| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as |
| // defined in FIPS 186-4 and SEC 1, Version 2.0. |
| // |
| // Signatures generated by this package are not deterministic, but entropy is |
| // mixed with the private key and the message, achieving the same level of |
| // security in case of randomness source failure. |
| package ecdsa |
| |
| // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. |
| // That standard is not freely available, which is a problem in an open source |
| // implementation, because not only the implementer, but also any maintainer, |
| // contributor, reviewer, auditor, and learner needs access to it. Instead, this |
| // package references and follows the equivalent [SEC 1, Version 2.0]. |
| // |
| // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf |
| // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf |
| |
| import ( |
| "bytes" |
| "crypto" |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/ecdh" |
| "crypto/elliptic" |
| "crypto/internal/bigmod" |
| "crypto/internal/boring" |
| "crypto/internal/boring/bbig" |
| "crypto/internal/nistec" |
| "crypto/internal/randutil" |
| "crypto/sha512" |
| "crypto/subtle" |
| "errors" |
| "io" |
| "math/big" |
| "sync" |
| |
| "golang.org/x/crypto/cryptobyte" |
| "golang.org/x/crypto/cryptobyte/asn1" |
| ) |
| |
| // PublicKey represents an ECDSA public key. |
| type PublicKey struct { |
| elliptic.Curve |
| X, Y *big.Int |
| } |
| |
| // Any methods implemented on PublicKey might need to also be implemented on |
| // PrivateKey, as the latter embeds the former and will expose its methods. |
| |
| // ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is |
| // invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the |
| // Curve is not supported by crypto/ecdh. |
| func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) { |
| c := curveToECDH(k.Curve) |
| if c == nil { |
| return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") |
| } |
| if !k.Curve.IsOnCurve(k.X, k.Y) { |
| return nil, errors.New("ecdsa: invalid public key") |
| } |
| return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y)) |
| } |
| |
| // Equal reports whether pub and x have the same value. |
| // |
| // Two keys are only considered to have the same value if they have the same Curve value. |
| // Note that for example elliptic.P256() and elliptic.P256().Params() are different |
| // values, as the latter is a generic not constant time implementation. |
| func (pub *PublicKey) Equal(x crypto.PublicKey) bool { |
| xx, ok := x.(*PublicKey) |
| if !ok { |
| return false |
| } |
| return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) && |
| // Standard library Curve implementations are singletons, so this check |
| // will work for those. Other Curves might be equivalent even if not |
| // singletons, but there is no definitive way to check for that, and |
| // better to err on the side of safety. |
| pub.Curve == xx.Curve |
| } |
| |
| // PrivateKey represents an ECDSA private key. |
| type PrivateKey struct { |
| PublicKey |
| D *big.Int |
| } |
| |
| // ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is |
| // invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the |
| // Curve is not supported by crypto/ecdh. |
| func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) { |
| c := curveToECDH(k.Curve) |
| if c == nil { |
| return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") |
| } |
| size := (k.Curve.Params().N.BitLen() + 7) / 8 |
| if k.D.BitLen() > size*8 { |
| return nil, errors.New("ecdsa: invalid private key") |
| } |
| return c.NewPrivateKey(k.D.FillBytes(make([]byte, size))) |
| } |
| |
| func curveToECDH(c elliptic.Curve) ecdh.Curve { |
| switch c { |
| case elliptic.P256(): |
| return ecdh.P256() |
| case elliptic.P384(): |
| return ecdh.P384() |
| case elliptic.P521(): |
| return ecdh.P521() |
| default: |
| return nil |
| } |
| } |
| |
| // Public returns the public key corresponding to priv. |
| func (priv *PrivateKey) Public() crypto.PublicKey { |
| return &priv.PublicKey |
| } |
| |
| // Equal reports whether priv and x have the same value. |
| // |
| // See PublicKey.Equal for details on how Curve is compared. |
| func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { |
| xx, ok := x.(*PrivateKey) |
| if !ok { |
