| <!--{ |
| "Title": "Writing Web Applications", |
| "Template": true |
| }--> |
| |
| <h2>Introduction</h2> |
| |
| <p> |
| Covered in this tutorial: |
| </p> |
| <ul> |
| <li>Creating a data structure with load and save methods</li> |
| <li>Using the <code>net/http</code> package to build web applications |
| <li>Using the <code>html/template</code> package to process HTML templates</li> |
| <li>Using the <code>regexp</code> package to validate user input</li> |
| <li>Using closures</li> |
| </ul> |
| |
| <p> |
| Assumed knowledge: |
| </p> |
| <ul> |
| <li>Programming experience</li> |
| <li>Understanding of basic web technologies (HTTP, HTML)</li> |
| <li>Some UNIX/DOS command-line knowledge</li> |
| </ul> |
| |
| <h2>Getting Started</h2> |
| |
| <p> |
| At present, you need to have a FreeBSD, Linux, OS X, or Windows machine to run Go. |
| We will use <code>$</code> to represent the command prompt. |
| </p> |
| |
| <p> |
| Install Go (see the <a href="/doc/install">Installation Instructions</a>). |
| </p> |
| |
| <p> |
| Make a new directory for this tutorial inside your <code>GOPATH</code> and cd to it: |
| </p> |
| |
| <pre> |
| $ mkdir gowiki |
| $ cd gowiki |
| </pre> |
| |
| <p> |
| Create a file named <code>wiki.go</code>, open it in your favorite editor, and |
| add the following lines: |
| </p> |
| |
| <pre> |
| package main |
| |
| import ( |
| "fmt" |
| "io/ioutil" |
| ) |
| </pre> |
| |
| <p> |
| We import the <code>fmt</code> and <code>ioutil</code> packages from the Go |
| standard library. Later, as we implement additional functionality, we will |
| add more packages to this <code>import</code> declaration. |
| </p> |
| |
| <h2>Data Structures</h2> |
| |
| <p> |
| Let's start by defining the data structures. A wiki consists of a series of |
| interconnected pages, each of which has a title and a body (the page content). |
| Here, we define <code>Page</code> as a struct with two fields representing |
| the title and body. |
| </p> |
| |
| {{code "doc/articles/wiki/part1.go" `/^type Page/` `/}/`}} |
| |
| <p> |
| The type <code>[]byte</code> means "a <code>byte</code> slice". |
| (See <a href="/doc/articles/slices_usage_and_internals.html">Slices: usage and |
| internals</a> for more on slices.) |
| The <code>Body</code> element is a <code>[]byte</code> rather than |
| <code>string</code> because that is the type expected by the <code>io</code> |
| libraries we will use, as you'll see below. |
| </p> |
| |
| <p> |
| The <code>Page</code> struct describes how page data will be stored in memory. |
| But what about persistent storage? We can address that by creating a |
| <code>save</code> method on <code>Page</code>: |
| </p> |
| |
| {{code "doc/articles/wiki/part1.go" `/^func.*Page.*save/` `/}/`}} |
| |
| <p> |
| This method's signature reads: "This is a method named <code>save</code> that |
| takes as its receiver <code>p</code>, a pointer to <code>Page</code> . It takes |
| no parameters, and returns a value of type <code>error</code>." |
| </p> |
| |
| <p> |
| This method will save the <code>Page</code>'s <code>Body</code> to a text |
| file. For simplicity, we will use the <code>Title</code> as the file name. |
| </p> |
| |
| <p> |
| The <code>save</code> method returns an <code>error</code> value because |
| that is the return type of <code>WriteFile</code> (a standard library function |
| that writes a byte slice to a file). The <code>save</code> method returns the |
| error value, to let the application handle it should anything go wrong while |
| writing the file. If all goes well, <code>Page.save()</code> will return |
| <code>nil</code> (the zero-value for pointers, interfaces, and some other |
| types). |
| </p> |
| |
| <p> |
| The octal integer literal <code>0600</code>, passed as the third parameter to |
| <code>WriteFile</code>, indicates that the file should be created with |
| read-write permissions for the current user only. (See the Unix man page |
| <code>open(2)</code> for details.) |
| </p> |
| |
| <p> |
| In addition to saving pages, we will want to load pages, too: |
| </p> |
| |
| {{code "doc/articles/wiki/part1-noerror.go" `/^func loadPage/` `/^}/`}} |
| |
| <p> |
| The function <code>loadPage</code> constructs the file name from the title |
