| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package tar |
| |
| // TODO(dsymonds): |
| // - catch more errors (no first header, etc.) |
| |
| import ( |
| "bytes" |
| "errors" |
| "fmt" |
| "io" |
| "path" |
| "sort" |
| "strconv" |
| "strings" |
| "time" |
| ) |
| |
| var ( |
| ErrWriteTooLong = errors.New("archive/tar: write too long") |
| ErrFieldTooLong = errors.New("archive/tar: header field too long") |
| ErrWriteAfterClose = errors.New("archive/tar: write after close") |
| errInvalidHeader = errors.New("archive/tar: header field too long or contains invalid values") |
| ) |
| |
| // A Writer provides sequential writing of a tar archive in POSIX.1 format. |
| // A tar archive consists of a sequence of files. |
| // Call WriteHeader to begin a new file, and then call Write to supply that file's data, |
| // writing at most hdr.Size bytes in total. |
| type Writer struct { |
| w io.Writer |
| err error |
| nb int64 // number of unwritten bytes for current file entry |
| pad int64 // amount of padding to write after current file entry |
| closed bool |
| usedBinary bool // whether the binary numeric field extension was used |
| preferPax bool // use PAX header instead of binary numeric header |
| hdrBuff block // buffer to use in writeHeader when writing a regular header |
| paxHdrBuff block // buffer to use in writeHeader when writing a PAX header |
| } |
| |
| type formatter struct { |
| err error // Last error seen |
| } |
| |
| // NewWriter creates a new Writer writing to w. |
| func NewWriter(w io.Writer) *Writer { return &Writer{w: w} } |
| |
| // Flush finishes writing the current file (optional). |
| func (tw *Writer) Flush() error { |
| if tw.nb > 0 { |
| tw.err = fmt.Errorf("archive/tar: missed writing %d bytes", tw.nb) |
| return tw.err |
| } |
| |
| n := tw.nb + tw.pad |
| for n > 0 && tw.err == nil { |
| nr := n |
| if nr > blockSize { |
| nr = blockSize |
| } |
| var nw int |
| nw, tw.err = tw.w.Write(zeroBlock[0:nr]) |
| n -= int64(nw) |
| } |
| tw.nb = 0 |
| tw.pad = 0 |
| return tw.err |
| } |
| |
| // Write s into b, terminating it with a NUL if there is room. |
| func (f *formatter) formatString(b []byte, s string) { |
| if len(s) > len(b) { |
| f.err = ErrFieldTooLong |
| return |
| } |
| ascii := toASCII(s) |
| copy(b, ascii) |
| if len(ascii) < len(b) { |
| b[len(ascii)] = 0 |
| } |
| } |
| |
| // Encode x as an octal ASCII string and write it into b with leading zeros. |
| func (f *formatter) formatOctal(b []byte, x int64) { |
| s := strconv.FormatInt(x, 8) |
| // leading zeros, but leave room for a NUL. |
| for len(s)+1 < len(b) { |
| s = "0" + s |
| } |
| f.formatString(b, s) |
| } |
| |
| // fitsInBase256 reports whether x can be encoded into n bytes using base-256 |
| // encoding. Unlike octal encoding, base-256 encoding does not require that the |
| // string ends with a NUL character. Thus, all n bytes are available for output. |
| // |
| // If operating in binary mode, this assumes strict GNU binary mode; which means |
| // that the first byte can only be either 0x80 or 0xff. Thus, the first byte is |
| // equivalent to the sign bit in two's complement form. |
| func fitsInBase256(n int, x int64) bool { |
| var binBits = uint(n-1) * 8 |
| return n >= 9 || (x >= -1<<binBits && x < 1<<binBits) |
| } |
| |
| // Write x into b, as binary (GNUtar/star extension). |
| func (f *formatter) formatNumeric(b []byte, x int64) { |
| if fitsInBase256(len(b), x) { |
| for i := len(b) - 1; i >= 0; i-- { |
| b[i] = byte(x) |
| x >>= 8 |
| } |
| b[0] |= 0x80 // Highest bit indicates binary format |
| return |
| } |
| |
| f.formatOctal(b, 0) // Last resort, just write zero |
| f.err = ErrFieldTooLong |
| } |
| |
| var ( |
| minTime = time.Unix(0, 0) |
| // There is room for 11 octal digits (33 bits) of mtime. |
| maxTime = minTime.Add((1<<33 - 1) * time.Second) |
| ) |
| |
| // WriteHeader writes hdr and prepares to accept the file's contents. |
| // WriteHeader calls Flush if it is not the first header. |
| // Calling after a Close will return ErrWriteAfterClose. |
| func (tw *Writer) WriteHeader(hdr *Header) error { |