| return false |
| } |
| return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D) |
| } |
| |
| // bigIntEqual reports whether a and b are equal leaking only their bit length |
| // through timing side-channels. |
| func bigIntEqual(a, b *big.Int) bool { |
| return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 |
| } |
| |
| // Sign signs digest with priv, reading randomness from rand. The opts argument |
| // is not currently used but, in keeping with the crypto.Signer interface, |
| // should be the hash function used to digest the message. |
| // |
| // This method implements crypto.Signer, which is an interface to support keys |
| // where the private part is kept in, for example, a hardware module. Common |
| // uses can use the SignASN1 function in this package directly. |
| func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { |
| return SignASN1(rand, priv, digest) |
| } |
| |
| // GenerateKey generates a new ECDSA private key for the specified curve. |
| // |
| // Most applications should use [crypto/rand.Reader] as rand. Note that the |
| // returned key does not depend deterministically on the bytes read from rand, |
| // and may change between calls and/or between versions. |
| func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { |
| randutil.MaybeReadByte(rand) |
| |
| if boring.Enabled && rand == boring.RandReader { |
| x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) |
| if err != nil { |
| return nil, err |
| } |
| return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil |
| } |
| boring.UnreachableExceptTests() |
| |
| switch c.Params() { |
| case elliptic.P224().Params(): |
| return generateNISTEC(p224(), rand) |
| case elliptic.P256().Params(): |
| return generateNISTEC(p256(), rand) |
| case elliptic.P384().Params(): |
| return generateNISTEC(p384(), rand) |
| case elliptic.P521().Params(): |
| return generateNISTEC(p521(), rand) |
| default: |
| return generateLegacy(c, rand) |
| } |
| } |
| |
| func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) { |
| k, Q, err := randomPoint(c, rand) |
| if err != nil { |
| return nil, err |
| } |
| |
| priv := new(PrivateKey) |
| priv.PublicKey.Curve = c.curve |
| priv.D = new(big.Int).SetBytes(k.Bytes(c.N)) |
| priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q) |
| if err != nil { |
| return nil, err |
| } |
| return priv, nil |
| } |
| |
| // randomPoint returns a random scalar and the corresponding point using the |
| // procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling). |
| func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) { |
| k = bigmod.NewNat() |
| for { |
| b := make([]byte, c.N.Size()) |
| if _, err = io.ReadFull(rand, b); err != nil { |
| return |
| } |
| |
| // Mask off any excess bits to increase the chance of hitting a value in |
| // (0, N). These are the most dangerous lines in the package and maybe in |
| // the library: a single bit of bias in the selection of nonces would likely |
| // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH. |
| if excess := len(b)*8 - c.N.BitLen(); excess > 0 { |
| // Just to be safe, assert that this only happens for the one curve that |
| // doesn't have a round number of bits. |
| if excess != 0 && c.curve.Params().Name != "P-521" { |
| panic("ecdsa: internal error: unexpectedly masking off bits") |
| } |
| b[0] >>= excess |
| } |
| |
| // FIPS 186-4 makes us check k <= N - 2 and then add one. |
| // Checking 0 < k <= N - 1 is strictly equivalent. |
| // None of this matters anyway because the chance of selecting |
| // zero is cryptographically negligible. |
| if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 { |
| break |
| } |
| |
| if testingOnlyRejectionSamplingLooped != nil { |
| testingOnlyRejectionSamplingLooped() |
| } |
| } |
| |
| p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N)) |
| return |
| } |
| |
| // testingOnlyRejectionSamplingLooped is called when rejection sampling in |
| // randomPoint rejects a candidate for being higher than the modulus. |
| var testingOnlyRejectionSamplingLooped func() |
| |
| // errNoAsm is returned by signAsm and verifyAsm when the assembly |
| // implementation is not available. |
| var errNoAsm = errors.New("no assembly implementation available") |
| |
