| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package strings implements simple functions to manipulate strings. |
| package strings |
| |
| import ( |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| // explode splits s into an array of UTF-8 sequences, one per Unicode character (still strings) up to a maximum of n (n < 0 means no limit). |
| // Invalid UTF-8 sequences become correct encodings of U+FFF8. |
| func explode(s string, n int) []string { |
| if n == 0 { |
| return nil |
| } |
| l := utf8.RuneCountInString(s) |
| if n <= 0 || n > l { |
| n = l |
| } |
| a := make([]string, n) |
| var size int |
| var ch rune |
| i, cur := 0, 0 |
| for ; i+1 < n; i++ { |
| ch, size = utf8.DecodeRuneInString(s[cur:]) |
| if ch == utf8.RuneError { |
| a[i] = string(utf8.RuneError) |
| } else { |
| a[i] = s[cur : cur+size] |
| } |
| cur += size |
| } |
| // add the rest, if there is any |
| if cur < len(s) { |
| a[i] = s[cur:] |
| } |
| return a |
| } |
| |
| // primeRK is the prime base used in Rabin-Karp algorithm. |
| const primeRK = 16777619 |
| |
| // hashstr returns the hash and the appropriate multiplicative |
| // factor for use in Rabin-Karp algorithm. |
| func hashstr(sep string) (uint32, uint32) { |
| hash := uint32(0) |
| for i := 0; i < len(sep); i++ { |
| hash = hash*primeRK + uint32(sep[i]) |
| |
| } |
| var pow, sq uint32 = 1, primeRK |
| for i := len(sep); i > 0; i >>= 1 { |
| if i&1 != 0 { |
| pow *= sq |
| } |
| sq *= sq |
| } |
| return hash, pow |
| } |
| |
| // Count counts the number of non-overlapping instances of sep in s. |
| func Count(s, sep string) int { |
| n := 0 |
| // special cases |
| switch { |
| case len(sep) == 0: |
| return utf8.RuneCountInString(s) + 1 |
| case len(sep) == 1: |
| // special case worth making fast |
| c := sep[0] |
| for i := 0; i < len(s); i++ { |
| if s[i] == c { |
| n++ |
| } |
| } |
| return n |
| case len(sep) > len(s): |
| return 0 |
| case len(sep) == len(s): |
| if sep == s { |
| return 1 |
| } |
| return 0 |
| } |
| hashsep, pow := hashstr(sep) |
| h := uint32(0) |
| for i := 0; i < len(sep); i++ { |
| h = h*primeRK + uint32(s[i]) |
| } |
| lastmatch := 0 |
| if h == hashsep && s[:len(sep)] == sep { |
| n++ |
| lastmatch = len(sep) |
| } |
| for i := len(sep); i < len(s); { |
| h *= primeRK |
| h += uint32(s[i]) |
| h -= pow * uint32(s[i-len(sep)]) |
| i++ |
| if h == hashsep && lastmatch <= i-len(sep) && s[i-len(sep):i] == sep { |
| n++ |
| lastmatch = i |
| } |
| } |
| return n |
| } |
| |
| // Contains returns true if substr is within s. |
| func Contains(s, substr string) bool { |
| return Index(s, substr) >= 0 |
| } |
| |
| // ContainsAny returns true if any Unicode code points in chars are within s. |
| func ContainsAny(s, chars string) bool { |
| return IndexAny(s, chars) >= 0 |
| } |
| |
| // ContainsRune returns true if the Unicode code point r is within s. |
| func ContainsRune(s string, r rune) bool { |
| return IndexRune(s, r) >= 0 |
| } |
| |
| // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. |
| func Index(s, sep string) int { |
| n := len(sep) |
| switch { |
| case n == 0: |
| return 0 |
| case n == 1: |
| return IndexByte(s, sep[0]) |
| case n == len(s): |
| if sep == s { |
| return 0 |
| } |
| return -1 |
| case n > len(s): |
| return -1 |
| } |
| // Hash sep. |
| hashsep, pow := hashstr(sep) |
| var h uint32 |
| for i := 0; i < n; i++ { |
| h = h*primeRK + uint32(s[i]) |
| } |
| if h == hashsep && s[:n] == sep { |
| return 0 |
| } |
| for i := n; i < len(s); { |
| h *= primeRK |
| h += uint32(s[i]) |
| h -= pow * uint32(s[i-n]) |
| i++ |
| if h == hashsep && s[i-n:i] == sep { |
| return i - n |
| } |
| } |
| return -1 |
| } |
| |
| // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. |
| func LastIndex(s, sep string) int { |
| n := len(sep) |
| if n == 0 { |
| return len(s) |
| } |
| c := sep[0] |
| if n == 1 { |
| // special case worth making fast |
| for i := len(s) - 1; i >= 0; i-- { |
| if s[i] == c { |
| return i |
| } |
| } |
| return -1 |
| } |
| // n > 1 |
