blob: bbd062131e941494d7edbf7e547d6795e5d7634b [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
import (
"bytes"
"crypto/internal/fips140"
"crypto/internal/fips140deps/byteorder"
"errors"
"math/bits"
)
type SHAKE struct {
d Digest // SHA-3 state context and Read/Write operations
// initBlock is the cSHAKE specific initialization set of bytes. It is initialized
// by newCShake function and stores concatenation of N followed by S, encoded
// by the method specified in 3.3 of [1].
// It is stored here in order for Reset() to be able to put context into
// initial state.
initBlock []byte
}
func bytepadWrite(c *SHAKE, data []byte, rate int) {
rateEnc := leftEncode(uint64(rate))
c.Write(rateEnc)
c.Write(data)
if padlen := rate - (len(rateEnc)+len(data))%rate; padlen < rate {
const maxRate = rateK256
c.Write(make([]byte, padlen, maxRate)) // explicit cap to allow stack allocation
}
}
func leftEncode(x uint64) []byte {
// Let n be the smallest positive integer for which 2^(8n) > x.
n := (bits.Len64(x) + 7) / 8
if n == 0 {
n = 1
}
// Return n || x with n as a byte and x an n bytes in big-endian order.
b := make([]byte, 9)
byteorder.BEPutUint64(b[1:], x)
b = b[9-n-1:]
b[0] = byte(n)
return b
}
func newCShake(c *SHAKE, N, S []byte, rate, outputLen int, dsbyte byte) *SHAKE {
c.d = Digest{rate: rate, outputLen: outputLen, dsbyte: dsbyte}
c.initBlock = make([]byte, 0, 9+len(N)+9+len(S)) // leftEncode returns max 9 bytes
c.initBlock = append(c.initBlock, leftEncode(uint64(len(N))*8)...)
c.initBlock = append(c.initBlock, N...)
c.initBlock = append(c.initBlock, leftEncode(uint64(len(S))*8)...)
c.initBlock = append(c.initBlock, S...)
bytepadWrite(c, c.initBlock, c.d.rate)
return c
}
func (s *SHAKE) BlockSize() int { return s.d.BlockSize() }
func (s *SHAKE) Size() int { return s.d.Size() }
// Sum appends a portion of output to b and returns the resulting slice. The
// output length is selected to provide full-strength generic security: 32 bytes
// for SHAKE128 and 64 bytes for SHAKE256. It does not change the underlying
// state. It panics if any output has already been read.
func (s *SHAKE) Sum(in []byte) []byte { return s.d.Sum(in) }
// Write absorbs more data into the hash's state.
// It panics if any output has already been read.
func (s *SHAKE) Write(p []byte) (n int, err error) { return s.d.Write(p) }
func (s *SHAKE) Read(out []byte) (n int, err error) {
fips140.RecordApproved()
// Note that read is not exposed on Digest since SHA-3 does not offer
// variable output length. It is only used internally by Sum.
return s.d.read(out)
}
// Reset resets the hash to initial state.
func (s *SHAKE) Reset() {
s.d.Reset()
if len(s.initBlock) != 0 {
bytepadWrite(s, s.initBlock, s.d.rate)
}
}
// Clone returns a copy of the SHAKE context in its current state.
func (s *SHAKE) Clone() *SHAKE {
ret := *s
return &ret
}
func (s *SHAKE) MarshalBinary() ([]byte, error) {
return s.AppendBinary(make([]byte, 0, marshaledSize+len(s.initBlock)))
}
func (s *SHAKE) AppendBinary(b []byte) ([]byte, error) {
b, err := s.d.AppendBinary(b)
if err != nil {
return nil, err
}
b = append(b, s.initBlock...)
return b, nil
}
func (s *SHAKE) UnmarshalBinary(b []byte) error {
if len(b) < marshaledSize {
return errors.New("sha3: invalid hash state")
}
if err := s.d.UnmarshalBinary(b[:marshaledSize]); err != nil {
return err
}
s.initBlock = bytes.Clone(b[marshaledSize:])
return nil
}
// NewShake128 creates a new SHAKE128 XOF.
func NewShake128() *SHAKE {
return &SHAKE{d: Digest{rate: rateK256, outputLen: 32, dsbyte: dsbyteShake}}
}
// NewShake256 creates a new SHAKE256 XOF.
func NewShake256() *SHAKE {
return &SHAKE{d: Digest{rate: rateK512, outputLen: 64, dsbyte: dsbyteShake}}
}
// NewCShake128 creates a new cSHAKE128 XOF.
//
// N is used to define functions based on cSHAKE, it can be empty when plain
// cSHAKE is desired. S is a customization byte string used for domain
// separation. When N and S are both empty, this is equivalent to NewShake128.
func NewCShake128(N, S []byte) *SHAKE {
// The actual logic is in a separate function to outline this allocation.
c := &SHAKE{}
return newCShake128(c, N, S)
}
func newCShake128(c *SHAKE, N, S []byte) *SHAKE {
if len(N) == 0 && len(S) == 0 {
*c = *NewShake128()
return c
}
return newCShake(c, N, S, rateK256, 32, dsbyteCShake)
}
// NewCShake256 creates a new cSHAKE256 XOF.
//
// N is used to define functions based on cSHAKE, it can be empty when plain
// cSHAKE is desired. S is a customization byte string used for domain
// separation. When N and S are both empty, this is equivalent to NewShake256.
func NewCShake256(N, S []byte) *SHAKE {
// The actual logic is in a separate function to outline this allocation.
c := &SHAKE{}
return newCShake256(c, N, S)
}
func newCShake256(c *SHAKE, N, S []byte) *SHAKE {
if len(N) == 0 && len(S) == 0 {
*c = *NewShake256()
return c
}
return newCShake(c, N, S, rateK512, 64, dsbyteCShake)
}