| parameter, reads the file's contents into a new variable <code>body</code>, and |
| returns a pointer to a <code>Page</code> literal constructed with the proper |
| title and body values. |
| </p> |
| |
| <p> |
| Functions can return multiple values. The standard library function |
| <code>io.ReadFile</code> returns <code>[]byte</code> and <code>error</code>. |
| In <code>loadPage</code>, error isn't being handled yet; the "blank identifier" |
| represented by the underscore (<code>_</code>) symbol is used to throw away the |
| error return value (in essence, assigning the value to nothing). |
| </p> |
| |
| <p> |
| But what happens if <code>ReadFile</code> encounters an error? For example, |
| the file might not exist. We should not ignore such errors. Let's modify the |
| function to return <code>*Page</code> and <code>error</code>. |
| </p> |
| |
| {{code "doc/articles/wiki/part1.go" `/^func loadPage/` `/^}/`}} |
| |
| <p> |
| Callers of this function can now check the second parameter; if it is |
| <code>nil</code> then it has successfully loaded a Page. If not, it will be an |
| <code>error</code> that can be handled by the caller (see the |
| <a href="/ref/spec#Errors">language specification</a> for details). |
| </p> |
| |
| <p> |
| At this point we have a simple data structure and the ability to save to and |
| load from a file. Let's write a <code>main</code> function to test what we've |
| written: |
| </p> |
| |
| {{code "doc/articles/wiki/part1.go" `/^func main/` `/^}/`}} |
| |
| <p> |
| After compiling and executing this code, a file named <code>TestPage.txt</code> |
| would be created, containing the contents of <code>p1</code>. The file would |
| then be read into the struct <code>p2</code>, and its <code>Body</code> element |
| printed to the screen. |
| </p> |
| |
| <p> |
| You can compile and run the program like this: |
| </p> |
| |
| <pre> |
| $ go build wiki.go |
| $ ./wiki |
| This is a sample page. |
| </pre> |
| |
| <p> |
| (If you're using Windows you must type "<code>wiki</code>" without the |
| "<code>./</code>" to run the program.) |
| </p> |
| |
| <p> |
| <a href="part1.go">Click here to view the code we've written so far.</a> |
| </p> |
| |
| <h2>Introducing the <code>net/http</code> package (an interlude)</h2> |
| |
| <p> |
| Here's a full working example of a simple web server: |
| </p> |
| |
| {{code "doc/articles/wiki/http-sample.go"}} |
| |
| <p> |
| The <code>main</code> function begins with a call to |
| <code>http.HandleFunc</code>, which tells the <code>http</code> package to |
| handle all requests to the web root (<code>"/"</code>) with |
| <code>handler</code>. |
| </p> |
| |
| <p> |
| It then calls <code>http.ListenAndServe</code>, specifying that it should |
| listen on port 8080 on any interface (<code>":8080"</code>). (Don't |
| worry about its second parameter, <code>nil</code>, for now.) |
| This function will block until the program is terminated. |
| </p> |
| |
| <p> |
| The function <code>handler</code> is of the type <code>http.HandlerFunc</code>. |
| It takes an <code>http.ResponseWriter</code> and an <code>http.Request</code> as |
| its arguments. |
| </p> |
| |
| <p> |
| An <code>http.ResponseWriter</code> value assembles the HTTP server's response; by writing |
| to it, we send data to the HTTP client. |
| </p> |
| |
| <p> |
| An <code>http.Request</code> is a data structure that represents the client |
| HTTP request. <code>r.URL.Path</code> is the path component |
| of the request URL. The trailing <code>[1:]</code> means |
| "create a sub-slice of <code>Path</code> from the 1st character to the end." |
| This drops the leading "/" from the path name. |
| </p> |
| |
| <p> |
| If you run this program and access the URL: |
| </p> |
| <pre>http://localhost:8080/monkeys</pre> |
| <p> |
| the program would present a page containing: |
| </p> |
| <pre>Hi there, I love monkeys!</pre> |
| |
| <h2>Using <code>net/http</code> to serve wiki pages</h2> |
| |
| <p> |
| To use the <code>net/http</code> package, it must be imported: |
| </p> |
| |
| <pre> |
| import ( |
| "fmt" |
| "io/ioutil" |
| <b>"net/http"</b> |
| ) |
| </pre> |
| |
| <p> |
| Let's create a handler, <code>viewHandler</code> that will allow users to |