| for i := len(s) - n; i >= 0; i-- { |
| if s[i] == c && s[i:i+n] == sep { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // IndexRune returns the index of the first instance of the Unicode code point |
| // r, or -1 if rune is not present in s. |
| func IndexRune(s string, r rune) int { |
| switch { |
| case r < 0x80: |
| b := byte(r) |
| for i := 0; i < len(s); i++ { |
| if s[i] == b { |
| return i |
| } |
| } |
| default: |
| for i, c := range s { |
| if c == r { |
| return i |
| } |
| } |
| } |
| return -1 |
| } |
| |
| // IndexAny returns the index of the first instance of any Unicode code point |
| // from chars in s, or -1 if no Unicode code point from chars is present in s. |
| func IndexAny(s, chars string) int { |
| if len(chars) > 0 { |
| for i, c := range s { |
| for _, m := range chars { |
| if c == m { |
| return i |
| } |
| } |
| } |
| } |
| return -1 |
| } |
| |
| // LastIndexAny returns the index of the last instance of any Unicode code |
| // point from chars in s, or -1 if no Unicode code point from chars is |
| // present in s. |
| func LastIndexAny(s, chars string) int { |
| if len(chars) > 0 { |
| for i := len(s); i > 0; { |
| rune, size := utf8.DecodeLastRuneInString(s[0:i]) |
| i -= size |
| for _, m := range chars { |
| if rune == m { |
| return i |
| } |
| } |
| } |
| } |
| return -1 |
| } |
| |
| // Generic split: splits after each instance of sep, |
| // including sepSave bytes of sep in the subarrays. |
| func genSplit(s, sep string, sepSave, n int) []string { |
| if n == 0 { |
| return nil |
| } |
| if sep == "" { |
| return explode(s, n) |
| } |
| if n < 0 { |
| n = Count(s, sep) + 1 |
| } |
| c := sep[0] |
| start := 0 |
| a := make([]string, n) |
| na := 0 |
| for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ { |
| if s[i] == c && (len(sep) == 1 || s[i:i+len(sep)] == sep) { |
| a[na] = s[start : i+sepSave] |
| na++ |
| start = i + len(sep) |
| i += len(sep) - 1 |
| } |
| } |
| a[na] = s[start:] |
| return a[0 : na+1] |
| } |
| |
| // SplitN slices s into substrings separated by sep and returns a slice of |
| // the substrings between those separators. |
| // If sep is empty, SplitN splits after each UTF-8 sequence. |
| // The count determines the number of substrings to return: |
| // n > 0: at most n substrings; the last substring will be the unsplit remainder. |
| // n == 0: the result is nil (zero substrings) |
| // n < 0: all substrings |
| func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } |
| |
| // SplitAfterN slices s into substrings after each instance of sep and |
| // returns a slice of those substrings. |
| // If sep is empty, SplitAfterN splits after each UTF-8 sequence. |
| // The count determines the number of substrings to return: |
| // n > 0: at most n substrings; the last substring will be the unsplit remainder. |
| // n == 0: the result is nil (zero substrings) |
| // n < 0: all substrings |
| func SplitAfterN(s, sep string, n int) []string { |
| return genSplit(s, sep, len(sep), n) |
| } |
| |
| // Split slices s into all substrings separated by sep and returns a slice of |
| // the substrings between those separators. |
| // If sep is empty, Split splits after each UTF-8 sequence. |
| // It is equivalent to SplitN with a count of -1. |
| func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } |
| |
| // SplitAfter slices s into all substrings after each instance of sep and |
| // returns a slice of those substrings. |
| // If sep is empty, SplitAfter splits after each UTF-8 sequence. |
| // It is equivalent to SplitAfterN with a count of -1. |
| func SplitAfter(s, sep string) []string { |
| return genSplit(s, sep, len(sep), -1) |
| } |
| |
| // Fields splits the string s around each instance of one or more consecutive white space |
| // characters, as defined by unicode.IsSpace, returning an array of substrings of s or an |
| // empty list if s contains only white space. |
| func Fields(s string) []string { |
| return FieldsFunc(s, unicode.IsSpace) |
| } |
| |
| // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) |
| // and returns an array of slices of s. If all code points in s satisfy f(c) or the |
| // string is empty, an empty slice is returned. |
| func FieldsFunc(s string, f func(rune) bool) []string { |
| // First count the fields. |
| n := 0 |
| inField := false |
| for _, rune := range s { |
| wasInField := inField |
| inField = !f(rune) |
| if inField && !wasInField { |
| n++ |
| } |
| } |
| |
| // Now create them. |
| a := make([]string, n) |
| na := 0 |
| fieldStart := -1 // Set to -1 when looking for start of field. |
| for i, rune := range s { |
| if f(rune) { |
| if fieldStart >= 0 { |
| a[na] = s[fieldStart:i] |
| na++ |
| fieldStart = -1 |
| } |
| } else if fieldStart == -1 { |
| fieldStart = i |
| } |
| } |
| if fieldStart >= 0 { // Last field might end at EOF. |
| a[na] = s[fieldStart:] |
| } |
| return a |
| } |
| |
| // Join concatenates the elements of a to create a single string. The separator string |
| // sep is placed between elements in the resulting string. |
| func Join(a []string, sep string) string { |
| if len(a) == 0 { |
| return "" |
| } |
| if len(a) == 1 { |
| return a[0] |
| } |
| n := len(sep) * (len(a) - 1) |
| for i := 0; i < len(a); i++ { |
| n += len(a[i]) |
| } |
| |
| b := make([]byte, n) |
| bp := copy(b, a[0]) |
| for _, s := range a[1:] { |
| bp += copy(b[bp:], sep) |
| bp += copy(b[bp:], s) |
| } |
| return string(b) |
| } |
| |
| // HasPrefix tests whether the string s begins with prefix. |
| func HasPrefix(s, prefix string) bool { |
| return len(s) >= len(prefix) && s[0:len(prefix)] == prefix |
| } |
| |
| // HasSuffix tests whether the string s ends with suffix. |
| func HasSuffix(s, suffix string) bool { |
| return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix |
| } |
| |
| // Map returns a copy of the string s with all its characters modified |
| // according to the mapping function. If mapping returns a negative value, the character is |
| // dropped from the string with no replacement. |
| func Map(mapping func(rune) rune, s string) string { |
| // In the worst case, the string can grow when mapped, making |
| // things unpleasant. But it's so rare we barge in assuming it's |
| // fine. It could also shrink but that falls out naturally. |
| maxbytes := len(s) // length of b |
| nbytes := 0 // number of bytes encoded in b |
| // The output buffer b is initialized on demand, the first |
| // time a character differs. |
| var b []byte |
| |
| for i, c := range s { |
| r := mapping(c) |
| if b == nil { |
| if r == c { |
| continue |
| } |
| b = make([]byte, maxbytes) |
| nbytes = copy(b, s[:i]) |
| } |
| if r >= 0 { |
| wid := 1 |
| if r >= utf8.RuneSelf { |
| wid = utf8.RuneLen(r) |
| } |
| if nbytes+wid > maxbytes { |
| // Grow the buffer. |
| maxbytes = maxbytes*2 + utf8.UTFMax |
| nb := make([]byte, maxbytes) |
| copy(nb, b[0:nbytes]) |
| b = nb |
| } |
| nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) |
| } |
| } |
| if b == nil { |
| return s |
| } |
| return string(b[0:nbytes]) |
| } |
| |
| // Repeat returns a new string consisting of count copies of the string s. |
| func Repeat(s string, count int) string { |
| b := make([]byte, len(s)*count) |
| bp := 0 |
| for i := 0; i < count; i++ { |
| bp += copy(b[bp:], s) |
| } |
| return string(b) |
| } |
| |
| // ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case. |
| func ToUpper(s string) string { return Map(unicode.ToUpper, s) } |
| |
| // ToLower returns a copy of the string s with all Unicode letters mapped to their lower case. |
| func ToLower(s string) string { return Map(unicode.ToLower, s) } |
| |
| // ToTitle returns a copy of the string s with all Unicode letters mapped to their title case. |
| func ToTitle(s string) string { return Map(unicode.ToTitle, s) } |
| |
| // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their |
| // upper case, giving priority to the special casing rules. |
| func ToUpperSpecial(_case unicode.SpecialCase, s string) string { |
| return Map(func(r rune) rune { return _case.ToUpper(r) }, s) |
