| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This C program generates the file cmplxdivide1.go. It uses the |
| // output of the operations by C99 as the reference to check |
| // the implementation of complex numbers in Go. |
| // The generated file, cmplxdivide1.go, is compiled along |
| // with the driver cmplxdivide.go (the names are confusing |
| // and unimaginative) to run the actual test. This is done by |
| // the usual test runner. |
| // |
| // The file cmplxdivide1.go is checked in to the repository, but |
| // if it needs to be regenerated, compile and run this C program |
| // like this: |
| // gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #define nelem(x) (sizeof(x)/sizeof((x)[0])) |
| |
| double f[] = { |
| 0, |
| 1, |
| -1, |
| 2, |
| NAN, |
| INFINITY, |
| -INFINITY, |
| }; |
| |
| char* |
| fmt(double g) |
| { |
| static char buf[10][30]; |
| static int n; |
| char *p; |
| |
| p = buf[n++]; |
| if(n == 10) |
| n = 0; |
| sprintf(p, "%g", g); |
| if(strcmp(p, "-0") == 0) |
| strcpy(p, "negzero"); |
| return p; |
| } |
| |
| int |
| iscnan(double complex d) |
| { |
| return !isinf(creal(d)) && !isinf(cimag(d)) && (isnan(creal(d)) || isnan(cimag(d))); |
| } |
| |
| double complex zero; // attempt to hide zero division from gcc |
| |
| int |
| main(void) |
| { |
| int i, j, k, l; |
| double complex n, d, q; |
| |
| printf("// skip\n"); |
| printf("// # generated by cmplxdivide.c\n"); |
| printf("\n"); |
| printf("package main\n"); |
| printf("var tests = []Test{\n"); |
| for(i=0; i<nelem(f); i++) |
| for(j=0; j<nelem(f); j++) |
| for(k=0; k<nelem(f); k++) |
| for(l=0; l<nelem(f); l++) { |
| n = f[i] + f[j]*I; |
| d = f[k] + f[l]*I; |
| q = n/d; |
| |
| // BUG FIX. |
| // Gcc gets the wrong answer for NaN/0 unless both sides are NaN. |
| // That is, it treats (NaN+NaN*I)/0 = NaN+NaN*I (a complex NaN) |
| // but it then computes (1+NaN*I)/0 = Inf+NaN*I (a complex infinity). |
| // Since both numerators are complex NaNs, it seems that the |
| // results should agree in kind. Override the gcc computation in this case. |
| if(iscnan(n) && d == 0) |
| q = (NAN+NAN*I) / zero; |
| |
| printf("\tTest{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n", |
| fmt(creal(n)), fmt(cimag(n)), |
| fmt(creal(d)), fmt(cimag(d)), |
| fmt(creal(q)), fmt(cimag(q))); |
| } |
| printf("}\n"); |
| return 0; |
| } |