| view a wiki page. It will handle URLs prefixed with "/view/". |
| </p> |
| |
| {{code "doc/articles/wiki/part2.go" `/^func viewHandler/` `/^}/`}} |
| |
| <p> |
| First, this function extracts the page title from <code>r.URL.Path</code>, |
| the path component of the request URL. |
| The <code>Path</code> is re-sliced with <code>[len("/view/"):]</code> to drop |
| the leading <code>"/view/"</code> component of the request path. |
| This is because the path will invariably begin with <code>"/view/"</code>, |
| which is not part of the page's title. |
| </p> |
| |
| <p> |
| The function then loads the page data, formats the page with a string of simple |
| HTML, and writes it to <code>w</code>, the <code>http.ResponseWriter</code>. |
| </p> |
| |
| <p> |
| Again, note the use of <code>_</code> to ignore the <code>error</code> |
| return value from <code>loadPage</code>. This is done here for simplicity |
| and generally considered bad practice. We will attend to this later. |
| </p> |
| |
| <p> |
| To use this handler, we rewrite our <code>main</code> function to |
| initialize <code>http</code> using the <code>viewHandler</code> to handle |
| any requests under the path <code>/view/</code>. |
| </p> |
| |
| {{code "doc/articles/wiki/part2.go" `/^func main/` `/^}/`}} |
| |
| <p> |
| <a href="part2.go">Click here to view the code we've written so far.</a> |
| </p> |
| |
| <p> |
| Let's create some page data (as <code>test.txt</code>), compile our code, and |
| try serving a wiki page. |
| </p> |
| |
| <p> |
| Open <code>test.txt</code> file in your editor, and save the string "Hello world" (without quotes) |
| in it. |
| </p> |
| |
| <pre> |
| $ go build wiki.go |
| $ ./wiki |
| </pre> |
| |
| <p> |
| (If you're using Windows you must type "<code>wiki</code>" without the |
| "<code>./</code>" to run the program.) |
| </p> |
| |
| <p> |
| With this web server running, a visit to <code><a |
| href="http://localhost:8080/view/test">http://localhost:8080/view/test</a></code> |
| should show a page titled "test" containing the words "Hello world". |
| </p> |
| |
| <h2>Editing Pages</h2> |
| |
| <p> |
| A wiki is not a wiki without the ability to edit pages. Let's create two new |
| handlers: one named <code>editHandler</code> to display an 'edit page' form, |
| and the other named <code>saveHandler</code> to save the data entered via the |
| form. |
| </p> |
| |
| <p> |
| First, we add them to <code>main()</code>: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noclosure.go" `/^func main/` `/^}/`}} |
| |
| <p> |
| The function <code>editHandler</code> loads the page |
| (or, if it doesn't exist, create an empty <code>Page</code> struct), |
| and displays an HTML form. |
| </p> |
| |
| {{code "doc/articles/wiki/notemplate.go" `/^func editHandler/` `/^}/`}} |
| |
| <p> |
| This function will work fine, but all that hard-coded HTML is ugly. |
| Of course, there is a better way. |
| </p> |
| |
| <h2>The <code>html/template</code> package</h2> |
| |
| <p> |
| The <code>html/template</code> package is part of the Go standard library. |
| We can use <code>html/template</code> to keep the HTML in a separate file, |
| allowing us to change the layout of our edit page without modifying the |
| underlying Go code. |
| </p> |
| |
| <p> |
| First, we must add <code>html/template</code> to the list of imports. We |
| also won't be using <code>fmt</code> anymore, so we have to remove that. |
| </p> |
| |
| <pre> |
| import ( |
| <b>"html/template"</b> |
| "io/ioutil" |
| "net/http" |
| ) |
| </pre> |
| |
| <p> |
| Let's create a template file containing the HTML form. |
| Open a new file named <code>edit.html</code>, and add the following lines: |
| </p> |
| |
| {{code "doc/articles/wiki/edit.html"}} |
| |
| <p> |
| Modify <code>editHandler</code> to use the template, instead of the hard-coded |
| HTML: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noerror.go" `/^func editHandler/` `/^}/`}} |
| |
| <p> |
| The function <code>template.ParseFiles</code> will read the contents of |
| <code>edit.html</code> and return a <code>*template.Template</code>. |
| </p> |
| |
| <p> |
| The method <code>t.Execute</code> executes the template, writing the |