| } |
| |
| // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their |
| // lower case, giving priority to the special casing rules. |
| func ToLowerSpecial(_case unicode.SpecialCase, s string) string { |
| return Map(func(r rune) rune { return _case.ToLower(r) }, s) |
| } |
| |
| // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their |
| // title case, giving priority to the special casing rules. |
| func ToTitleSpecial(_case unicode.SpecialCase, s string) string { |
| return Map(func(r rune) rune { return _case.ToTitle(r) }, s) |
| } |
| |
| // isSeparator reports whether the rune could mark a word boundary. |
| // TODO: update when package unicode captures more of the properties. |
| func isSeparator(r rune) bool { |
| // ASCII alphanumerics and underscore are not separators |
| if r <= 0x7F { |
| switch { |
| case '0' <= r && r <= '9': |
| return false |
| case 'a' <= r && r <= 'z': |
| return false |
| case 'A' <= r && r <= 'Z': |
| return false |
| case r == '_': |
| return false |
| } |
| return true |
| } |
| // Letters and digits are not separators |
| if unicode.IsLetter(r) || unicode.IsDigit(r) { |
| return false |
| } |
| // Otherwise, all we can do for now is treat spaces as separators. |
| return unicode.IsSpace(r) |
| } |
| |
| // Title returns a copy of the string s with all Unicode letters that begin words |
| // mapped to their title case. |
| // |
| // BUG: The rule Title uses for word boundaries does not handle Unicode punctuation properly. |
| func Title(s string) string { |
| // Use a closure here to remember state. |
| // Hackish but effective. Depends on Map scanning in order and calling |
| // the closure once per rune. |
| prev := ' ' |
| return Map( |
| func(r rune) rune { |
| if isSeparator(prev) { |
| prev = r |
| return unicode.ToTitle(r) |
| } |
| prev = r |
| return r |
| }, |
| s) |
| } |
| |
| // TrimLeftFunc returns a slice of the string s with all leading |
| // Unicode code points c satisfying f(c) removed. |
| func TrimLeftFunc(s string, f func(rune) bool) string { |
| i := indexFunc(s, f, false) |
| if i == -1 { |
| return "" |
| } |
| return s[i:] |
| } |
| |
| // TrimRightFunc returns a slice of the string s with all trailing |
| // Unicode code points c satisfying f(c) removed. |
| func TrimRightFunc(s string, f func(rune) bool) string { |
| i := lastIndexFunc(s, f, false) |
| if i >= 0 && s[i] >= utf8.RuneSelf { |
| _, wid := utf8.DecodeRuneInString(s[i:]) |
| i += wid |
| } else { |
| i++ |
| } |
| return s[0:i] |
| } |
| |
| // TrimFunc returns a slice of the string s with all leading |
| // and trailing Unicode code points c satisfying f(c) removed. |
| func TrimFunc(s string, f func(rune) bool) string { |
| return TrimRightFunc(TrimLeftFunc(s, f), f) |
| } |
| |
| // IndexFunc returns the index into s of the first Unicode |
| // code point satisfying f(c), or -1 if none do. |
| func IndexFunc(s string, f func(rune) bool) int { |
| return indexFunc(s, f, true) |
| } |
| |
| // LastIndexFunc returns the index into s of the last |
| // Unicode code point satisfying f(c), or -1 if none do. |
| func LastIndexFunc(s string, f func(rune) bool) int { |
| return lastIndexFunc(s, f, true) |
| } |
| |
| // indexFunc is the same as IndexFunc except that if |
| // truth==false, the sense of the predicate function is |
| // inverted. |
| func indexFunc(s string, f func(rune) bool, truth bool) int { |
| start := 0 |
| for start < len(s) { |
| wid := 1 |
| r := rune(s[start]) |
| if r >= utf8.RuneSelf { |
| r, wid = utf8.DecodeRuneInString(s[start:]) |
| } |
| if f(r) == truth { |
| return start |
| } |
| start += wid |
| } |
| return -1 |
| } |
| |
| // lastIndexFunc is the same as LastIndexFunc except that if |
| // truth==false, the sense of the predicate function is |
| // inverted. |
| func lastIndexFunc(s string, f func(rune) bool, truth bool) int { |
| for i := len(s); i > 0; { |
| r, size := utf8.DecodeLastRuneInString(s[0:i]) |
| i -= size |