| return tw.writeHeader(hdr, true) |
| } |
| |
| // WriteHeader writes hdr and prepares to accept the file's contents. |
| // WriteHeader calls Flush if it is not the first header. |
| // Calling after a Close will return ErrWriteAfterClose. |
| // As this method is called internally by writePax header to allow it to |
| // suppress writing the pax header. |
| func (tw *Writer) writeHeader(hdr *Header, allowPax bool) error { |
| if tw.closed { |
| return ErrWriteAfterClose |
| } |
| if tw.err == nil { |
| tw.Flush() |
| } |
| if tw.err != nil { |
| return tw.err |
| } |
| |
| // a map to hold pax header records, if any are needed |
| paxHeaders := make(map[string]string) |
| |
| // TODO(dsnet): we might want to use PAX headers for |
| // subsecond time resolution, but for now let's just capture |
| // too long fields or non ascii characters |
| |
| // We need to select which scratch buffer to use carefully, |
| // since this method is called recursively to write PAX headers. |
| // If allowPax is true, this is the non-recursive call, and we will use hdrBuff. |
| // If allowPax is false, we are being called by writePAXHeader, and hdrBuff is |
| // already being used by the non-recursive call, so we must use paxHdrBuff. |
| header := &tw.hdrBuff |
| if !allowPax { |
| header = &tw.paxHdrBuff |
| } |
| copy(header[:], zeroBlock[:]) |
| |
| // Wrappers around formatter that automatically sets paxHeaders if the |
| // argument extends beyond the capacity of the input byte slice. |
| var f formatter |
| var formatString = func(b []byte, s string, paxKeyword string) { |
| needsPaxHeader := paxKeyword != paxNone && len(s) > len(b) || !isASCII(s) |
| if needsPaxHeader { |
| paxHeaders[paxKeyword] = s |
| return |
| } |
| f.formatString(b, s) |
| } |
| var formatNumeric = func(b []byte, x int64, paxKeyword string) { |
| // Try octal first. |
| s := strconv.FormatInt(x, 8) |
| if len(s) < len(b) { |
| f.formatOctal(b, x) |
| return |
| } |
| |
| // If it is too long for octal, and PAX is preferred, use a PAX header. |
| if paxKeyword != paxNone && tw.preferPax { |
| f.formatOctal(b, 0) |
| s := strconv.FormatInt(x, 10) |
| paxHeaders[paxKeyword] = s |
| return |
| } |
| |
| tw.usedBinary = true |
| f.formatNumeric(b, x) |
| } |
| |
| // Handle out of range ModTime carefully. |
| var modTime int64 |
| if !hdr.ModTime.Before(minTime) && !hdr.ModTime.After(maxTime) { |
| modTime = hdr.ModTime.Unix() |
| } |
| |
| v7 := header.V7() |
| formatString(v7.Name(), hdr.Name, paxPath) |
| // TODO(dsnet): The GNU format permits the mode field to be encoded in |
| // base-256 format. Thus, we can use formatNumeric instead of formatOctal. |
| f.formatOctal(v7.Mode(), hdr.Mode) |
| formatNumeric(v7.UID(), int64(hdr.Uid), paxUid) |
| formatNumeric(v7.GID(), int64(hdr.Gid), paxGid) |
| formatNumeric(v7.Size(), hdr.Size, paxSize) |
| // TODO(dsnet): Consider using PAX for finer time granularity. |
| formatNumeric(v7.ModTime(), modTime, paxNone) |
| v7.TypeFlag()[0] = hdr.Typeflag |
| formatString(v7.LinkName(), hdr.Linkname, paxLinkpath) |
| |
| ustar := header.USTAR() |
| formatString(ustar.UserName(), hdr.Uname, paxUname) |
| formatString(ustar.GroupName(), hdr.Gname, paxGname) |
| formatNumeric(ustar.DevMajor(), hdr.Devmajor, paxNone) |
| formatNumeric(ustar.DevMinor(), hdr.Devminor, paxNone) |
| |
| // try to use a ustar header when only the name is too long |
| _, paxPathUsed := paxHeaders[paxPath] |
| if !tw.preferPax && len(paxHeaders) == 1 && paxPathUsed { |
| prefix, suffix, ok := splitUSTARPath(hdr.Name) |
| if ok { |
| // Since we can encode in USTAR format, disable PAX header. |
| delete(paxHeaders, paxPath) |
| |
| // Update the path fields |
| formatString(v7.Name(), suffix, paxNone) |
| formatString(ustar.Prefix(), prefix, paxNone) |
| } |
| } |
| |
| if tw.usedBinary { |
| header.SetFormat(formatGNU) |
| } else { |
| header.SetFormat(formatUSTAR) |
| } |
| |
| // Check if there were any formatting errors. |
| if f.err != nil { |
| tw.err = f.err |
| return tw.err |
| } |
| |
| if allowPax { |
| for k, v := range hdr.Xattrs { |