| generated HTML to the <code>http.ResponseWriter</code>. |
| The <code>.Title</code> and <code>.Body</code> dotted identifiers refer to |
| <code>p.Title</code> and <code>p.Body</code>. |
| </p> |
| |
| <p> |
| Template directives are enclosed in double curly braces. |
| The <code>printf "%s" .Body</code> instruction is a function call |
| that outputs <code>.Body</code> as a string instead of a stream of bytes, |
| the same as a call to <code>fmt.Printf</code>. |
| The <code>html/template</code> package helps guarantee that only safe and |
| correct-looking HTML is generated by template actions. For instance, it |
| automatically escapes any greater than sign (<code>></code>), replacing it |
| with <code>&gt;</code>, to make sure user data does not corrupt the form |
| HTML. |
| </p> |
| |
| <p> |
| Since we're working with templates now, let's create a template for our |
| <code>viewHandler</code> called <code>view.html</code>: |
| </p> |
| |
| {{code "doc/articles/wiki/view.html"}} |
| |
| <p> |
| Modify <code>viewHandler</code> accordingly: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noerror.go" `/^func viewHandler/` `/^}/`}} |
| |
| <p> |
| Notice that we've used almost exactly the same templating code in both |
| handlers. Let's remove this duplication by moving the templating code |
| to its own function: |
| </p> |
| |
| {{code "doc/articles/wiki/final-template.go" `/^func renderTemplate/` `/^}/`}} |
| |
| <p> |
| And modify the handlers to use that function: |
| </p> |
| |
| {{code "doc/articles/wiki/final-template.go" `/^func viewHandler/` `/^}/`}} |
| {{code "doc/articles/wiki/final-template.go" `/^func editHandler/` `/^}/`}} |
| |
| <p> |
| If we comment out the registration of our unimplemented save handler in |
| <code>main</code>, we can once again build and test our program. |
| <a href="part3.go">Click here to view the code we've written so far.</a> |
| </p> |
| |
| <h2>Handling non-existent pages</h2> |
| |
| <p> |
| What if you visit <a href="http://localhost:8080/view/APageThatDoesntExist"> |
| <code>/view/APageThatDoesntExist</code></a>? You'll see a page containing |
| HTML. This is because it ignores the error return value from |
| <code>loadPage</code> and continues to try and fill out the template |
| with no data. Instead, if the requested Page doesn't exist, it should |
| redirect the client to the edit Page so the content may be created: |
| </p> |
| |
| {{code "doc/articles/wiki/part3-errorhandling.go" `/^func viewHandler/` `/^}/`}} |
| |
| <p> |
| The <code>http.Redirect</code> function adds an HTTP status code of |
| <code>http.StatusFound</code> (302) and a <code>Location</code> |
| header to the HTTP response. |
| </p> |
| |
| <h2>Saving Pages</h2> |
| |
| <p> |
| The function <code>saveHandler</code> will handle the submission of forms |
| located on the edit pages. After uncommenting the related line in |
| <code>main</code>, let's implement the handler: |
| </p> |
| |
| {{code "doc/articles/wiki/final-template.go" `/^func saveHandler/` `/^}/`}} |
| |
| <p> |
| The page title (provided in the URL) and the form's only field, |
| <code>Body</code>, are stored in a new <code>Page</code>. |
| The <code>save()</code> method is then called to write the data to a file, |
| and the client is redirected to the <code>/view/</code> page. |
| </p> |
| |
| <p> |
| The value returned by <code>FormValue</code> is of type <code>string</code>. |
| We must convert that value to <code>[]byte</code> before it will fit into |
| the <code>Page</code> struct. We use <code>[]byte(body)</code> to perform |
| the conversion. |
| </p> |
| |
| <h2>Error handling</h2> |
| |
| <p> |
| There are several places in our program where errors are being ignored. This |
| is bad practice, not least because when an error does occur the program will |
| have unintended behavior. A better solution is to handle the errors and return |
| an error message to the user. That way if something does go wrong, the server |
| will function exactly how we want and the user can be notified. |
| </p> |
| |
| <p> |
| First, let's handle the errors in <code>renderTemplate</code>: |
| </p> |
| |
| {{code "doc/articles/wiki/final-parsetemplate.go" `/^func renderTemplate/` `/^}/`}} |
| |
| <p> |