| if f(r) == truth { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| func makeCutsetFunc(cutset string) func(rune) bool { |
| return func(r rune) bool { return IndexRune(cutset, r) >= 0 } |
| } |
| |
| // Trim returns a slice of the string s with all leading and |
| // trailing Unicode code points contained in cutset removed. |
| func Trim(s string, cutset string) string { |
| if s == "" || cutset == "" { |
| return s |
| } |
| return TrimFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimLeft returns a slice of the string s with all leading |
| // Unicode code points contained in cutset removed. |
| func TrimLeft(s string, cutset string) string { |
| if s == "" || cutset == "" { |
| return s |
| } |
| return TrimLeftFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimRight returns a slice of the string s, with all trailing |
| // Unicode code points contained in cutset removed. |
| func TrimRight(s string, cutset string) string { |
| if s == "" || cutset == "" { |
| return s |
| } |
| return TrimRightFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimSpace returns a slice of the string s, with all leading |
| // and trailing white space removed, as defined by Unicode. |
| func TrimSpace(s string) string { |
| return TrimFunc(s, unicode.IsSpace) |
| } |
| |
| // TrimPrefix returns s without the provided leading prefix string. |
| // If s doesn't start with prefix, s is returned unchanged. |
| func TrimPrefix(s, prefix string) string { |
| if HasPrefix(s, prefix) { |
| return s[len(prefix):] |
| } |
| return s |
| } |
| |
| // TrimSuffix returns s without the provided trailing suffix string. |
| // If s doesn't end with suffix, s is returned unchanged. |
| func TrimSuffix(s, suffix string) string { |
| if HasSuffix(s, suffix) { |
| return s[:len(s)-len(suffix)] |
| } |
| return s |
| } |
| |
| // Replace returns a copy of the string s with the first n |
| // non-overlapping instances of old replaced by new. |
| // If n < 0, there is no limit on the number of replacements. |
| func Replace(s, old, new string, n int) string { |
| if old == new || n == 0 { |
| return s // avoid allocation |
| } |
| |
| // Compute number of replacements. |
| if m := Count(s, old); m == 0 { |
| return s // avoid allocation |
| } else if n < 0 || m < n { |
| n = m |
| } |
| |
| // Apply replacements to buffer. |
| t := make([]byte, len(s)+n*(len(new)-len(old))) |
| w := 0 |
| start := 0 |
| for i := 0; i < n; i++ { |
| j := start |
| if len(old) == 0 { |
| if i > 0 { |
| _, wid := utf8.DecodeRuneInString(s[start:]) |
| j += wid |
| } |
| } else { |
| j += Index(s[start:], old) |
| } |
| w += copy(t[w:], s[start:j]) |
| w += copy(t[w:], new) |
| start = j + len(old) |
| } |
| w += copy(t[w:], s[start:]) |
| return string(t[0:w]) |
| } |
| |
| // EqualFold reports whether s and t, interpreted as UTF-8 strings, |
| // are equal under Unicode case-folding. |
| func EqualFold(s, t string) bool { |
| for s != "" && t != "" { |
| // Extract first rune from each string. |
| var sr, tr rune |
| if s[0] < utf8.RuneSelf { |
| sr, s = rune(s[0]), s[1:] |
| } else { |
| r, size := utf8.DecodeRuneInString(s) |
| sr, s = r, s[size:] |
| } |
| if t[0] < utf8.RuneSelf { |
| tr, t = rune(t[0]), t[1:] |
| } else { |
| r, size := utf8.DecodeRuneInString(t) |
| tr, t = r, t[size:] |
| } |
| |
| // If they match, keep going; if not, return false. |
| |
| // Easy case. |
| if tr == sr { |
| continue |
| } |
| |
| // Make sr < tr to simplify what follows. |
| if tr < sr { |
| tr, sr = sr, tr |
| } |
| // Fast check for ASCII. |
| if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' { |
| // ASCII, and sr is upper case. tr must be lower case. |
| if tr == sr+'a'-'A' { |
| continue |
| } |
| return false |
| } |
| |
| // General case. SimpleFold(x) returns the next equivalent rune > x |
| // or wraps around to smaller values. |
| r := unicode.SimpleFold(sr) |
| for r != sr && r < tr { |
| r = unicode.SimpleFold(r) |
| } |
| if r == tr { |
| continue |
| } |
| return false |
| } |
| |
| // One string is empty. Are both? |
| return s == t |
| } |