| paxHeaders[paxXattr+k] = v |
| } |
| } |
| |
| if len(paxHeaders) > 0 { |
| if !allowPax { |
| return errInvalidHeader |
| } |
| if err := tw.writePAXHeader(hdr, paxHeaders); err != nil { |
| return err |
| } |
| } |
| tw.nb = hdr.Size |
| tw.pad = (blockSize - (tw.nb % blockSize)) % blockSize |
| |
| _, tw.err = tw.w.Write(header[:]) |
| return tw.err |
| } |
| |
| // splitUSTARPath splits a path according to USTAR prefix and suffix rules. |
| // If the path is not splittable, then it will return ("", "", false). |
| func splitUSTARPath(name string) (prefix, suffix string, ok bool) { |
| length := len(name) |
| if length <= nameSize || !isASCII(name) { |
| return "", "", false |
| } else if length > prefixSize+1 { |
| length = prefixSize + 1 |
| } else if name[length-1] == '/' { |
| length-- |
| } |
| |
| i := strings.LastIndex(name[:length], "/") |
| nlen := len(name) - i - 1 // nlen is length of suffix |
| plen := i // plen is length of prefix |
| if i <= 0 || nlen > nameSize || nlen == 0 || plen > prefixSize { |
| return "", "", false |
| } |
| return name[:i], name[i+1:], true |
| } |
| |
| // writePaxHeader writes an extended pax header to the |
| // archive. |
| func (tw *Writer) writePAXHeader(hdr *Header, paxHeaders map[string]string) error { |
| // Prepare extended header |
| ext := new(Header) |
| ext.Typeflag = TypeXHeader |
| // Setting ModTime is required for reader parsing to |
| // succeed, and seems harmless enough. |
| ext.ModTime = hdr.ModTime |
| // The spec asks that we namespace our pseudo files |
| // with the current pid. However, this results in differing outputs |
| // for identical inputs. As such, the constant 0 is now used instead. |
| // golang.org/issue/12358 |
| dir, file := path.Split(hdr.Name) |
| fullName := path.Join(dir, "PaxHeaders.0", file) |
| |
| ascii := toASCII(fullName) |
| if len(ascii) > nameSize { |
| ascii = ascii[:nameSize] |
| } |
| ext.Name = ascii |
| // Construct the body |
| var buf bytes.Buffer |
| |
| // Keys are sorted before writing to body to allow deterministic output. |
| var keys []string |
| for k := range paxHeaders { |
| keys = append(keys, k) |
| } |
| sort.Strings(keys) |
| |
| for _, k := range keys { |
| fmt.Fprint(&buf, formatPAXRecord(k, paxHeaders[k])) |
| } |
| |
| ext.Size = int64(len(buf.Bytes())) |
| if err := tw.writeHeader(ext, false); err != nil { |
| return err |
| } |
| if _, err := tw.Write(buf.Bytes()); err != nil { |
| return err |
| } |
| if err := tw.Flush(); err != nil { |
| return err |
| } |
| return nil |
| } |
| |
| // formatPAXRecord formats a single PAX record, prefixing it with the |
| // appropriate length. |
| func formatPAXRecord(k, v string) string { |
| const padding = 3 // Extra padding for ' ', '=', and '\n' |
| size := len(k) + len(v) + padding |
| size += len(strconv.Itoa(size)) |
| record := fmt.Sprintf("%d %s=%s\n", size, k, v) |
| |
| // Final adjustment if adding size field increased the record size. |
| if len(record) != size { |
| size = len(record) |
| record = fmt.Sprintf("%d %s=%s\n", size, k, v) |
| } |
| return record |
| } |
| |
| // Write writes to the current entry in the tar archive. |
| // Write returns the error ErrWriteTooLong if more than |
| // hdr.Size bytes are written after WriteHeader. |
| func (tw *Writer) Write(b []byte) (n int, err error) { |
| if tw.closed { |
| err = ErrWriteAfterClose |
| return |
| } |
| overwrite := false |
| if int64(len(b)) > tw.nb { |
| b = b[0:tw.nb] |
| overwrite = true |
| } |
| n, err = tw.w.Write(b) |
| tw.nb -= int64(n) |
| if err == nil && overwrite { |
| err = ErrWriteTooLong |
| return |
| } |
| tw.err = err |
| return |
| } |
| |
| // Close closes the tar archive, flushing any unwritten |
| // data to the underlying writer. |
| func (tw *Writer) Close() error { |
| if tw.err != nil || tw.closed { |
| return tw.err |
| } |
| tw.Flush() |
| tw.closed = true |
| if tw.err != nil { |
| return tw.err |
| } |
| |
| // trailer: two zero blocks |
| for i := 0; i < 2; i++ { |
| _, tw.err = tw.w.Write(zeroBlock[:]) |
| if tw.err != nil { |
| break |
| } |
| } |
| return tw.err |
| } |