blob: a18b22650d105b763cd0f8ed4ae877f50edc23ff [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hmac implements HMAC according to [FIPS 198-1].
//
// [FIPS 198-1]: https://doi.org/10.6028/NIST.FIPS.198-1
package hmac
import (
"crypto/internal/fips140"
"crypto/internal/fips140/sha256"
"crypto/internal/fips140/sha3"
"crypto/internal/fips140/sha512"
"errors"
"hash"
)
// key is zero padded to the block size of the hash function
// ipad = 0x36 byte repeated for key length
// opad = 0x5c byte repeated for key length
// hmac = H([key ^ opad] H([key ^ ipad] text))
// marshalable is the combination of encoding.BinaryMarshaler and
// encoding.BinaryUnmarshaler. Their method definitions are repeated here to
// avoid a dependency on the encoding package.
type marshalable interface {
MarshalBinary() ([]byte, error)
UnmarshalBinary([]byte) error
}
type HMAC struct {
// opad and ipad may share underlying storage with HMAC clones.
opad, ipad []byte
outer, inner hash.Hash
// If marshaled is true, then opad and ipad do not contain a padded
// copy of the key, but rather the marshaled state of outer/inner after
// opad/ipad has been fed into it.
marshaled bool
// forHKDF and keyLen are stored to inform the service indicator decision.
forHKDF bool
keyLen int
}
func (h *HMAC) Sum(in []byte) []byte {
// Per FIPS 140-3 IG C.M, key lengths below 112 bits are only allowed for
// legacy use (i.e. verification only) and we don't support that. However,
// HKDF uses the HMAC key for the salt, which is allowed to be shorter.
if h.keyLen < 112/8 && !h.forHKDF {
fips140.RecordNonApproved()
}
switch h.inner.(type) {
case *sha256.Digest, *sha512.Digest, *sha3.Digest:
default:
fips140.RecordNonApproved()
}
origLen := len(in)
in = h.inner.Sum(in)
if h.marshaled {
if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil {
panic(err)
}
} else {
h.outer.Reset()
h.outer.Write(h.opad)
}
h.outer.Write(in[origLen:])
return h.outer.Sum(in[:origLen])
}
func (h *HMAC) Write(p []byte) (n int, err error) {
return h.inner.Write(p)
}
func (h *HMAC) Size() int { return h.outer.Size() }
func (h *HMAC) BlockSize() int { return h.inner.BlockSize() }
func (h *HMAC) Reset() {
if h.marshaled {
if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil {
panic(err)
}
return
}
h.inner.Reset()
h.inner.Write(h.ipad)
// If the underlying hash is marshalable, we can save some time by saving a
// copy of the hash state now, and restoring it on future calls to Reset and
// Sum instead of writing ipad/opad every time.
//
// We do this on Reset to avoid slowing down the common single-use case.
//
// This is allowed by FIPS 198-1, Section 6: "Conceptually, the intermediate
// results of the compression function on the B-byte blocks (K0 ⊕ ipad) and
// (K0 ⊕ opad) can be precomputed once, at the time of generation of the key
// K, or before its first use. These intermediate results can be stored and
// then used to initialize H each time that a message needs to be
// authenticated using the same key. [...] These stored intermediate values
// shall be treated and protected in the same manner as secret keys."
marshalableInner, innerOK := h.inner.(marshalable)
if !innerOK {
return
}
marshalableOuter, outerOK := h.outer.(marshalable)
if !outerOK {
return
}
imarshal, err := marshalableInner.MarshalBinary()
if err != nil {
return
}
h.outer.Reset()
h.outer.Write(h.opad)
omarshal, err := marshalableOuter.MarshalBinary()
if err != nil {
return
}
// Marshaling succeeded; save the marshaled state for later
h.ipad = imarshal
h.opad = omarshal
h.marshaled = true
}
type errCloneUnsupported struct{}
func (e errCloneUnsupported) Error() string {
return "crypto/hmac: hash does not support hash.Cloner"
}
func (e errCloneUnsupported) Unwrap() error {
return errors.ErrUnsupported
}
// Clone implements [hash.Cloner] if the underlying hash does.
// Otherwise, it returns an error wrapping [errors.ErrUnsupported].
func (h *HMAC) Clone() (hash.Cloner, error) {
r := *h
ic, ok := h.inner.(hash.Cloner)
if !ok {
return nil, errCloneUnsupported{}
}
oc, ok := h.outer.(hash.Cloner)
if !ok {
return nil, errCloneUnsupported{}
}
var err error
r.inner, err = ic.Clone()
if err != nil {
return nil, errCloneUnsupported{}
}
r.outer, err = oc.Clone()
if err != nil {
return nil, errCloneUnsupported{}
}
return &r, nil
}
// New returns a new HMAC hash using the given [hash.Hash] type and key.
func New[H hash.Hash](h func() H, key []byte) *HMAC {
hm := &HMAC{keyLen: len(key)}
hm.outer = h()
hm.inner = h()
unique := true
func() {
defer func() {
// The comparison might panic if the underlying types are not comparable.
_ = recover()
}()
if hm.outer == hm.inner {
unique = false
}
}()
if !unique {
panic("crypto/hmac: hash generation function does not produce unique values")
}
blocksize := hm.inner.BlockSize()
hm.ipad = make([]byte, blocksize)
hm.opad = make([]byte, blocksize)
if len(key) > blocksize {
// If key is too big, hash it.
hm.outer.Write(key)
key = hm.outer.Sum(nil)
}
copy(hm.ipad, key)
copy(hm.opad, key)
for i := range hm.ipad {
hm.ipad[i] ^= 0x36
}
for i := range hm.opad {
hm.opad[i] ^= 0x5c
}
hm.inner.Write(hm.ipad)
return hm
}
// MarkAsUsedInKDF records that this HMAC instance is used as part of a KDF.
func MarkAsUsedInKDF(h *HMAC) {
h.forHKDF = true
}