v) | 
|  | return x | 
|  | } | 
|  | func convTnoptr(t *_type, v unsafe.Pointer) unsafe.Pointer { | 
|  | // TODO: maybe take size instead of type? | 
|  | if raceenabled { | 
|  | raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convTnoptr)) | 
|  | } | 
|  | if msanenabled { | 
|  | msanread(v, t.Size_) | 
|  | } | 
|  | if asanenabled { | 
|  | asanread(v, t.Size_) | 
|  | } | 
|  |  | 
|  | x := mallocgc(t.Size_, t, false) | 
|  | memmove(x, v, t.Size_) | 
|  | return x | 
|  | } | 
|  |  | 
|  | func convT16(val uint16) (x unsafe.Pointer) { | 
|  | if val < uint16(len(staticuint64s)) { | 
|  | x = unsafe.Pointer(&staticuint64s[val]) | 
|  | if goarch.BigEndian { | 
|  | x = add(x, 6) | 
|  | } | 
|  | } else { | 
|  | x = mallocgc(2, uint16Type, false) | 
|  | *(*uint16)(x) = val | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func convT32(val uint32) (x unsafe.Pointer) { | 
|  | if val < uint32(len(staticuint64s)) { | 
|  | x = unsafe.Pointer(&staticuint64s[val]) | 
|  | if goarch.BigEndian { | 
|  | x = add(x, 4) | 
|  | } | 
|  | } else { | 
|  | x = mallocgc(4, uint32Type, false) | 
|  | *(*uint32)(x) = val | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func convT64(val uint64) (x unsafe.Pointer) { | 
|  | if val < uint64(len(staticuint64s)) { | 
|  | x = unsafe.Pointer(&staticuint64s[val]) | 
|  | } else { | 
|  | x = mallocgc(8, uint64Type, false) | 
|  | *(*uint64)(x) = val | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func convTstring(val string) (x unsafe.Pointer) { | 
|  | if val == "" { | 
|  | x = unsafe.Pointer(&zeroVal[0]) | 
|  | } else { | 
|  | x = mallocgc(unsafe.Sizeof(val), stringType, true) | 
|  | *(*string)(x) = val | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func convTslice(val []byte) (x unsafe.Pointer) { | 
|  | // Note: this must work for any element type, not just byte. | 
|  | if (*slice)(unsafe.Pointer(&val)).array == nil { | 
|  | x = unsafe.Pointer(&zeroVal[0]) | 
|  | } else { | 
|  | x = mallocgc(unsafe.Sizeof(val), sliceType, true) | 
|  | *(*[]byte)(x) = val | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // convI2I returns the new itab to be used for the destination value | 
|  | // when converting a value with itab src to the dst interface. | 
|  | func convI2I(dst *interfacetype, src *itab) *itab { | 
|  | if src == nil { | 
|  | return nil | 
|  | } | 
|  | if src.inter == dst { | 
|  | return src | 
|  | } | 
|  | return getitab(dst, src._type, false) | 
|  | } | 
|  |  | 
|  | func assertI2I(inter *interfacetype, tab *itab) *itab { | 
|  | if tab == nil { | 
|  | // explicit conversions require non-nil interface value. | 
|  | panic(&TypeAssertionError{nil, nil, &inter.Type, ""}) | 
|  | } | 
|  | if tab.inter == inter { | 
|  | return tab | 
|  | } | 
|  | return getitab(inter, tab._type, false) | 
|  | } | 
|  |  | 
|  | func assertI2I2(inter *interfacetype, i iface) (r iface) { | 
|  | tab := i.tab | 
|  | if tab == nil { | 
|  | return | 
|  | } | 
|  | if tab.inter != inter { | 
|  | tab = getitab(inter, tab._type, true) | 
|  | if tab == nil { | 
|  | return | 
|  | } | 
|  | } | 
|  | r.tab = tab | 
|  | r.data = i.data | 
|  | return | 
|  | } | 
|  |  | 
|  | func assertE2I(inter *interfacetype, t *_type) *itab { | 
|  | if t == nil { | 
|  | // explicit conversions require non-nil interface value. | 
|  | panic(&TypeAssertionError{nil, nil, &inter.Type, ""}) | 
|  | } | 
|  | return getitab(inter, t, false) | 
|  | } | 
|  |  | 
|  | func assertE2I2(inter *interfacetype, e eface) (r iface) { | 
|  | t := e._type | 
|  | if t == nil { | 
|  | return | 
|  | } | 
|  | tab := getitab(inter, t, true) | 
|  | if tab == nil { | 
|  | return | 
|  | } | 
|  | r.tab = tab | 
|  | r.data = e.data | 
|  | return | 
|  | } | 
|  |  | 
|  | //go:linkname reflect_ifaceE2I reflect.ifaceE2I | 
|  | func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { | 
|  | *dst = iface{assertE2I(inter, e._type), e.data} | 
|  | } | 
|  |  | 
|  | //go:linkname reflectlite_ifaceE2I internal/reflectlite.ifaceE2I | 
|  | func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) { | 
|  | *dst = iface{assertE2I(inter, e._type), e.data} | 
|  | } | 
|  |  | 
|  | func iterate_itabs(fn func(*itab)) { | 
|  | // Note: only runs during stop the world or with itabLock held, | 
|  | // so no other locks/atomics needed. | 
|  | t := itabTable | 
|  | for i := uintptr(0); i < t.size; i++ { | 
|  | m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize)) | 
|  | if m != nil { | 
|  | fn(m) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // staticuint64s is used to avoid allocating in convTx for small integer values. | 
|  | var staticuint64s = [...]uint64{ | 
|  | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | 
|  | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | 
|  | 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, | 
|  | 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, | 
|  | 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, | 
|  | 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, | 
|  | 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, | 
|  | 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, | 
|  | 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, | 
|  | 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, | 
|  | 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, | 
|  | 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, | 
|  | 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, | 
|  | 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, | 
|  | 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, | 
|  | 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, | 
|  | 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | 
|  | 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, | 
|  | 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, | 
|  | 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, | 
|  | 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | 
|  | 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, | 
|  | 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, | 
|  | 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, | 
|  | 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, | 
|  | 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, | 
|  | 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, | 
|  | 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, | 
|  | 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, | 
|  | 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, | 
|  | 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, | 
|  | 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, | 
|  | } | 
|  |  | 
|  | // The linker redirects a reference of a method that it determined | 
|  | // unreachable to a reference to this function, so it will throw if | 
|  | // ever called. | 
|  | func unreachableMethod() { | 
|  | throw("unreachable method called. linker bug?") | 
|  | } |