| // SignASN1 signs a hash (which should be the result of hashing a larger message) |
| // using the private key, priv. If the hash is longer than the bit-length of the |
| // private key's curve order, the hash will be truncated to that length. It |
| // returns the ASN.1 encoded signature. |
| // |
| // The signature is randomized. Most applications should use [crypto/rand.Reader] |
| // as rand. Note that the returned signature does not depend deterministically on |
| // the bytes read from rand, and may change between calls and/or between versions. |
| func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { |
| randutil.MaybeReadByte(rand) |
| |
| if boring.Enabled && rand == boring.RandReader { |
| b, err := boringPrivateKey(priv) |
| if err != nil { |
| return nil, err |
| } |
| return boring.SignMarshalECDSA(b, hash) |
| } |
| boring.UnreachableExceptTests() |
| |
| csprng, err := mixedCSPRNG(rand, priv, hash) |
| if err != nil { |
| return nil, err |
| } |
| |
| if sig, err := signAsm(priv, csprng, hash); err != errNoAsm { |
| return sig, err |
| } |
| |
| switch priv.Curve.Params() { |
| case elliptic.P224().Params(): |
| return signNISTEC(p224(), priv, csprng, hash) |
| case elliptic.P256().Params(): |
| return signNISTEC(p256(), priv, csprng, hash) |
| case elliptic.P384().Params(): |
| return signNISTEC(p384(), priv, csprng, hash) |
| case elliptic.P521().Params(): |
| return signNISTEC(p521(), priv, csprng, hash) |
| default: |
| return signLegacy(priv, csprng, hash) |
| } |
| } |
| |
| func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { |
| // SEC 1, Version 2.0, Section 4.1.3 |
| |
| k, R, err := randomPoint(c, csprng) |
| if err != nil { |
| return nil, err |
| } |
| |
| // kInv = k⁻¹ |
| kInv := bigmod.NewNat() |
| inverse(c, kInv, k) |
| |
| Rx, err := R.BytesX() |
| if err != nil { |
| return nil, err |
| } |
| r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) |
| if err != nil { |
| return nil, err |
| } |
| |
| // The spec wants us to retry here, but the chance of hitting this condition |
| // on a large prime-order group like the NIST curves we support is |
| // cryptographically negligible. If we hit it, something is awfully wrong. |
| if r.IsZero() == 1 { |
| return nil, errors.New("ecdsa: internal error: r is zero") |
| } |
| |
| e := bigmod.NewNat() |
| hashToNat(c, e, hash) |
| |
| s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) |
| if err != nil { |
| return nil, err |
| } |
| s.Mul(r, c.N) |
| s.Add(e, c.N) |
| s.Mul(kInv, c.N) |
| |
| // Again, the chance of this happening is cryptographically negligible. |
| if s.IsZero() == 1 { |
| return nil, errors.New("ecdsa: internal error: s is zero") |
| } |
| |
| return encodeSignature(r.Bytes(c.N), s.Bytes(c.N)) |
| } |
| |
| func encodeSignature(r, s []byte) ([]byte, error) { |
| var b cryptobyte.Builder |
| b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { |
| addASN1IntBytes(b, r) |
| addASN1IntBytes(b, s) |
| }) |
| return b.Bytes() |
| } |
| |
| // addASN1IntBytes encodes in ASN.1 a positive integer represented as |
| // a big-endian byte slice with zero or more leading zeroes. |
| func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) { |
| for len(bytes) > 0 && bytes[0] == 0 { |
| bytes = bytes[1:] |
| } |
| if len(bytes) == 0 { |
| b.SetError(errors.New("invalid integer")) |
| return |
| } |
| b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) { |
| if bytes[0]&0x80 != 0 { |
| c.AddUint8(0) |
| } |
| c.AddBytes(bytes) |
| }) |
| } |
| |
| // inverse sets kInv to the inverse of k modulo the order of the curve. |
| func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) { |
| if c.curve.Params().Name == "P-256" { |
| kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N)) |
| // Some platforms don't implement P256OrdInverse, and always return an error. |
| if err == nil { |
| _, err := kInv.SetBytes(kBytes, c.N) |
| if err != nil { |
| panic("ecdsa: internal error: P256OrdInverse produced an invalid value") |
| } |
| return |
| } |
| } |
| |
| // Calculate the inverse of s in GF(N) using Fermat's method |
| // (exponentiation modulo P - 2, per Euler's theorem) |
| kInv.Exp(k, c.nMinus2, c.N) |
| } |
| |
| // hashToNat sets e to the left-most bits of hash, according to |
| // SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3. |