| The <code>http.Error</code> function sends a specified HTTP response code |
| (in this case "Internal Server Error") and error message. |
| Already the decision to put this in a separate function is paying off. |
| </p> |
| |
| <p> |
| Now let's fix up <code>saveHandler</code>: |
| </p> |
| |
| {{code "doc/articles/wiki/part3-errorhandling.go" `/^func saveHandler/` `/^}/`}} |
| |
| <p> |
| Any errors that occur during <code>p.save()</code> will be reported |
| to the user. |
| </p> |
| |
| <h2>Template caching</h2> |
| |
| <p> |
| There is an inefficiency in this code: <code>renderTemplate</code> calls |
| <code>ParseFiles</code> every time a page is rendered. |
| A better approach would be to call <code>ParseFiles</code> once at program |
| initialization, parsing all templates into a single <code>*Template</code>. |
| Then we can use the |
| <a href="/pkg/html/template/#Template.ExecuteTemplate"><code>ExecuteTemplate</code></a> |
| method to render a specific template. |
| </p> |
| |
| <p> |
| First we create a global variable named <code>templates</code>, and initialize |
| it with <code>ParseFiles</code>. |
| </p> |
| |
| {{code "doc/articles/wiki/final.go" `/var templates/`}} |
| |
| <p> |
| The function <code>template.Must</code> is a convenience wrapper that panics |
| when passed a non-nil <code>error</code> value, and otherwise returns the |
| <code>*Template</code> unaltered. A panic is appropriate here; if the templates |
| can't be loaded the only sensible thing to do is exit the program. |
| </p> |
| |
| <p> |
| The <code>ParseFiles</code> function takes any number of string arguments that |
| identify our template files, and parses those files into templates that are |
| named after the base file name. If we were to add more templates to our |
| program, we would add their names to the <code>ParseFiles</code> call's |
| arguments. |
| </p> |
| |
| <p> |
| We then modify the <code>renderTemplate</code> function to call the |
| <code>templates.ExecuteTemplate</code> method with the name of the appropriate |
| template: |
| </p> |
| |
| {{code "doc/articles/wiki/final.go" `/func renderTemplate/` `/^}/`}} |
| |
| <p> |
| Note that the template name is the template file name, so we must |
| append <code>".html"</code> to the <code>tmpl</code> argument. |
| </p> |
| |
| <h2>Validation</h2> |
| |
| <p> |
| As you may have observed, this program has a serious security flaw: a user |
| can supply an arbitrary path to be read/written on the server. To mitigate |
| this, we can write a function to validate the title with a regular expression. |
| </p> |
| |
| <p> |
| First, add <code>"regexp"</code> to the <code>import</code> list. |
| Then we can create a global variable to store our validation |
| expression: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noclosure.go" `/^var validPath/`}} |
| |
| <p> |
| The function <code>regexp.MustCompile</code> will parse and compile the |
| regular expression, and return a <code>regexp.Regexp</code>. |
| <code>MustCompile</code> is distinct from <code>Compile</code> in that it will |
| panic if the expression compilation fails, while <code>Compile</code> returns |
| an <code>error</code> as a second parameter. |
| </p> |
| |
| <p> |
| Now, let's write a function that uses the <code>validPath</code> |
| expression to validate path and extract the page title: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noclosure.go" `/func getTitle/` `/^}/`}} |
| |
| <p> |
| If the title is valid, it will be returned along with a <code>nil</code> |
| error value. If the title is invalid, the function will write a |
| "404 Not Found" error to the HTTP connection, and return an error to the |
| handler. To create a new error, we have to import the <code>errors</code> |
| package. |
| </p> |
| |
| <p> |
| Let's put a call to <code>getTitle</code> in each of the handlers: |
| </p> |
| |
| {{code "doc/articles/wiki/final-noclosure.go" `/^func viewHandler/` `/^}/`}} |
| {{code "doc/articles/wiki/final-noclosure.go" `/^func editHandler/` `/^}/`}} |
| {{code "doc/articles/wiki/final-noclosure.go" `/^func saveHandler/` `/^}/`}} |
| |
| <h2>Introducing Function Literals and Closures</h2> |
| |
| <p> |
| Catching the error condition in each handler introduces a lot of repeated code. |