| func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) { |
| // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as |
| // an integer modulo N. This is the absolute worst of all worlds: we still |
| // have to reduce, because the result might still overflow N, but to take |
| // the left-most bits for P-521 we have to do a right shift. |
| if size := c.N.Size(); len(hash) >= size { |
| hash = hash[:size] |
| if excess := len(hash)*8 - c.N.BitLen(); excess > 0 { |
| hash = bytes.Clone(hash) |
| for i := len(hash) - 1; i >= 0; i-- { |
| hash[i] >>= excess |
| if i > 0 { |
| hash[i] |= hash[i-1] << (8 - excess) |
| } |
| } |
| } |
| } |
| _, err := e.SetOverflowingBytes(hash, c.N) |
| if err != nil { |
| panic("ecdsa: internal error: truncated hash is too long") |
| } |
| } |
| |
| // mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message |
| // and the private key, to protect the key in case rand fails. This is |
| // equivalent in security to RFC 6979 deterministic nonce generation, but still |
| // produces randomized signatures. |
| func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) { |
| // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: |
| // |
| // SHA2-512(priv.D || entropy || hash)[:32] |
| // |
| // The CSPRNG key is indifferentiable from a random oracle as shown in |
| // [Coron], the AES-CTR stream is indifferentiable from a random oracle |
| // under standard cryptographic assumptions (see [Larsson] for examples). |
| // |
| // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf |
| // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf |
| |
| // Get 256 bits of entropy from rand. |
| entropy := make([]byte, 32) |
| if _, err := io.ReadFull(rand, entropy); err != nil { |
| return nil, err |
| } |
| |
| // Initialize an SHA-512 hash context; digest... |
| md := sha512.New() |
| md.Write(priv.D.Bytes()) // the private key, |
| md.Write(entropy) // the entropy, |
| md.Write(hash) // and the input hash; |
| key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), |
| // which is an indifferentiable MAC. |
| |
| // Create an AES-CTR instance to use as a CSPRNG. |
| block, err := aes.NewCipher(key) |
| if err != nil { |
| return nil, err |
| } |
| |
| // Create a CSPRNG that xors a stream of zeros with |
| // the output of the AES-CTR instance. |
| const aesIV = "IV for ECDSA CTR" |
| return &cipher.StreamReader{ |
| R: zeroReader, |
| S: cipher.NewCTR(block, []byte(aesIV)), |
| }, nil |
| } |
| |
| type zr struct{} |
| |
| var zeroReader = zr{} |
| |
| // Read replaces the contents of dst with zeros. It is safe for concurrent use. |
| func (zr) Read(dst []byte) (n int, err error) { |
| for i := range dst { |
| dst[i] = 0 |
| } |
| return len(dst), nil |
| } |
| |
| // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the |
| // public key, pub. Its return value records whether the signature is valid. |
| func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { |
| if boring.Enabled { |
| key, err := boringPublicKey(pub) |
| if err != nil { |
| return false |
| } |
| return boring.VerifyECDSA(key, hash, sig) |
| } |
| boring.UnreachableExceptTests() |
| |
| if err := verifyAsm(pub, hash, sig); err != errNoAsm { |
| return err == nil |
| } |
| |
| switch pub.Curve.Params() { |
| case elliptic.P224().Params(): |
| return verifyNISTEC(p224(), pub, hash, sig) |
| case elliptic.P256().Params(): |
| return verifyNISTEC(p256(), pub, hash, sig) |
| case elliptic.P384().Params(): |
| return verifyNISTEC(p384(), pub, hash, sig) |
| case elliptic.P521().Params(): |
| return verifyNISTEC(p521(), pub, hash, sig) |
| default: |
| return verifyLegacy(pub, hash, sig) |
| } |
| } |
| |
| func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool { |
| rBytes, sBytes, err := parseSignature(sig) |
| if err != nil { |
| return false |
| } |
| |
| Q, err := c.pointFromAffine(pub.X, pub.Y) |
| if err != nil { |
| return false |
| } |
| |
| // SEC 1, Version 2.0, Section 4.1.4 |
| |
| r, err := bigmod.NewNat().SetBytes(rBytes, c.N) |
| if err != nil || r.IsZero() == 1 { |
| return false |
| } |
| s, err := bigmod.NewNat().SetBytes(sBytes, c.N) |
| if err != nil || s.IsZero() == 1 { |
| return false |
| } |
| |
| e := bigmod.NewNat() |
| hashToNat(c, e, hash) |
| |
| // w = s⁻¹ |
| w := bigmod.NewNat() |
| inverse(c, w, s) |
| |
| // p₁ = [e * s⁻¹]G |
| p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N)) |
| if err != nil { |
| return false |
| } |
| // p₂ = [r * s⁻¹]Q |
| p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N)) |
| if err != nil { |
| return false |
| } |
| // BytesX returns an error for the point at infinity. |
| Rx, err := p1.Add(p1, p2).BytesX() |
| if err != nil { |
| return false |
| } |
| |
| v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) |
| if err != nil { |
| return false |
| } |
| |
| return v.Equal(r) == 1 |
| } |
| |
| func parseSignature(sig []byte) (r, s []byte, err error) { |
| var inner cryptobyte.String |
| input := cryptobyte.String(sig) |
| if !input.ReadASN1(&inner, asn1.SEQUENCE) || |
| !input.Empty() || |
| !inner.ReadASN1Integer(&r) || |
| !inner.ReadASN1Integer(&s) || |
| !inner.Empty() { |
| return nil, nil, errors.New("invalid ASN.1") |
| } |
| return r, s, nil |
| } |
| |
| type nistCurve[Point nistPoint[Point]] struct { |
| newPoint func() Point |
| curve elliptic.Curve |
| N *bigmod.Modulus |
| nMinus2 []byte |
| } |
| |
| // nistPoint is a generic constraint for the nistec Point types. |
| type nistPoint[T any] interface { |
| Bytes() []byte |
| BytesX() ([]byte, error) |
| SetBytes([]byte) (T, error) |
| Add(T, T) T |
| ScalarMult(T, []byte) (T, error) |
| ScalarBaseMult([]byte) (T, error) |
| } |
| |
| // pointFromAffine is used to convert the PublicKey to a nistec Point. |
| func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) { |
| bitSize := curve.curve.Params().BitSize |
| // Reject values that would not get correctly encoded. |
| if x.Sign() < 0 || y.Sign() < 0 { |
| return p, errors.New("negative coordinate") |
| } |
| if x.BitLen() > bitSize || y.BitLen() > bitSize { |
| return p, errors.New("overflowing coordinate") |
| } |
| // Encode the coordinates and let SetBytes reject invalid points. |
| byteLen := (bitSize + 7) / 8 |
| buf := make([]byte, 1+2*byteLen) |
| buf[0] = 4 // uncompressed point |
| x.FillBytes(buf[1 : 1+byteLen]) |
| y.FillBytes(buf[1+byteLen : 1+2*byteLen]) |
| return curve.newPoint().SetBytes(buf) |
| } |
| |
| // pointToAffine is used to convert a nistec Point to a PublicKey. |
| func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) { |
| out := p.Bytes() |
| if len(out) == 1 && out[0] == 0 { |
| // This is the encoding of the point at infinity. |
| return nil, nil, errors.New("ecdsa: public key point is the infinity") |
| } |
| byteLen := (curve.curve.Params().BitSize + 7) / 8 |
| x = new(big.Int).SetBytes(out[1 : 1+byteLen]) |
| y = new(big.Int).SetBytes(out[1+byteLen:]) |
| return x, y, nil |
| } |
| |
| var p224Once sync.Once |
| var _p224 *nistCurve[*nistec.P224Point] |
| |
| func p224() *nistCurve[*nistec.P224Point] { |
| p224Once.Do(func() { |
| _p224 = &nistCurve[*nistec.P224Point]{ |
| newPoint: func() *nistec.P224Point { return nistec.NewP224Point() }, |
| } |
| precomputeParams(_p224, elliptic.P224()) |
| }) |
| return _p224 |
| } |
| |
| var p256Once sync.Once |
| var _p256 *nistCurve[*nistec.P256Point] |
| |
| func p256() *nistCurve[*nistec.P256Point] { |
| p256Once.Do(func() { |
| _p256 = &nistCurve[*nistec.P256Point]{ |
| newPoint: func() *nistec.P256Point { return nistec.NewP256Point() }, |
| } |
| precomputeParams(_p256, elliptic.P256()) |
| }) |
| return _p256 |
| } |
| |
| var p384Once sync.Once |
| var _p384 *nistCurve[*nistec.P384Point] |
| |
| func p384() *nistCurve[*nistec.P384Point] { |
| p384Once.Do(func() { |
| _p384 = &nistCurve[*nistec.P384Point]{ |
| newPoint: func() *nistec.P384Point { return nistec.NewP384Point() }, |
| } |
| precomputeParams(_p384, elliptic.P384()) |
| }) |
| return _p384 |
| } |
| |
| var p521Once sync.Once |
| var _p521 *nistCurve[*nistec.P521Point] |
| |
| func p521() *nistCurve[*nistec.P521Point] { |
| p521Once.Do(func() { |
| _p521 = &nistCurve[*nistec.P521Point]{ |
| newPoint: func() *nistec.P521Point { return nistec.NewP521Point() }, |
| } |
| precomputeParams(_p521, elliptic.P521()) |
| }) |
| return _p521 |
| } |
| |
| func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) { |
| params := curve.Params() |
| c.curve = curve |
| var err error |
| c.N, err = bigmod.NewModulusFromBig(params.N) |
| if err != nil { |
| panic(err) |
| } |
| c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes() |
| } |