| What if we could wrap each of the handlers in a function that does this |
| validation and error checking? Go's |
| <a href="/ref/spec#Function_literals">function |
| literals</a> provide a powerful means of abstracting functionality |
| that can help us here. |
| </p> |
| |
| <p> |
| First, we re-write the function definition of each of the handlers to accept |
| a title string: |
| </p> |
| |
| <pre> |
| func viewHandler(w http.ResponseWriter, r *http.Request, title string) |
| func editHandler(w http.ResponseWriter, r *http.Request, title string) |
| func saveHandler(w http.ResponseWriter, r *http.Request, title string) |
| </pre> |
| |
| <p> |
| Now let's define a wrapper function that <i>takes a function of the above |
| type</i>, and returns a function of type <code>http.HandlerFunc</code> |
| (suitable to be passed to the function <code>http.HandleFunc</code>): |
| </p> |
| |
| <pre> |
| func makeHandler(fn func (http.ResponseWriter, *http.Request, string)) http.HandlerFunc { |
| return func(w http.ResponseWriter, r *http.Request) { |
| // Here we will extract the page title from the Request, |
| // and call the provided handler 'fn' |
| } |
| } |
| </pre> |
| |
| <p> |
| The returned function is called a closure because it encloses values defined |
| outside of it. In this case, the variable <code>fn</code> (the single argument |
| to <code>makeHandler</code>) is enclosed by the closure. The variable |
| <code>fn</code> will be one of our save, edit, or view handlers. |
| </p> |
| |
| <p> |
| Now we can take the code from <code>getTitle</code> and use it here |
| (with some minor modifications): |
| </p> |
| |
| {{code "doc/articles/wiki/final.go" `/func makeHandler/` `/^}/`}} |
| |
| <p> |
| The closure returned by <code>makeHandler</code> is a function that takes |
| an <code>http.ResponseWriter</code> and <code>http.Request</code> (in other |
| words, an <code>http.HandlerFunc</code>). |
| The closure extracts the <code>title</code> from the request path, and |
| validates it with the <code>TitleValidator</code> regexp. If the |
| <code>title</code> is invalid, an error will be written to the |
| <code>ResponseWriter</code> using the <code>http.NotFound</code> function. |
| If the <code>title</code> is valid, the enclosed handler function |
| <code>fn</code> will be called with the <code>ResponseWriter</code>, |
| <code>Request</code>, and <code>title</code> as arguments. |
| </p> |
| |
| <p> |
| Now we can wrap the handler functions with <code>makeHandler</code> in |
| <code>main</code>, before they are registered with the <code>http</code> |
| package: |
| </p> |
| |
| {{code "doc/articles/wiki/final.go" `/func main/` `/^}/`}} |
| |
| <p> |
| Finally we remove the calls to <code>getTitle</code> from the handler functions, |
| making them much simpler: |
| </p> |
| |
| {{code "doc/articles/wiki/final.go" `/^func viewHandler/` `/^}/`}} |
| {{code "doc/articles/wiki/final.go" `/^func editHandler/` `/^}/`}} |
| {{code "doc/articles/wiki/final.go" `/^func saveHandler/` `/^}/`}} |
| |
| <h2>Try it out!</h2> |
| |
| <p> |
| <a href="final.go">Click here to view the final code listing.</a> |
| </p> |
| |
| <p> |
| Recompile the code, and run the app: |
| </p> |
| |
| <pre> |
| $ go build wiki.go |
| $ ./wiki |
| </pre> |
| |
| <p> |
| Visiting <a href="http://localhost:8080/view/ANewPage">http://localhost:8080/view/ANewPage</a> |
| should present you with the page edit form. You should then be able to |
| enter some text, click 'Save', and be redirected to the newly created page. |
| </p> |
| |
| <h2>Other tasks</h2> |
| |
| <p> |
| Here are some simple tasks you might want to tackle on your own: |
| </p> |
| |
| <ul> |
| <li>Store templates in <code>tmpl/</code> and page data in <code>data/</code>. |
| <li>Add a handler to make the web root redirect to |
| <code>/view/FrontPage</code>.</li> |
| <li>Spruce up the page templates by making them valid HTML and adding some |
| CSS rules.</li> |
| <li>Implement inter-page linking by converting instances of |
| <code>[PageName]</code> to <br> |
| <code><a href="/view/PageName">PageName</a></code>. |
| (hint: you could use <code>regexp.ReplaceAllFunc</code> to do this) |
| </li> |
| </ul> |